[bookmark: _Hlk31880313]Supplementary Data
Materials and Methods
Probes Identification
Supplementary Table-1 describes the identification of TaqMan probes that were used to evaluate the gene expression of circulating microRNAs.
	Supplementary Table-1: Probes identification
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	Assay ID

	hsa-miR-33a-5p
	002135

	hsa-miR-126-3p
	002228

	mmu-miR-499-5p
	001352

	hsa-miR-186-5p
	002285

	hsa-miR-146a-5p
	000468

	cel-miR-39-3p
	000200









DNA Extraction and Sequencing of 16S rRNA
The bacterial DNA was isolated from the fecal samples using the QIAamp fast DNA stool mini kit (Qiagen, USA), following the manufacturer's instructions. The hypervariable V4 region from the rRNA gene was amplified by PCR using the following primer pair: 515F (5'-GTGCCAGCMGCCGCGGTAA-3') and 806R (5'-GGACTACHVGGGTWTCTAAT-3'). To pool different samples in the same reaction, we used the primer-fusion method and each sample had a distinct barcode attached on the corresponding PCR product. The purified products were subjected to emulsion PCR using Ion PGM™ Hi-Q™ view OT2 kit (Thermo Fisher Scientific, USA). After, the resulting enriched beads were sequenced in a next-generation sequencing (NGS) machine (Ion Torrent PGM, Life Technologies) using Ion PGM™ Hi-Q™ view sequencing kit (Thermo Fisher Scientific, USA).
Bioinformatics Analyses
16S rRNA Reads Processing for Downstream Analyses
The sequence data exported from the Ion Torrent PGM™ System was processed using a custom pipeline in Mothur v.1.41.1 (1). Initially, sequences were depleted of barcodes and primers (where no mismatch was allowed) and then a quality filter was applied to eliminate low quality reads. Quality control was conducted by trimming the low-quality reads, those with incorrect length, those containing an ambiguous base, or containing homopolymers longer than 8 bp. All potentially chimeric sequences were identified and removed using VSEARCH (2). 
After these initial quality filtering and trimming steps, the remaining sequences were clustered into operational taxonomic units (OTUs) based on a 99% identity level and were classified against the SILVA v132 reference database at 97% similarity (3). Sequences that could not be classified (i.e., “unknown” sequences), as well as sequences identified as eukaryotes, mitochondria, and chloroplasts were removed prior to further analysis. To reduce spurious OTUs caused by PCR or sequencing errors, an additional filtering step was performed by removing OTUs with less than 10 reads. The resulting OTU table was normalized using the cumulative sum scaling (CSS) method. For alpha diversity analysis, the OTU table was rarefied to the smallest library size. Subsequent analyses of the sequence dataset were performed in R v. 3.6.1 (using vegan, phyloseq and ggplot2 packages) or QIIME v. 1.9.1 (4).
Microbial Community and Statistical Analysis 
Alpha-diversity was assessed using species richness indices (ACE and Chao1) and species diversity indices (Shannon and Simpson). For overall comparison of significant differences among bacterial communities (i.e., beta diversity), principal coordinates analysis (PCoA) was performed. A matrix using phylogenetic (weighted Unifrac) and non-phylogenetic (Bray–Curtis dissimilarity) metrics was calculated for each pair of samples. The distances were turned into points in space with the number of dimensions one less than the number of samples. To achieve statistical confidence for the sample grouping observed by PCoA, the ANOSIM multivariate test was performed on the distance matrix. To compare additional differences among the microbial communities, clustering methods based on Bray–Curtis dissimilarity were performed. The results of hierarchical clustering were visualized using heatmaps and dendrograms. 
To detect potential taxa biomarkers, the linear discriminant effect size (LEfSe) method was performed (5). The algorithm performs a nonparametric factorial Kruskal-Wallis sumrank test and LDA to determine statistically significant different features among taxa and estimates the effect size of the difference. Differences were considered significant for a logarithmic LDA score threshold of ±1.0 and a p-value <0.05 after adjusting for multiple hypotheses testing with the Benjamini–Hochberg method.
Metagenome Prediction
Predictive functional gene profiling was based on 16S rRNA gene sequencing data using Piphillin (6) with updated KEGG database (May 2017) and a confidence cutoff value of 97. Piphillin uses direct nearest-neighbor matching between 16S rRNA amplicons and genomes to predict the represented genomes. This tool is not obliged to any unique data pre-processing protocol supporting KEGG and BioCyc as a reference database. The resulting table is then filtered to include only microbial metabolic pathways. Beta diversity of KEGG Orthology (KO) and Pathways (ko) abundances was calculated using the Bray−Curtis metric. Comparison of functional profiles of each population was performed using PERMANOVA. Differentially abundant features were determined using linear discriminant analysis (LDA) effect size (LefSe). Benjamini–Hochberg adjusted p-value was calculated to control the false discovery rate (FDR) in multiple testing. The KEGG groups were considered significantly enriched by satisfying an FDR corrected p-value of 0.05.
Correlations Between the Analyzed Markers
Complementary data on correlations between cardiomyocyte morphometry variables with inflammatory and histopathological markers of liver injury, atherogenic indices, microRNAs, biochemical parameters and anthropometric parameters of the animals were evaluated.
Results
Correlations Between the Cardiomyocyte Morphometry and Liver Injury Markers and Cardiovascular Risk 
With all variables in hands, we then did a correlation analysis among cardiomyocyte morphometry (i.e. the percentage of normal cardiomyocytes, the percentage of atrophic cardiomyocytes and the average area of these cells) and this information is described in the Supplementary Table-2. This correlation analysis was performed between all the anthropometric, inflammatory, fibrogenesis, atherogenic ratios and microRNAS parameters described in this article, as well as with the previously published results (7). Several translationally relevant results were found. Firstly, we found a negative correlation between the average area and the percentage of normal cardiomyocytes with NAFLD score. Complementary to this, histopathological NAFLD score correlated positively with the percentage of atrophic cardiomyocytes. Considering endothelial markers, monocyte chemoattractant protein (MCP)-1 and tissue inhibitor of metalloproteinase (TIMP)-1 correlated negatively with the percentage of normal cardiomyocytes and positively with the percentage of atrophic cardiomyocytes. Furthermore, the average area of cardiomyocytes correlated negatively with cardiovascular disease (CVD) risk factors and metabolism of lipids (Castelli’s Risk Index-I, Castelli’s Risk Index-II and atherogenic coefficient). miR-33a and miR-126 correlated negatively and positively with the percentage of normal cardiomyocytes, respectively. Several markers of systemic inflammation correlated negatively with the percentage of normal cardiomyocytes, such as NOD-like receptor protein (NLRP)-3, caspase (Casp)-1, interleukin (IL)-18, IL-1β and myeloid differentiation primary response (Myd)-88, while the percentage of atrophic cardiomyocytes correlated positively with Nlrp-3, toll-like receptor (TLR)-9, Tlr-4, IL-18, IL-1β and Myd-88. Several anthropometric data associated with obesity correlated negatively with the percentage of normal cardiomyocytes and averaged area of cardiomyocytes, while correlating positively with the percentage of atrophic cardiomyocytes. Finally, IL-10 hepatic levels correlated positively with the average area of cardiomyocytes and negatively with the percentage of cardiomyocytes. Corroborating this, an increased ratio of pro/anti-inflammatory cytokines in the liver was positively associated with the percentage of atrophic cardiomyocytes and negatively correlated with the average area of these cells.
	Supplementary Table-2– Correlation among variables of cardiomyocyte morphometry and severity of liver disease progression and cardiovascular risk markers.

	Variables # 
	Statistical test
	% Normal Cardiomyocytes
	Average Area of Cardiomyocytes
	% Atrophic cardiomyocytes

	NAFLD score
	Pearson Correlation
	-.519*
	-.630**
	.721**

	
	Sig. (2-tailed)
	0.019
	0.003
	0.0027

	Quantification of collagen (picrosirius)
	Pearson Correlation
	-.205
	-.312
	.238

	
	Sig. (2-tailed)
	0.385
	0.181
	0.312

	IL-1β
	Pearson Correlation
	-.437*
	-.393
	.382

	
	Sig. (2-tailed)
	0.061
	0.096
	0.107

	MCP-1
	Pearson Correlation
	-.490*
	-.390
	.498*

	
	Sig. (2-tailed)
	0.028
	0.090
	0.025

	TIMP-1
	Pearson Correlation
	-.694**
	-.405
	.607**

	
	Sig. (2-tailed)
	0.001
	0.076
	0.005

	PAI-1
	Pearson Correlation
	-.317
	.389
	-.289

	
	Sig. (2-tailed)
	0.173
	.090
	0.216

	CRI-I
	Pearson Correlation
	-.234
	-.459*
	.386

	
	Sig. (2-tailed)
	0.336
	0.048
	0.103

	CRI-II
	Pearson Correlation
	-.399
	-.492*
	.551*

	
	Sig. (2-tailed)
	0.091
	0.032
	0.014

	AC
	Pearson Correlation
	-.236
	-.457*
	.389

	
	Sig. (2-tailed)
	0.331
	0.049
	0.099

	miR-33a
	Pearson Correlation
	-.704**
	.038
	.232

	
	Sig. (2-tailed)
	0.001
	0.881
	0.354

	miR-126
	Pearson Correlation
	.459*
	.320
	-.364

	
	Sig. (2-tailed)
	0.042
	0.169
	0.114

	Ppar-α
	Pearson Correlation
	.205
	.616**
	-.613**

	
	Sig. (2-tailed)
	0.386
	0.004
	0.004

	Nlrp-3
	Pearson Correlation
	-.554*
	-.278
	.549*

	
	Sig. (2-tailed)
	0.011
	0.236
	0.012

	Casp-1
	Pearson Correlation
	-.668**
	.020
	.273

	
	Sig. (2-tailed)
	0.002
	0.934
	0.258

	Tlr-9
	Pearson Correlation
	-.371
	-.339
	.558*

	
	Sig. (2-tailed)
	0.129
	0.169
	0.016

	Tlr-4
	Pearson Correlation
	-.253
	-.310
	.487*

	
	Sig. (2-tailed)
	0.296
	0.196
	0.034

	IL-18
	Pearson Correlation
	-.618**
	-.203
	.497*

	
	Sig. (2-tailed)
	0.004
	0.391
	0.026

	IL-1β
	Pearson Correlation
	-.642**
	-.404
	.703**

	
	Sig. (2-tailed)
	0.002
	0.078
	0.001

	Myd-88
	Pearson Correlation
	-.746**
	-.258
	.524*

	
	Sig. (2-tailed)
	0.002
	0.273
	0.018

	Abdominal circumference
	Pearson Correlation
	-.419
	-.480*
	.491*

	
	Sig. (2-tailed)
	0.066
	0.032
	0.028

	Abdominal fat tissue
	Pearson Correlation
	-.648**
	-.346
	.438

	
	Sig. (2-tailed)
	0.003
	0.147
	0.061

	∆ Weight
	Pearson Correlation
	-.641**
	-.449*
	.508*

	
	Sig. (2-tailed)
	0.002
	0.047
	0.022

	Liver weight/body weight ratio
	Pearson Correlation
	-.599**
	-.592**
	.712**

	
	Sig. (2-tailed)
	0.005
	0.006
	0.000

	Total cholesterol
	Pearson Correlation
	-.557*
	-.154
	.421

	
	Sig. (2-tailed)
	0.013
	0.528
	0.073

	HDLc
	Pearson Correlation
	.074
	.554*
	-.441

	
	Sig. (2-tailed)
	0.757
	0.011
	0.051

	IL-10 (pg/mg)
	Pearson Correlation
	.419
	.648**
	-.681**

	
	Sig. (2-tailed)
	0.066
	0.002
	0.001

	TNF-α (pg/mg)
	Pearson Correlation
	-.120
	-.571**
	.559*

	
	Sig. (2-tailed)
	0.614
	0.009
	0.01

	TNF-α/IL-10
	Pearson Correlation
	-.194
	-.649**
	.645**

	
	Sig. (2-tailed)
	0.413
	0.002
	0.002

	IL-1β/IL-10
	Pearson Correlation
	-.241
	-.615**
	.492*

	
	Sig. (2-tailed)
	0.306
	0.004
	0.028

	IL-6/IL-10
	Pearson Correlation
	-.490*
	-.467*
	.648**

	
	Sig. (2-tailed)
	0.028
	0.038
	0.002

	Nile red (Liver Fat Deposition)
	Pearson Correlation
	-.525*
	-.512*
	.535*

	
	Sig. (2-tailed)
	0.018
	0.021
	0.015

	# Variables was represented for Spearman's correlation coefficient. ** Correlation is significant at the 0.01 level. * Correlation is significant at the 0.05 level. Abbreviation: AC: atherogenic coefficient, Casp-1: caspase-1, CRI: Castelli’s Risk Index, IL: interleukin, MCP: monocyte chemoattractant protein, Myd-88: myeloid differentiation primary response-88, NAFLD: non-alcoholic fatty liver disease, NLRP: NOD-like receptor protein, PAI: plasminogen activator inhibitor, PPAR: peroxisome proliferator-activated receptor, TIMP: tissue inhibitor of metalloproteinase, TLR: toll-like receptor and TNF: tumor necrosis factor.
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