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Abstract. A concise proof of the Riemann Hypothesis is presented by clarifying the Hadamard
product expansion over the zeta zeros, demonstrating that the Riemann Hypothesis is true.
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1. Introduction. In his landmark paper in 1859, Bernhard Riemann [1] hypoth-
esized that the non-trivial zeros of the Riemann zeta function ζ(s) all have a real part
equal to 1

2 . Major progress towards proving the Riemann hypothesis was made by
Jacques Hadamard in 1893 [2], when he showed that the Riemann zeta function ζ(s)
can be expressed as an infinite product expansion over the non-trivial zeros of the
zeta function. In 1896 [3], he also proved that there are no zeros on the line <(s) = 1.

The Riemann Hypothesis is the eighth problem in David Hilbert’s list of 23 un-
solved problems published in 1900 [4]. There has been tremendous work on the subject
since then, which has been illustrated by Titchmarsh (1930) [5], Edwards (1975) [6],
Ivic (1985) [7], and Karatsuba (1992) [8]. It is still regarded as one of the most diffi-
cult unsolved problems and has been named the second most important problem in
the list of the Clay Mathematics Institute Millennium Prize Problems (2000), as its
proof would shed light on many of the mysteries surrounding the distribution of prime
numbers [9, 10].

The Riemann zeta function is a function of the complex variable s, defined in the
half-plane <(s) > 1 by the absolutely convergent series

(1.1) ζ(s) :=

∞∑
n=1

1

ns

and in the whole complex plane by analytic continuation [9].
The Riemann hypothesis is concerned with the locations of the non-trivial zeros

of ζ(s), and states that: the non-trivial zeros of ζ(s) have a real part equal to 1
2 [9].

In this article, the truth of the Riemann Hypothesis is demonstrated by employing
the Hadamard product of the zeta function and clarifying the principle zeros for the
product expansion. The process is outlined in a less abstract form and includes some
’simplistic steps’, in order to be accessible for a wider audience.

The paper is organized as follows. The principle zeros and poles are defined in
section 2, the relations between sums and products are shown in section 3, the sums
and products for zeta function are developed in section 4, the Proof of the Riemann
Hypothesis is demonstrated in section 5 , and the conclusions follow in section 6.

2. Principle Zeros of the Zeta Function. Defining the principle zeros and
poles is essential to correctly formulate the function in terms of its zeros. There can
be some confusion when defining the zeros of a function; consider, for example, the
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Γ(z) function, which has the following functional equation:

(2.1)
π

Γ(z)
= sin(πz)Γ(1− z),

from which we see that π
Γ(z) has zeros at z = −r with r = 0, 1, 2, 3 . . . , whereas

(2.2)
π

Γ(1− z)
= sin(πz)Γ(z),

has zeros at z = 1 + r.
The function π

Γ(z) has never been assumed to have zeros at both z = −r and

z = 1 + r. It is well known that the zeros of π
Γ(z) are only at z = −r. This is because

the principle zeros of a function are defined only with a pure z in the argument. Other
variations of the argument, such as n− z or z + n, are termed non-principle zeros.

For the case of the Riemann zeta function ζ(s), it has been shown, by Riemann
[1], that the zeta function satisfies the following functional equation

(2.3) ζ(s) = 2sπs−1 sin
(πs

2

)
Γ(1− s)ζ(1− s),

where the symmetrical form of the functional equation is given as

(2.4) π−
s
2 Γ( s2 )ζ(s) = π

1−s
2 Γ( 1−s

2 )ζ(1− s).

We note that ζ(s) has zeros at s = sr = σr + itr, s = s̄r = σr − itr, and s = −2r with
r = 1, 2, 3, . . . . Many assume, from the functional equation (2.4) for ζ(1 − s), that
s = 1−sr and s = 1− s̄r are also zeros of zeta, with no mention of whether s = 1+2r
are zeros of zeta as well, based on the same assumption. Nevertheless, the principle
zeros of ζ(s) are determined only by using the pure argument s in ζ(s); hence, the
principle zeros are only at s = sr, s = s̄r, and s = −2r. Therefore, the sums and
products of ζ(s) should only be over the zeros s = sr, s = s̄r, and s = −2r, whenever
appropriate, contrary to the usual statement that ”the infinite product is understood
to be taken in an order which pairs each root ρ with the corresponding root 1−ρ” [6]
p.39. For correctness, I have rephrased the statement to ”the ζ(s) infinite product is
understood to be taken in an order which pairs each root sr with the corresponding
conjugate root s̄r”; the difference is minor though the impact is tremendous.

Now, the locations of the non-trivial zeros are determined by considering the
Euler product of ζ(s) over the set of the prime numbers {2, 3, 5, . . . , pr, . . . }, given by

(2.5) ζ(s) =

∞∏
r=1

1

1− 1
psr

,

which shows that ζ(s) does not have any zeros for <(s) > 1, and by the functional
Equation (2.3), no zeros for <(s) < 0; save for the trivial zeros at s = −2r, due
to the sin(πs2 )Γ(1 − s) term. Jacques Hadamard (1896) [3] and Charles Jean de la
Vallée-Poussin [11] independently proved that there are no zeros on the line <(s) = 1.
In addition, considering the functional equation and the fact that there are no zeros
with a real part greater than 1, it follows that all non-trivial zeros must lie in the
interior of the critical strip 0 < <(s) < 1. Hardy and Littlewood (1921) [12] have
shown that there are infinitely many non-trivial zeros sr on the critical line s = 1

2 + it.
Here, the non-trivial principle zeros of ζ(s) are located only in the strip 1

2 ≤
<(s) < 1, whereas the non-trivial zeros of ζ(1−s) are located in the strip 0 < <(s) ≤ 1

2 .
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Although this is a minor definition clarification, it is critical in proving the Riemann
Hypothesis. This has been overlooked, as 1 − sr = s̄r for all the known zeros; thus,
the product or sum over the zeros (1− sr) is the same as the product or sum over s̄r
for the first ten trillion known zeros [13].

3. Relations between Sums and Products. In this section, the relationship
between Mittag-Leffler’s theorem and the Weierstrass factorization theorem is shown
using a few algebraic steps, as well as demonstrating the link to the Hadamard product
for any entire function. It is insightful to know that Gösta Mittag-Leffler studied under
Karl Weierstrass in Berlin (1875–1876).

Let f(z) be analytic for all z (i.e., f(z) is an entire function), such that f(z)
has a functional equation f(z) = f(b − z), with f(b) = f(0) 6= 0. Then, suppose
that f(z) has simple zeros at a1, a2, a3, · · · , where 0 < |a1| < |a2| < |a3| < · · · and
limr→∞ ar = ∞. A reciprocal related function F (z) in the finite z-plane has simple
singularities at only the simple poles of the zeros of f(z), a1, a2, a3, · · · , arranged in
order of increasing absolute value, such that the residues of F (z) at a1, a2, a3, · · · are
R1, R2, R3, · · · .

Then, by Mittag-Leffler’s theorem, F (z) can be expressed as an infinite series over
its poles, given by

(3.1) F (z) = F (0) +

∞∑
r=1

Rr
z − ar

+
Rr
ar
.

Based on the Weierstrass factorization theorem, Hadamard [2] showed that an
entire function f(z) of finite order has a canonical representation, given by:

(3.2) f(z) = zmeP (z)
∞∏
r=1

(
1− z

ar

)
e

(
z
ar

+ 1
2 ( z

ar
)
2
+···+ 1

d ( z
ar

)
d
)
,

where ar are those zeros of f(z) with the condition that (ak 6= 0), m is the order of
the zero of f(z) at z = 0 (i.e., m = 0 means f(0) 6= 0), P (z) is a polynomial of degree
q, and d is the smallest non-negative integer such that the following series converges

(3.3)

∞∑
r=1

1

|ar|d+1
.

Now, consider the following case:

(3.4) F (z) =
f
′
(z)

f(z)
.

Then, the residue Rr at the simple pole ar of F (z) is Rr = 1. Thus, by Mittag-Leffler’s
theorem in Equation (3.1), F (z) is given by

(3.5) F (z) =
f
′
(z)

f(z)
=
f
′
(0)

f(0)
+

∞∑
r=1

1

z − ar
+

1

ar
.

Integrating, we have

(3.6) ln f(z) = C +
f
′
(0)

f(0)
z +

∞∑
r=1

ln

(
1− z

ar

)
+

z

ar
,
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where the integration constant C is evaluated at z = 0 (i.e., C = ln f(0)). Then,
taking the antilog, we have

(3.7) f(z) = e(ln f(0)+
f
′
(0)

f(0)
z)
∞∏
r=1

(
1− z

ar

)
e

z
ar .

Therefore, we arrive at a Hadamard canonical representation of f(z), with P (z) =

ln f(0) + f
′
(0)

f(0) z, m = 0, and d = 1. It is sometimes useful to normalize f(z) such that

f(0) = 1, in order to simplify the expression.
Now, consider another case given by

(3.8) F (z) =
f
′
(z)

f(z)
z ⇒ F (0) = 0.

Then, the residue Rr at the simple pole ar of F (z) is Rr = ar. By Mittag-Leffler’s
theorem in Equation (3.1), F (z) is given by

(3.9)
f
′
(z)

f(z)
z =

∞∑
r=1

ar
z − ar

+ 1 =

∞∑
r=1

z

z − ar
;

that is,

(3.10)
f
′
(z)

f(z)
=

∞∑
r=1

1

z − ar
.

Integrating, we have

(3.11) ln f(z) = C +

∞∑
r=1

ln

(
1− z

ar

)
,

where the integration constant C is evaluated at z = 0, giving C = ln f(0). Taking
the antilog, we have

(3.12) f(z) = f(0)

∞∏
r=1

(
1− z

ar

)
.

As a result, we arrive at another Hadamard canonical representation of the func-
tion f(z), with P (z) = ln f(0), m = 0, and d = 0. We note that, in the second case,
the resulting sums and products are sometimes divergent, depending on the nature of
the zeros. Such expressions may not be useful for computing the value of the function;
however, the value of the function can be used to assign a value to the expression.
This process is useful in the regularization of divergent series and divergent integrals.

The cases illustrated above are just a small sample of the many forms that can
be considered, such as

(3.13) F (z) =
f
′
(z)

f(z)

sin z

z
=
f
′
(0)

f(0)
+

∞∑
r=1

sin(ar)

(z − ar)ar
+

sin(ar)

a2
r

, sin(ar) 6= 0,

from which we see that Mittag-Leffler’s theorem is a very versatile method which
enables us to generate many forms of any function in terms of its poles. The poles
and zeros of a function have many useful applications in control theory, circuit design,
determining resonant frequencies, electromagnetic analysis, and so on.
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4. Sums and Products for Zeta Function. In this section, the sum over the
principle poles of a reciprocal function of zeta is developed based on Mittag-Leffler’s
theorem, in order to showcase the linkage to the Hadamard product over the principle
zeros of zeta, by considering a normalized function of ξ(s) given by

(4.1) f(s) = 2ξ(s) = ζ(s)(s− 1)sΓ( s2 )π−
s
2 ,

which is an entire function with f(s) = f(1 − s), f(1) = f(0) = 1, and which has
principle zeros only at s = sr and s = s̄r. Thus, the ζ(s) infinite product is understood
to be taken in an order which pairs each root sr with the corresponding conjugate
root s̄r. Now, taking the log, we have

(4.2) ln f(s) = ln 2 + ln ξ(s) = ln ζ(s) + ln(s− 1) + ln s+ ln Γ( s2 )− s
2 lnπ.

Differentiating, we have

(4.3)
f
′
(s)

f(s)
=
ξ
′
(s)

ξ(s)
=
ζ
′
(s)

ζ(s)
+

1

(s− 1)
+

1

s
+

Γ
′
( s2 )

Γ( s2 )
− 1

2 lnπ,

which gives

(4.4)
f
′
(0)

f(0)
= ln 2π − 1− 1

2γ −
1
2 lnπ.

Note that f
′
(s)

f(s) has simple poles at the same zeros of ξ(s) (i.e., the poles are at s = sr
and s = s̄r).

Now, using Mittag-Leffler’s theorem for the sum over the poles of the function
f
′
(s)

f(s) , we obtain

ζ
′
(s)

ζ(s)
+

1

(s− 1)
+

1

s
+

Γ
′
( s2 )

Γ( s2 )
=[ln 2π − 1− 1

2γ]

+

∞∑
r=1

1

(s− sr)
+

1

sr
+

1

(s− s̄r)
+

1

s̄r
.

(4.5)

Integrating Equation (4.5) and taking the antilog, we have

(4.6) ζ(s)(s− 1)sΓ( s2 ) = e[ln 2π−1− 1
2γ]s

∞∏
r=1

(
1− s

sr

)
e

s
sr

(
1− s

s̄r

)
e

s
s̄r ,

which was proved by Hadamard [2]. Note the 1
2 lnπ term canceled out, as it appears

on both sides of the equation.
Also, using Mittag-Leffler’s theorem for the following function

(4.7) F (s) =
f
′
(s)

f(s)
s =⇒ F (0) = 0,

we have

(4.8)
ζ
′
(s)

ζ(s)
+

1

(s− 1)
+

1

s
+

Γ
′
( s2 )

Γ( s2 )
− 1

2 lnπ =

∞∑
r=1

1

(s− sr)
+

1

(s− s̄r)
.
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Integrating and taking the antilog, we have

(4.9) ζ(s)(s− 1)sΓ( s2 )π−
s
2 =

∞∏
r=1

(
1− s

sr

)(
1− s

s̄r

)
;

that is,

(4.10) 2ξ(s) = ζ(s)(s− 1)sΓ( s2 )π−
s
2 =

∞∏
r=1

(
1− s(2σr − s)

sr s̄r

)
,

which was given by Riemann [1], in a logarithmic form with minor difference from the
modern definition of ξ(s). He set s = 1

2 + ti to obtain

(4.11) log ξ(t) =
∑

log

(
1− tt

αα

)
+ log ξ(0);

that is,

(4.12) ξ(t) = ξ(0)
∏(

1− tt

αα

)
.

5. A Proof of the Riemann Hypothesis.

Theorem 5.1. The Riemann zeta function ζ(s) has only two independent sets
of principle zeros, M and S. The set M of all principle trivial zeros of ζ(s) lies on
the real negative axis with imaginary part t = 0, whereas the set S of all principle
non-trivial zeros of ζ(s) lies on the imaginary line with real part σ = 1

2 .

Proof. It has been shown, by Riemann [1], that the zeta function satisfies the
following functional equation:

(5.1) ζ(s) = 2sπs−1 sin
(πs

2

)
Γ(1− s)ζ(1− s),

Now, if ζ(s) = 0, then from Equation (5.1), we have

(5.2) sin
(πs

2

)
Γ(1− s) = 0,

or

(5.3) ζ(s) = 0.

From Equation (5.2), we can obtain the set M of all trivial zeros of ζ(s) (i.e.,
M = {−2,−4, . . . ,−2m, . . . }, where m is a positive integer) and, from Equation
(5.3), we can obtain another independent set S of all non-trivial zeros of ζ(s), S =
{s1, s2, . . . , sr, . . . }, with sr = σr ± itr, where 1

2 ≤ σr < 1, tr are real numbers, and i
is the imaginary unit.

Now, by Equation (4.10), we have

(5.4) 2ξ(s) = ζ(s)(s− 1)sΓ( s2 )π−
s
2 =

∞∏
r=1

(
1− s(2σr − s)

sr s̄r

)
,
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and, considering the case of the limit when s→ 1, we have

(5.5) lim
s→1

[ζ(s)(s− 1)]Γ( 1
2 )π−

1
2 =

∞∏
r=1

(
1− (2σr − 1)

sr s̄r

)
.

It is well-known that

lim
s→1

ζ(s)(s− 1) = 1 and Γ( 1
2 ) = π

1
2 .

Therefore, Equation (5.5) becomes

(5.6) 1 =

∞∏
r=1

(
1− (2σr − 1)

sr s̄r

)
,

and since

(5.7) 1
2 ≤ σr < 1

for all the principle non-trivial zeros (sr = σr ± itr) of ζ(s), it implies that

(5.8) 0 ≤ (2σr − 1) < 1.

Therefore, Equation (5.6) is true only when (2σr − 1) = 0, which requires that
σr = 1

2 for all the non-trivial zeros of ζ(s). This concludes the proof of the Riemann
Hypothesis that: the real part of every non-trivial zero of the Riemann zeta function
is σr = 1

2 .

To validate the result, with σr = 1
2 , Equation (4.10) can be restated as

(5.9) 2ξ(s) = ζ(s)(s− 1)sΓ( s2 )π−
s
2 =

∞∏
r=1

(
1− s(1− s)

sr s̄r

)
,

from which we see that the right hand side of Equation (5.9) is unchanged when s is
replaced by (1− s), obtaining the expressions for ζ(1− s) and ξ(1− s) as

(5.10) 2ξ(1− s) = ζ(1− s)s(s− 1)Γ( 1−s
2 )π−

1−s
2 =

∞∏
r=1

(
1− s(1− s)

sr s̄r

)
.

Therefore, Equations (5.9) and (5.10) are equal, as is validated by the well-known
ξ(s) functional equation, given by

(5.11) ξ(s) = ξ(1− s).

If any zero of ζ(sr) has σr 6= 1
2 in Equation (5.4), it implies that ξ(s) 6= ξ(1−s), which

would contradict Equation (5.11). Therefore, all σr must be equal to 1
2 . From this,

we can hypothesize that the product form of the ξ(s) in Equation (4.11) developed
by Riemann [1] was very likely to have been the source of inspiration for the Riemann
Hypothesis.
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6. Conclusions. Proof of the Riemann Hypothesis would unravel many of the
mysteries surrounding the distribution of prime numbers, which are at the heart of
all encryption systems. In addition, proof of the Riemann Hypothesis would, as a
consequence, prove many of the propositions known to be true under the Riemann
Hypothesis.

The proof demonstrated here was based on a basic insight into the product expan-
sion of the Riemann zeta function, as available from Hadamard’s publication in 1893
and Riemann’s publication in 1859, as well as clarifying that the product expansion
is only over the principle non-trivial zeros of zeta. Sometimes, the truth is hidden in
plain sight.
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