Supporting information

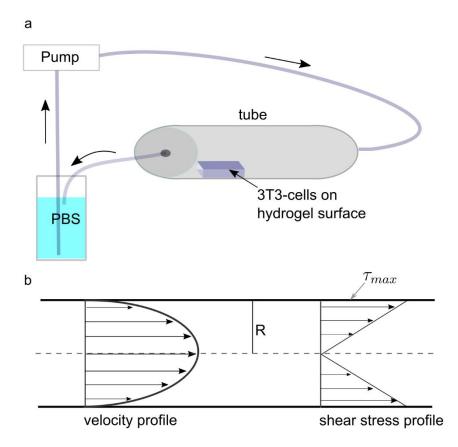
PEGDMA hydrogels for cell adhesion and optical waveguiding

Sonja Johannsmeier^{*,a,b}, Minh Thanh Truc Nguyen^a, Ruben Hohndorf^a, Gerald Dräger^c, Dag Heinemann^{a,b}, Tammo Ripken^{a,b}, Alexander Heisterkamp^{a,b,d}

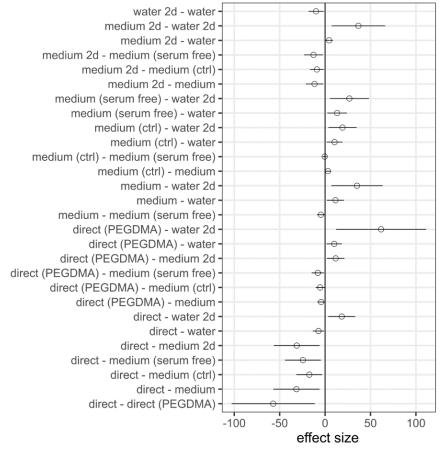
^aLaser Zentrum Hannover e.V., Hollerithallee 8, 30419 Hannover, Germany

^bLower Saxony Centre for Biomedical Engineering, Implant Research and Development,

Stadtfelddamm 34, 30625 Hannover, Germany


^cInstitute of Organic Chemistry, Gottfried Wilhelm Leibniz University Hannover, Schneiderberg

1b, 30167 Hannover, Germany


^dInstitute of Quantum Optics, Gottfried Wilhelm Leibniz University Hannover, Welfengarten 1,

30167 Hannover, Germany

*s.johannsmeier@lzh.de

Figure S 1. Schematic of the flow-through setup used for quantification of adhesion forces. a: The hydrogel was placed in a silicone tube (1 cm diameter) that was connected to a peristaltic pump. A water faucet was used instead of the PBS reservoir to achieve the maximum flow rate. b: Illustration of the flow velocity and shear stresses in the tube during laminar flow.

Figure S 2. Pairwise comparisons of hydrogel cytotoxicity after different washing procedures. The toxicity of soluble compounds was tested. The figure displays Cohen's d and the 95 % confidence intervals.