## **Supporting Information**

## Long-Term Stable Microlens Array-Integrated Quantum Dot/Siloxane Film for Thin White Backlight Units

Yun Hyeok Kim, Hyunhwan Lee, Seung-Mo Kang, Yung Lee and Byeong-Soo Bae\*

Wearable Platform Materials Technology Center

Department of Materials Science and Engineering

Korea Advanced Institute of Science and Technology (KAIST)

291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea

\*E-mail: bsbae@kaist.ac.kr

| Sample                                  | PL QY (%) |  |
|-----------------------------------------|-----------|--|
| OA-QD (chloroform)                      | 84        |  |
| MerQD (chloroform)                      | 80        |  |
| MerQD/oligo-siloxane resin (chloroform) | 68        |  |
| ML/QD-film (3 wt%)                      | 54        |  |

**Table S1.** PL QY of diluted samples of QDs during ligand exchange and fabrication of ML/QD-film.

| Species | Glass transition<br>in 20∼120°C | C.T.E<br>(ppm K <sup>-1</sup> ) | Storage modulus<br>at 25℃ (GPa) | Elastic Modulus<br>(GPa) |
|---------|---------------------------------|---------------------------------|---------------------------------|--------------------------|
| H-GFRH  | Х                               | 9                               | 1.37                            | 5.26                     |
| PET     | Ο                               | 58                              | 2.07                            | 5.73                     |
| CPI     | X                               | 24                              | 1.87                            | 6.45                     |
| PU      | X                               | 171                             | 0.0049                          | 0.063                    |
| РММА    | 0                               | 87                              | 0.93                            | 1.9                      |

**Table S2.** Thermo-mechanical and mechanical properties of H-GFRH and polymer films.

$$DOC = \frac{D^{1} + 2D^{2} + T^{1} + 2T^{2} + 3T^{3}}{2(D^{1} + D^{2}) + 3(T^{1} + T^{2} + T^{3})} \times 100$$

$$OC = \frac{D^{1} + 2D^{2} + T^{1} + 2T^{2} + 3T^{3}}{2(D^{1} + D^{2}) + 3(T^{1} + T^{2} + T^{3})} \times 100$$

$$OC = \frac{D^{1} + 2D^{2} + T^{1} + 2T^{2} + 3T^{3}}{2(D^{1} + D^{2}) + 3(T^{1} + T^{2} + T^{3})} \times 100$$
R: 3-methacryloxy of propyl

**Equation S1.** Calculation method of degree of condensation (DOC).



**Figure S1.** (a) FT-IR spectra at each step during ligand exchange. (b) <sup>29</sup>Si-NMR spectra of MerQD/oligo-siloxane resin. (c) FT-IR spectra of MerQD/oligo-siloxane resin and ML/QD-film after polymerization.



**Figure S2.** Absorbance and PL spectra of (black) oleic acid-capped QD in chloroform, (red) MerQD in chloroform, and (blue) ML/QD-film.



**Figure S3.** TGA profiles of neat siloxane film and ML/QD-film in a  $N_2$  atmosphere from 50 to 350 °C.



**Figure S4.** Chemical stability of ML/QD-film. Traces of PL QY in (a) ethanol, (b) 0.1 N NaOH, and (c) 0.1N HCl for 30 days.



**Figure S5.** SEM image of fabricated prism sheet using methacrylate-phenyl siloxane hybrid material; (a) tilted side, (b) tilted top, and (c) top view. (d) Light distribution for enhancement of luminance using prism sheet.



**Figure S6.** (a) Storage modulus (line) and tan  $\,\delta\,$  (dotted) profiles and (b) stress-strain curves of H-GFRH and polymer films from tensile test.



**Figure S7.** (a) PL intensity of various QD-film system on blue LED chips. Schematics of (b) Neat/QD-film + Diffuser sheet and (c) ML/QD-film on H-GFRH.