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Abstract

Assessments of the global state of fisheries play an important role in tracking the implementation of
the United Nations Sustainable Development Goals. While we have reliable estimates of stock status for
fisheries accounting for 49% of global catch, our knowledge of the state of the remaining 51%, the worlds
‘unassessed’ fisheries, is poor. Numerous high-profile publications have produced estimates of the global
status of these unassessed fisheries, but limited quantity and quality of data along with methodological
differences have produced counterintuitive and conflicting results. Here, we show that despite numerous
efforts, our understanding of the status of global fisheries remains poor, even when new sources of broadly
available data are added. Obtaining accurate estimates of stock status for the world’s fisheries depends on
prioritizing the collection of high-priority data at a global scale, not on the development of new modeling
methods alone.
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1 Publication Requirements

Target Journal: Nature Sustainability

3500 words main text

50 references (main text)

3000 words (max) methods

2 Introduction

The United Nations Sustainable Development Goal 14 (SDG 14), related to “Life under water”, calls for the
global community to “Conserve and sustainably use the oceans, seas and marine resources for sustainable
development”. Meeting these targets depends in part on our ability to effectively track the status of global
marine fish stocks. The Food and Agriculture Organization of the United Nations’ (FAO) State of World
Fisheries and Aquaculture (SOFIA) report is the standard source for tracking the global state of fisheries.
As of the most recent report, the FAO estimates that as of 2017 59.6% of marine fish stocks are maximally
sustainably fished, 6.2% are underfished, and 34.2% are overfished.1 While foundational, the SOFIA assess-
ment was designed in the 1970s based on the then available data and methods, With the surge in data
availability and models designed for data-limited stocks, new global assessment methods are needed to meet
the new demand for estimation and tracking progress towards the SDG goals.

Forty nine percent of landings of marine fishes reported by the FAO are represented in the RAM Legacy
Stock Assessment Database, a repository of “gold standard” estimates of fishery status.2 The SOFIA process
uses these formal assessments for their determinations of stock status wherever possible. However, that leaves
51% of global fisheries landings lacking in formal stock assessments. While these “unassessed” stocks are
generally individually smaller than the typically larger and more valuable stocks in the assessed category,
collectively they are a vital source of food, employment, cultural value, and ecosystem services around the
world.

The SOFIA report bases its estimates of included unassessed stocks mostly on expert opinion. While local
experts can be well informed as to the status of their fish stocks, a more quantitative and reproducible
process would be desirable. Numerous studies in recent years have put forward versions of “data-limited”
models that have attempted to provide estimates for the global status of these unassessed stocks.3–7 Due
to data limitations, all of these global assessment efforts use forms of “catch-only” stock assessment models
(Free et al. 20208 and references therein). These models seek to infer stock status, for example in terms of
biomass B relative to the biomass at maximum sustainable yield BMSY, from characteristics of a fishery’s
catch history, for example the ratio of catch to maximum catch.9

However, Free et al. 20208 demonstrated that these catch-only models can often produce both imprecise
and biased estimates of current stock status in terms of B/BMSY. These issues become apparent when we
consider some of the macro-level predictions made by these models. The RAM Legacy Stock Assessment
Database10 contains the best available estimates of B/BMSY and other fishery reference points for hundreds
of fisheries.2 While it must noted that the estimates in RAM are themselves model outputs subject to their
own non-trivial errors and biases, a simple benchmark is to compare the best available estimates of fishery
status from RAM to those predicted by potentially less reliable methods intended for use when insufficient
data are available for a full stock assessment model.

Costello et al. 20164 finds similar rankings of regions in terms of stock status as RAM, but their estimate
of state of fisheries in the Mediterranean/Black Sea regions and Southeast Asia seem to be over-optimistic,
and the Northeast Pacific should be better by comparison. Rosenberg et al. 20186 demonstrates the same
problem, with stocks in Southeast Asia estimated as doing better than the Northeast Atlantic or Northeast
Pacific. The Pauly 20075 catch based approach finds the stocks of Southeast Asia in much better condition
than the Northeast Pacific or Northeast Atlantic (Table.1). The methods besides RAM in Table.1 include
both formally assessed and unassessed stocks, and as such we would expect them to differ broadly in their
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estimates of regional stock status, particularly since we might expect unassessed stocks to be less rigorously
managed and by extension have poorer stock status. However, the lack of consistency across heavily assessed
regions such as the Northeast Pacific, and the lack of contrast in stock status between heavily and lightly
managed regions is concerning.

Table 1: Estimates of B/BMSY by FAO, RAM through Hilborn et
al. 2020, Costello et al. 2016, Rosenberg et al. 2018, and Pauly 2007

FAO Area
FAO %
Overfished

B/BMSY
Costello

B/BMSY
Rosenberg

Pauly - Catch/
Max(catch)

B/BMSY
RAM

Pacific, Northeast 0% 1.18 1.02 0.31 1.61
Atlantic, Northeast 15% 0.91 0.97 0.24 1.27
Indian Ocean,
Eastern

18% 0.94 1.04 0.75 1.01

Pacific, Western
Central

22% 0.89 1.06 0.69 1.46

Mediterranean and
Black Sea

48% 0.88 0.96 0.28 0.52

In this paper we ask, can combining the FAO’s catch statistics with other broadly available data improve our
understanding of the state of global fisheries? We use a flexible surplus-production based stock assessment
package, sraplus to demonstrate how different sources of data can be used to augment catch-only models
at a global scale, and to evaluate how our perception of global stock status would vary depending on which
sources of data we include. We show that our understanding of global fishery status is poor, and that
improvements depend on an redoubled effort at global data collection.

3 Results

Table 2: Broadly available data used to inform estimates of global
stock status

Data Source
Short
Name Data Use Caveats

Catch data1 catches Priors on stock status,
scaling of population size,
exploitation history

Heuristics or regressions used to translate
shape of catch history into priors on stock
status

Fisheries
Management
Index11

FMI Priors on most recent
F/FMSY values

Priors produced by regression trained on
data from RAM Legacy Stock Assessment
Database

Swept Area
Ratio12

SAR Priors on most recent
F/FMSY values

Priors produced by regression trained on
data from RAM Legacy Stock Assessment
Database

Reconstructed
effort data13

effort Combined with catch data
to create an index of
abundance

Total reconstructed effort across all sectors.
Assumed rate of technology creep reported
in individual sections

We first present a case study demonstrating how different kinds of data can lead to different conclusions
about stock status. From there, we assess the performance of models fit using different kinds of broadly
available data: combinations of catches, effort, Fisheries Management Index (FMI) scores (a measure of
management capacity), and swept area ratio (SAR) values (a measure of trawl fishing intensity) (Table.2).
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For our case study, we selected 26 stocks for which we have stock specific FMI and SAR scores. We then
paired effort data at the resolution of year, country, and FAO statistical area from Rousseau et al. 201914
to each stock. We first used the catch history heuristics internal to CMSY15 to estimate stock status. We
then used stock-specific data on SAR and FMI to generate priors on F/FMSY for each of the stocks, which
were then passed to sraplus. Lastly, we used the reconstructed effort data from14 to create an index of
abundance for each stock, and estimated stock status by fitting to this index while using priors on fishing
mortality rates informed by each stock’s FMI and SAR values. While CMSY systemically overestimated
fishing mortality rates and underestimated stock status, use of the SAR, FMI, and effort data produced
substantially more accurate results (Fig.1).

Figure 1: RAM values of B/BMSY and F/FMSY (x-axes) for case study fisheries plotted against estimated
values (y-axes) using CMSY,15 priors informed by stock-specific Fisheries Management Index (FMI) and
swept area ratio (SAR) scores, and an abundance index based on reconstructed effort trends assuming a rate
of technological increase of 2.6%. Each point is a stock, point size is a function of stock size. Black dashed
line shows the 1:1 relationship.

We next assessed the ability of FMI, SAR, and effort data to improve estimates of global stock status. We
based this test on 393 fisheries from RAM, covering 19 broad taxonomic groups, with estimates of B/BMSY
and greater than 25 years of continuous catch history. B/BMSY values from RAM are themselves estimates,
not data, but they are the best available information on global stock status. We then paired the catch
histories for these RAM stocks with regional-level SAR, FMI, and effort data. This process approximates a
global-level assessment exercise, where data are available at regional levels, but not for specific fisheries.
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As a proof of concept, we also estimated B/BMSY of our candidate RAM stocks by using sraplus to fit to an
abundance index drawn directly from RAM. We then fit a range of models utilizing different combinations
FMI, SAR, and effort data, along with the CMSY catch-only method described in Froese et al. 201715 (See
Table.S1). We assessed performance using three metrics: median percent error (MPE, a measure of bias),
median absolute percent error (MAPE, a measure of accuracy), and classification accuracy. Classification
accuracy is calculated as the proportion of times that use of a given combination of data resulted in a stock
being classified into the correct FAO status classification (one of underfished, maximally sustainably fished,
and overfished).

Overall the sraplus estimates of B/BMSY resulting from using the RAM data are reasonably good (median
absolute percent error 29%, accuracy = 69%, Table.3, Fig.2-4). This exercise tells us that given sufficiently
high quality data, a surplus production model such as sraplus is reasonably capable of reproducing the
global state of fisheries as understood from formally assessed fisheries.

Performance limitations then are likely to arise less from model misspecification than from the quality of
the data themselves. These becomes clearer once we consider the performance of sraplus models fit to
combinations of our broadly available datasets. Many of the datasets used produced similar levels of bias
as the RAM data (Table.3). However, this is somewhat an artifact of the data. The status of most stocks
in RAM is also relatively good, with recent B/BMSY values generally near one. This means that a model
that more or less reproduces the global average of stock status will be relatively unbiased on average, but
imprecise. Focusing on MAPE instead, the error of the models jumps dramatically as soon as data other
than RAM are used, to a minimum value of 47% and a maximum of 72%. The mean accuracy across all
non-RAM data fits was only 41%. Note that there are only three bins in the FAO stock status classifications,
and a “model” that randomly assigns a stock to a status category has a mean accuracy of 38%.

Looking geographically we see a similar pattern of a rapid decrease in performance for models using non-RAM
data intended to simulate a global assessment process. Across the models, performance was not consistent
in space: use of different data performed best or worst for different FAO regions. For example, models fit
to nominal CPUE data substantially overestimate stock status in the Mediterranean, while models based
on data using effective CPUE perform better in that region (but worse in others) Fig.3. We find similarly
inconsistent performance for both bias (Fig.2) and accuracy (Fig.4). Overall, while some data sources
performed slightly better than others by some metrics in some places, no models using any non-RAM data
were able to capture the overall state or geographic distribution of stock status represented in RAM in a
consistently satisfactory manner.

Table 3: Global performance statistics in the most recent year
available of models using different sources of data. mpe = median
percent error (bias), mape = median absolute percent error (er-
ror), accuracy = percent of times that stocks were classified to the
correct FAO status bin (underfished, maximally sustainably fished,
overfished). Performance is judged relative to reported values in
RAM Legacy Stock Assessment Database.

data mpe mape accuracy
ram-data 0.14 0.29 0.69
fmi -0.09 0.47 0.42
sar -0.04 0.50 0.38
cpue-plus -0.30 0.52 0.43
nominal-cpue-plus -0.01 0.52 0.46
Guess -0.10 0.53 0.33
u_umsy -0.09 0.58 0.40
cmsy -0.54 0.60 0.41
nominal-cpue 0.05 0.63 0.48
cpue -0.36 0.68 0.41
guess -0.09 0.72 0.38
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Figure 2: Median percent error in most recent B/BMSY by FAO statistical area from different data sources.
ram-data refers to catch and abundance index drawn from RAM. CPUE refers to an index of abundance
based on reconstructed effort data. cpue-plus uses CPUE along with Fisheries Management Index (FMI)
and/or wept area ratio (SAR) data. For both CPUE series ‘nominal’ assumes a 0% technology rate, otherwise
a 2.6% technology rate is assumed. ram_u_umsy assumes all fisheries in the region share a common U/Umsy
series with formally assessed fisheries in the region. fmi uses fmi scores to develop a prior on recent fishing
mortality rates, sar does the same but based on swept area ratio. CMSY uses the methods from Froese et
al. 2017.15

4 Discussion

Global-level assessment are critical for guiding management agendas for the world’s oceans, and tracking
critical indicators such as the United Nations Sustainable Development Goals. Despite this need, and despite
advances in stock assessment methods and available data, we show that our understanding of the world’s
fisheries remains murky in many parts of the world. While in some cases addition of globally available
data, such as quality of fisheries management or effort reconstructions, provided value above and beyond
catch histories alone (Fig.1), at the global level models fit using each of the available datasets, besides the
RAM-derived indices, produced biased and imprecise estimates of stock status, frequently performing worse
than a simple guess (Table.3).

What quality of assessment is needed and what constitutes a meaningful improvement in assessment quality
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Figure 3: Median absolute percent error in most recent B/BMSY by FAO statistical area from different
data sources. ram-data refers to catch and abundance index drawn from RAM. CPUE refers to an index
of abundance based on reconstructed effort data. cpue-plus uses CPUE along with Fisheries Management
Index (FMI) and/or wept area ratio (SAR) data. For both CPUE series ‘nominal’ assumes a 0% technology
rate, otherwise a 2.6% technology rate is assumed. ram_u_umsy assumes all fisheries in the region share a
common U/Umsy series with formally assessed fisheries in the region. fmi uses fmi scores to develop a prior
on recent fishing mortality rates, sar does the same but based on swept area ratio. CMSY uses the methods
from Froese et al. 2017.15
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Figure 4: Mean classification accuracy (assignment to FAO stock status category) by FAO statistical area
arising from different data sources. ram-data refers to catch and abundance index drawn from RAM. CPUE
refers to an index of abundance based on reconstructed effort data. cpue-plus uses CPUE along with Fisheries
Management Index (FMI) and/or wept area ratio (SAR) data. For both CPUE series ‘nominal’ assumes a
0% technology rate, otherwise a 2.6% technology rate is assumed. ram_u_umsy assumes all fisheries in the
region share a common U/Umsy series with formally assessed fisheries in the region. fmi uses fmi scores to
develop a prior on recent fishing mortality rates, sar does the same but based on swept area ratio. CMSY
uses the methods from Froese et al. 2017.15
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depends on the needs of those using the assessment outputs. It may be that for particular regions, species,
or uses the results presented here or in other past global analyses are sufficient. In some instances using
the data presented here did provide some improvement over use of catch-only style methods; the difficulty
comes in attempting to apply data types uniformly across the globe. While it is unreasonable to expect any
global-scale data to be able to perform as well as data pulled from RAM assessments themselves, or that
data-limited methods would perform well for every individual stock, our hope would be that a data-limited
approach based on globally available data sources would be able to correctly capture general trends in stock
status in time and space. That none of the datasets collected here can achieve that, and that our test on
the RAM data suggest that model misspecification is not the primary culprit, tells us that improvements in
estimates of global stock status must come from improvements in the data themselves.

Our results do not imply that the kinds of broadly available data presented here are not valuable under the
right conditions. The FMI and SAR based priors are an improvement over catch-only models in applicable
situations (i.e. those that sufficiently resemble the data on which the regressions were trained, Fig.1). Effort
data such as those reconstructed by Rousseau et al. 201914 can help distinguish between regions with similar
catch histories but different effort trajectories, and may be quite useful as indices of abundance for areas with
good knowledge of rates of evolution of fishing technology and a broadly selective fishing fleet. Despite not
adding a great deal in terms of performance at the global scale, swept-area-ratio was the strongest predictor
of F/FMSY of any of the datasets we explore on an individual stock basis, a Bayesian R2 value of 0.43.

But, we must simultaneously consider data quality and resolution: applying one SAR value to all stocks in
a region, even if that SAR value can provide valuable information for a subset of fisheries, causes inaccurate
estimates of stock status when applied too broadly. Our analysis does not show that the data considered
here are without value, but that attempting to indiscriminately apply these data to all areas results in
meaningfully incorrect estimates of stock status for regions whose nature does not match the assumptions
needed to apply these data sources.

What sources of data might provide the greatest value in improving our estimates of global stock status?
We used sraplus together with the RAM database to estimate the average reduction in error resulting
from having access to different kinds of data (Fig.5). While having access to complete index of abundance,
such as a fishery independent survey, was on average able to reduce error relative to a baseline catch-only
heuristic, using only the most recent quarter of the available abundance index actually increased error on
average. We may have to wait many years for new surveys to provide substantial improvements in status
estimates, or work to expand access to long-running existing surveys that have yet to be fully utilized in
fisheries assessment.16

Our value-of-information analysis also shows though the high utility of having access to even a recent snapshot
of F/FMSY (Fig.5). Swept area ratios, Fisheries Management Index scores, or other similar metrics can be
used to construct priors on fishing mortality rates, though care must be taken in applying them at the
appropriate spatial resolution. Another avenue would be to prioritize the development of a global repository
for length and age composition data. Given appropriate conditions, these length measurements can be
used to estimate local fishing mortality rates.17–19 While length-based assessments come with a host of
assumptions and pitfalls, properly implemented in some fisheries this may provide an overlooked source of
fisheries data at a global scale, at least as an improvement over relying on catch-alone or regional proxies.
Such a database could be used to construct stock or stock complex specific priors on fishing mortality
for particular regions around the globe, which when paired with catch data and where possible indicies of
abundance could meaningfully improve our understanding of global fisheries.20

We must also prioritize collection and curation of fish population survey data worldwide. Repositories
of fishery-independent survey data would be immensely beneficial, such as those maintained by FishStat.
Recent research confirms that there are bottom trawl data to support analysis of biomass-trends since 2001
and potentially earlier in many regions,16 and survey data are available for more stocks than have previously
had stock assessments. Effort reconstructions such as those utilized here may help create fishery-dependent
abundance indices in some instances, and going forward datasets such as those compiled by Global Fishing
Watch in combination with the reconstruction approaches of14 might allow us to construct and use timeseries
of fishing effort specific to particular areas, fleets, and species complexes
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Figure 5: Posterior probability distributions of estimated effect of different data types on root mean squared
error of B/BMSY in the most recent 5 years of data available for each model fit. Distribution is full posterior
probability distribution. Point is median, thicker black section inner 66th quantile of the posterior, the
thinner black line the 95th. Change is relative to the mean performance of a catch-only heuristic model.
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Expanded training of fisheries scientists around the globe is another critical need. Even were we to dramat-
ically expand the amount and types of data available for global assessment, individual fisheries and regions
will need to make informed decisions about which sources of data may be applicable and which not, and
to critically evaluate the results of any model based on local expertise. This is why stock assessments even
in the data-rich world are not an automated process; the real challenge is often not in fitting a model to
data but in understanding how best to use the data and the quality and limitations of the model used.
Empowering a global network of fisheries scientists through training and peer-support would both improve
the health and management of local stocks and provide a means for ensuring that global estimates of stock
status are as accurate as they can be.

The coming decades are a critical time for the future of fisheries and ocean health. Achieving the United
Nations Sustainable Development Goal 14 for the conservation and sustainable use of the world’s oceans
depends on our ability to effectively assess the status of fish stocks around the world. The RAM Legacy
Stock Assessment Database combined with the FAO’s expert elicitation of status for select stocks have
dramatically improved our understanding of global fisheries in recent years. However, this process still
leaves a substantial number of fisheries and global catch unassessed. Numerous catch-based data-limited
approaches have attempted to fill that gap, and while these efforts have advanced our knowledge and interest
in unassessed fisheries, none have yet been able to provide a clear solution to this problem. Improving
estimates of global stock status depends on investing in an improved and expanded global network of fishery
data and fisheries scientists.

5 Methods

All analysis were conducted in the R programming language.21 Model fitting was conducted using Rcpp
[eddelbuettel2011] and stan,22 implemented through Template Model Builder23 by the tmbstan package.24
The sraplus package is publicly available at github.com/danovando/sraplus, and all materials needed to
fully reproduce this manuscript are available at github.com/DanOvando/assessing-global-fisheries.

sraplus contains too many options to cover within this methods section. We encourage readers to explore
the documentation available at the package website at www.github.com/danovando/sraplus. Below we
describe the structure of the population model underpinning sraplus, the estimation models used, and the
construction of priors used in this paper.

5.1 Population Model

The core of sraplus is a Pella-Tomlinson25 production model constructed in the manner of.26 While models
of these kinds abstract away many important details of fish biology and fleet behavior, they are the highest
resolution model that the potential data evaluated here will support. The purpose of sraplus is not to
make substantial improvements in the fitting of surplus production models, but to provide a flexible tool for
exploring the impacts of adding different kinds of data and priors on estimates of fishery status

The population growth equation is

f(x) =

Bt+1 =
(
Bt +Bt

r
m−1

(
1−

(
Bt

K

)m−1)− ĉt) pt, if Bt > 0.25×K.

Bt+1 =
(
Bt + Bt

0.25×K

(
Bt

r
m−1

(
1−

(
Bt

K

)m−1)− ĉt)) pt, otherwise.
(1)

Where Bt is biomass at time t, r is the intrinsic growth rate, m is the scaling parameter that allows for the
ratio of BMSY/K to shift. When m is two BMSY / K = 0.5, lower values of m shift the production function
left, higher values right. ccc is a vector catches, and ppp is vector of process errors. Growth rates can become
unrealistically large when the population reaches low sizes under the Pella-Tomlinson model. We deal with
this problem by following the methods described in.26 to reduce the production of the population when it
falls below a threshold of 25% of carrying capacity.
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We allow for process error p (in the manner of the stochastic stock reduction analysis error suggested by27).
This allows the population dynamics to deviate from the exact values given by the Pella-Tomlinson operating
model, while still conforming to the assumptions of this model on average. Incorporation of process errors
is useful for two reasons: (1) when you have an abundance index, process errors can reduce bias arising
from lack of fit in a deterministic SRA whenever dynamics are poorly explained by catch-history alone, and
(2) with or without an abundance index (or other info), the stochastic portion is necessary to get good
uncertainty intervals (i.e., with close to nominal coverage, see28).

Process error p is assumed to be log-normally distributed, such that

pt ∼ enormal(−σ2
proc/2,σproc) (2)

5.2 Estimation Model

All of our estimates are Bayesian in nature. We can break the use of sraplus into two distinct categories:
with data and without. By “data”, we refer to measurements which are used to confront model estimates
within a likelihood function. In our context, these include fishery-independent survey data, or a CPUE index.
When there are no data, the model amounts to filtering priors through the model (the combination of the
Pella-Tomlinson operating model and the catches for the stock in question, along with any fixed parameters).
Under this mode, the model is essentially a stock-reduction analysis model, in the manner of,27 in which
we ask, which combinations of prior probability distributions of parameters do not crash the population
(i.e. results in biomass less than catches in any time step in the fishery’s history), given the constraints of
the population model and the catches. This step updates the prior distribution of population parameters by
eliminating combinations of priors that are impossible for a given catch history and a specified functional
form.

The full list of estimable parameters are listed in Table.4. r and K are the only two parameters that
are always estimated. Estimation of every other parameter can be turned on or off. When estimation is
turned off estimable parameters are fixed at their initial values, which can either be set to model defaults or
specified by the user. For our main sets of results (everything excluding the value of information analysis),
the estimated parameters are r, K, σobs, γ, and B0. q is also estimated when needed.

Table 4: Name, abbreviations, and priors distribution for parame-
ters potentially estimated by sraplus in this manuscript.

Parameter Abbreviation Default Prior
Carrying Capacity K Prior predictive tuning
Growth rate r Thorson, 202029 updated by prior predictive tuning
Shape parameter m Drawn from Thorson et al. 2012 (7)
Catchability q logn(1e−3, 1)
Observation Error σobs logn(.05, 1)
Ratio of process to observation
error

γ logn(.5, 0.25)

Initial State B0 Posterior probability dist. of catch-based regressions

sraplus can be run in two forms: either as a stock reduction analysis,27 or fit to an index of abundance
(fishery dependent or independent). Unless there is an abundance index to fit to the model runs as a
stock reduction analysis. A stock reduction analysis works by specifying prior distributions on population
parameters and critically the recent state of the fishery. sraplus allows users to specify the most recent
status in units of depletion, B/BMSY, F, or F/FMSY. We then sample from the prior distributions of the
population model parameters and apply those to the production model, along with the catch history. Any
run that results in the collapse of the population (catch greater than biomass in any time step) is immediately
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rejected. The remaining viable draws from the prior distributions are sampled in proportion to the supplied
prior on recent stock status. Any model results based on data sources listed in Table.5 that do not contain
“cpue” or “RAM data” are estimated through stock reduction analysis. All SRA style runs in our paper
sampled 2,000 draws of the prior-predictive distribution from a total of 1e6 candidate draws.

When an index of abundance is available the model estimates the posterior probability distributions of
the estimated and transformed parameters using Hamiltonian Monte Carlo implemented in stan31 accessed
through the tmbstan interface.24 By default the model uses 2000 draws with a 1000 step warm-up and one
chain. Any detailed fit for a particular fishery would likely use more draws and chains, but we verified that
this sampling routine produced an acceptable tradeoff of speed and convergence criteria. The model fits
to a direct estimate of abundance (e.g. a fishery independent survey or a standardized catch-per-unit-effort
index), the likelihood is

log(at) ∼ normal(f(r,K,m,B0, ppp, ccc)× q, sigmaobs)

where f is the Pella-Tomlinson production model (Equation.(1)). When an effort index is available, sraplus
constructs an index of abundance based on the catch and effort data.14 measure an index of abundance as
catch divided by their effort index, either nominal or effective (assuming the 2.6% annualized technology
rate). This rate of technology creep assumes that every unit increase in effort is log-linearly greater than the
unit of effort before it. When effort increases dramatically above historic levels, this can create a CPUE index
that decreases faster than the true population. This is due to the fact that the marginal fishing mortality
produced by increasing unit of efforts increases decreases as effort approaches infinity (since fishing mortality
is bounded between 0 and 1). To accommodate this, we generate a catch per effective harvest rate index of
abundance, as

cpuet = catcht
(1− e−ft)

ft = qtEt

Where qt can has a technology rate component τ

qt = qt−1 × (1 + τ)

We then fit to the index of abundance per

log(cpuet) ∼ normal(f(r,K,m,B0, ppp,CCC), σobs)

5.2.1 CMSY

In addition to the results from sraplus, we include a set of results produced by the CMSY method.15 For
computational efficiency, we used a ported version of the CMSY model available at https://github.com/
DanOvando/portedcmsy. The only modification made is to convert the underlying population model to
C++ for faster computation. For each stock we used all the default options provided by CMSY, except
for resilience, which was pulled from the vulnerability scores from FishBase accessed through rfishbase
[boettiger2012]. Vulnerability scores greater than 66 were scored as low resilience, between 33 and 66
medium resilience, and lower than 33 high resilience.
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5.3 Priors

Priors for all estimable parameters can be left at default values or set by the user. The shape parameter
is usually not reliably estimable given available data for surplus production models, however, Thorson et
al. 20127 provides estimate the ratio of BMSY to K for many fish taxa. While we estimate m by default
throughout the results presented here, we use highly informative priors for the shape parameter based on
Thorson et al. 20127 for the genus of the species in question.

We address two critical features of prior use in sraplus below: tuning of the prior-predictive distribution and
translation of outside data into priors usable by sraplus.

5.3.1 Prior Predictive Tuning

Suppose that the only thing we observe from a fishery is a catch history. Assuming Pella-Tomlinson popula-
tion dynamics, the only thing we can learn from this catch history alone is the set of model parameters that
ensure that the population still exists and never collapsed in the past. We can think of this as a binomial
process in which we fit a model of the population, conditional on catches, to the fact that we know that pop-
ulation existed in each time step of the catch history. Beyond that though, baring additional information or
model assumptions we have no way of knowing whether these catches represent a substantial proportion of a
small population or a minuscule fraction of a massive population; all we know is that the current population
must be greater than 0.

In the absence of any data to fit to, the SRA algorithm works by assuming that we know current stock
status, and then finds feasible parameters to satisfy that belief. This creates a problem for the Bayesian
nature of our analysis though. Consider a production model with two parameters, a growth rate r and a
carrying capacity K. Once we specify prior distributions on r and K, and then apply these distributions to
our model (the shape of the production function along with the catch histories), we have implicitly provided
a prior on the status of the stock in all time periods, since each unique combination of r and K together
with the model and the catch history produces a deterministic stock status in each time step. Doing so
places essentially two priors on recent stock status: one implicit prior through the population parameter
priors, and one explicit through the users perception of recent stock status, creating a problem termed
Borel’s Paradox. This may seem like an academic concern, and indeed in our experience when the data are
sufficiently informative the Bayesian version of our model subject to Borel’s paradox produces effectively
identical results to those produce by the same model fit by maximum likelihood. However, particularly for
the SRA version of sraplus, Borel’s Paradox poses a particular problem.

The SRA algorithm works in two steps. First, the algorithm rejects any draws that resulted in the collapse
of the population (biomass less than catch in a given timestep). From there a standard SRA would sample
from the priors in proportion to the stated prior on recent stock status. If the bulk of the prior on terminal
stock status was concentrated at 50% of K, combinations of r and K that produce terminal stock status near
50% of K are sampled proportionally more frequently. However, lower values of terminal stock status have
fewer candidate values of r and K, since it becomes harder and harder to find viable pairs that come close
to but do not crash the population at any time step. Conversely, in the absence of constraints higher values
of stock status have infinite combinations of plausible r and K combinations: since under this model the
population cannot be greater than carrying capacity, as for example K approaches infinity terminal stock
status asymptotes at close to 100% of K. The net result of this is that even though individual combinations
of r and K that produce higher stock status than the mean of the prior on recent stock status individually
have lower probability of being sampled, there are many more opportunities for the lower-probability events
that produce higher stock status to be sampled. As a result, the post-model-pre-data prior on terminal
depletion will always be higher under this method than the supplied prior on stock status.

We use an approximation to this problem here, similar in spirit to Bayesian melding.32 Our solution amounts
to a two-step SIR algorithm. We first run the standard SIR algorithm as described above. We then break
the resulting draws into bins based on terminal stock status, and calculate the mean sampling probability
of each bin.
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p(bini) = 1
Ni

Ni∑
n=1

p(bn,i)

We then divide the sampling probability of of bin i evenly among each of the draws within that bin n

p(ni) = p(bini)
Ni

And we then perform a second SIR algorithm but now sampling each observation ni in proportion to p(ni).
The net result of this is a post-model-pre-data distribution of parameters r and K that produce a distribution
of recent stock status that roughly matches the supplied prior on recent stock status. In effect, this process
answers the question “given the model, what combinations of parameters produce my prior on recent stock
status”. This is only an approximate solution, but it helps ensure that the post-model-pre-data distribution
of stock status much more closely matches the stated prior on recent stock status, and reduced the positive
bias resulting from use of the raw SRA algorithm (Fig.6, Fig.S1).

Figure 6: Post-model-pre-data distribution of depletion (biomass relative to carrying capacity) from raw
SRA algorithm (untuned, top row), from SRA algorithm with approximate tuning applied (tuned, middle
row), compared to the supplised prior on depletion (bottom row). Black vertical line indicates median value.
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5.3.2 Priors Informed by Outside Data

Along with allowing users to supply their own priors, the sraplus package contains three built-in methods
used in this manuscript for converting information on stock status from additional outside data into a form
usable as a prior by sraplus. We paired data on catch histories, swept area ratio (SAR), and fisheries
management index (FMI) with estimates of stock status from the RAM legacy stock assessment database.
We then trained a model of the general form log(status) ∼ normal(variable, σ) for each of these three data
types. Given values of these variables for a new fishery then, sraplus uses the fitted model to generate
posterior predictive distributions of stock status based on these data, which can then be used as priors on
stock status by sraplus.

All prior regression models where tested by out-of-sample predictive power, and where competing models
were considered the final model was chosen by leave-on-out validation.33 The final models are intended as
a reasonably robust means of translating available data (catch histories, FMI, and SAR values) into a form
usable by sraplus. Given the scope of this analysis, we do not claim that the presented regressions are the
best possible model relating these data with the fishery status indicators of interest. Rather, each regression
was tested to ensure that it is unlikely that, given the same data, an alternative model would perform
substantially better than those presented here.

5.3.2.1 Catch-Only Priors Many of the current methods for estimating global stock status of
unassessed stocks are based on predicting stock status from characteristics of the catch history.3–6 While
these catch-only methods have been shown to have serious shortcomings,8 we include them as a point of
reference given their ubiquity in the global assessment literature.

We used data from the RAM Legacy Stock Assessment Database to estimate a regression of stock status as a
function of catch history characteristics. To facilitate the process, we first fit a spectral clustering algorithm
to the scaled catch histories of fisheries in RAM, in order identify four possible clusters of catch history types
within the the data. Emergent clusters show for example one built around a downward “one way trip” style
catch histories, others with a boom and bust pattern, others with stable but fluctuating catches.

We then trained a classification algorithm to predict which catch cluster a given fishery would fall into based
on the shape of its catch history. This algorithm was then used to assign fisheries to one of the four identified
catch history types, and the catch history type was then used as a hierarchical term within our catch-based
regressions (where s refers to a smoothing term). For the first regression, we restrict the data to the first
year of data available for each fishery i, in order to estimate initial stock status

log(valuei) ∼ normal(s(
first(catch)
max(catch) |clusteri) + s(log(lengthi)|clusteri) + 1, σ)

For the second regression, we included data for all available years y for fishery i. The model is then used to
construct a prior on fishery status in the terminal year of the data

log(valuei,y) ∼ normal(s(fyear|clusteri) + s( catchi,y
max(catchi)

|clusteri) + clusteri, σ)

where fyear is the year of the fishery, starting from 0.

5.3.2.2 Fisheries Management Index Priors The Fisheries Management Index (FMI), as presented
in,11 utilizes surveys filled out by regional experts to score a fishery against a set of 46 specific questions
for individual species about what elements of fisheries management were in place. These questions are then
aggregated into broader categories of science, enforcement, management, and socioeconomic. The higher
the score, the better the expert judges that a given metric is met in that fishery. Importantly, FMI surveys
can be filled out in the absence of stock assessments. This allows us to explore how FMI values map onto
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stock status, and explore the ability then to use FMI scores to produce priors on stock status for unassessed
fisheries (in a manner similar to34 and35).

The final selected model relating FMI variable to stock status metrics was a generalized additive model
(GAM) of the form

log(valuei) ∼ N(s(researchi)+s(managementi)+s(enforcementi)+s(socioeconomicsi)+
catchi

max(catch)i)
+1, σSAR)

5.3.2.3 Swept Area Ratio Priors 12 provides an extensive database of trawling footprints throughout
the world, including both regions heavily covered by stock assessments and largely unassessed areas. This
makes the trawl footprint data an ideal candidate for supporting global stock assessment efforts. As illus-
trated in,12 there is an evident positive relationship between the swept area ratio (SAR,the total annual area
trawled divided by the total area of the region) and U/UMSY. Note that SAR can be greater than 1 since
the same area can be trawled multiple times in a year, e.g. if all trawl-able areas are trawled twice a year
then the SAR will be 2. Also note the skewed distribution of SAR values with most concentrated well below
1 and only a handful above 1.

The final selected model relating SAR to to stock status metrics was

log(valuei) ∼ normal(s(SARi) + s( catchi
max(catch)i)

) + 1, σSAR)

5.4 Value of Information Calculations

What sources of data might provide the greatest value in improving our estimates of global stock status?
We fit 3,000 sraplus models to randomly sampled fisheries from RAM, each time varying the kind and
quality of data made available to the model, and what parameters the model estimated. We then calculated
the root-mean-squared-error (RMSE) between the observed and predicted B/BMSY over the most recent five
years of each fit, and then fit a regression to these data to estimate the posterior probability of the effect of
different data types and model states on RMSE (Fig.5).

The value-of-information (VOI) calculations presented in Fig.5 help illustrate what types of data may be
most beneficial to acquire at a global scale if we are to improve our knowledge of the state of global fisheries.
The VOI analysis was performed by using sraplus to generate estimates of stock status (B/BMSY) for stocks
in the RAM legacy stock assessment, and comparing the estimated values to the values reported in RAM.
We generate fits for 3000 combinations of a RAM stock and available data. For any one draw, we randomly
sample a RAM stock and a list of available data and data quality. For example, we might sample stock A
with information on recent fishing mortality rates for the first iteration, and stock A again for the second
iteration but now with information on recent fishing mortality rates and a recent index of abundance. The
result is a set of model performance estimates where the characteristics of the stock and the data made
available to the model are randomized.

Using this set of fits, we assess performance as the root-mean-squared-error of B/BMSY over the most recent
5 years of the fishery, in order to evaluate the ability of the model to capture the recent trends in stock
status and not just the most recent year. We evaluate the contributing of each data type to RMSE using a
Gamma GLM with a log link of the form

rmse ∼ Gamma(βββXXX + (1|stock), shape, scale)

Where βββ is the vector of coefficients associated with the matrix of dummy variables marking the use of
different data types in the vector XXX
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7 Supplemental Material

Table 5: Data sources used for terminal stock status estimate

Data Name Description
RAM-Data Fit to abundance index from RAM
sar Prior on terminal F/Fmsy set by regional swept area ratio
fmi Prior on terminal F/Fmsy set by regional fisheries management index scores
cpue Fit to CPUE index created from RAM catch and regional effort index. 2.5% tech. creep
cpue-plus Fit to CPUE index created from RAM catch and regional effort index with priors

informed by SAR and FMI. 2.5% tech. creep
nominal-
cpue

Fit to CPUE index created from RAM catch and regional effort index. 0% tech. creep
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Data Name Description
nominal-
cpue-plus

Fit to CPUE index created from RAM catch and regional effort index with priors
informed by SAR and FMI. 0% tech. creep

catch-only priors on terminal B/Bmsy informed by catch history
heuristic priors on initial and terminal B/Bmsy informed by CMSY heuristc

Figure 7: Prior-posterior plots of fits for case study fishery in Fig.6
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