
On the birth of structural and crystallographic
fabric signals in polar snow: A case study
from the EastGRIP snowpack - APPENDIXES
Maurine Montagnat 1,2∗, Henning Löwe 3, Neige Calonne 2, Martin
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ABSTRACT

The role of near-surface snow processes for the formation of climate signals through
densification into deep polar firn is still barely understood. To this end we have analyzed a
shallow snow pit (0-3 meters) from EastGRIP (Greenland) and derived high-resolution profiles of
different types of mechanically relevant fabric tensors. The structural fabric, which characterizes
the anisotropic geometry of ice matrix and pore space, was obtained by X-ray tomography.
The crystallographic fabric, which characterizes the anisotropic distribution of the c-axis (or
optical axis) orientations of snow crystals, was obtained from automatic analysis of thin sections.
The structural fabric profile unambiguously reveals the seasonal cycles at EastGRIP, as a
consequence of temperature gradient metamorphism, and in contrast to featureless signals of
parameters like density or specific surface area. The crystallographic fabric profile unambiguously
reveals a signal of cluster-type texture already at shallow depth. We make use of order of
magnitude estimates for the formation time of both fabric signals and discuss potential coupling
effects in the context of snow and firn densification.
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APPENDIX A: ORDER-OF-MAGNITUDE MODELLING OF THE EVOLUTION OF THE
STRUCTURAL ANISOTROPY

For an order of magnitude estimate of the variations of the structural anisotropy, we consider the rate-
equation model as proposed in (Leinss et al., 2020). In the absence of strain measurements, we solely focus
here on the impact of temperature gradient metamorphism (TGM) and ignore contributions from settling
by setting. In this case, the differential equation for the anisotropy A is given by

d

dt
A(t) = ȦTGM(T (t),∇T (t)), A(0) = A0 (1)
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where A is related to the ratio of the correlation lengths via ε = (2− A)/(2 + A). For the purpose below,
we formalize the solution of the differential equation (1) in the form

A(t) = A
(
{T (t′),∇T (t′)}t0<t′<t|t0, A0

)
. (2)

as the anisotropy time series from t0 to t for given temperature history {T (t′),∇T (t′)}t0<t′<t and initial
condition A0, that makes the dependence on involved quantities explicit.

As a first test, the anisotropy can be directly calculated from temperature and temperature gradient time
series extracted from the measurements at different depths (Figure 1 (a)). Since the measurements include
only one year, we simply apply a periodic continuation for all temperatures to another year. Then, the
anisotropy time series per layer is computed via numerical integration of the equation (1) from t0 = 0
to t = 2 years with initial condition A0 = 0 and time step of 1 h. The results are shown in Figure 2 (a).
They indicate that the typical increase of the temperatures and temperature gradients in the near-surface in
summer are sufficient to explain seasonal jumps in ε of up to 0.3 solely as a consequence of near-surface
metamorphism. Note that temperature data were taken as is on input for the numerical solution.

Indeed the simple argument above fully neglects the fact that material elements are buried in the course
of time and thereby change their temperature and gradient history. A simple numerical experiment (using
the measured temperatures) can be made by assuming that the z position of material elements are strictly
advected into the sub-surface from their initial position at z0 at time t0 under a constant accumulation rate ḃ
according to z(t|z0, t0) = z0 + ḃ(t− t0). The age of a material element found at z at time t is then simply
given by a(z) = z/ḃ. If the (spatio-temporal) temperature measurements are denoted by Tm(z, t), then a
structural anisotropy profile A(z, t) at time t can be computed via

A(z, t) = A
(
{Tm(z(t′|0, t′ − a(z0)), t

′),∇Tm(z(t′|0, t′ − a(z0)), t
′)}t−a(z)<t′<t|t− a(z), 0

)
(3)

In other words, the temperature and gradient history in equation (3) for calculating the anisotropy at depth
z is obtained by following the space-time trajectory of a firn-parcel from the initial time t− a(z) where the
material element was at the surface with initial condition A0 = 0. To calculate equation (3) by numerical
integration, temperatures and gradients along the material trajectory were computed by 2D (spatio-temporal)
interpolation of the measured data using the scipy function RegularGridInterpolator. The
results are shown in Figure 2.

APPENDIX B: RE-ANALYSIS DATA OF MONTHLY AVERAGED PRECIPITATION AT
EASTGRIP

Re-analyses have been performed over Greenland in the frame of an inter-comparison exercise (covered
period 1979 - 2018), see (Fettweis et al., 2020). They are used here to extract the monthly averaged
precipitation at EastGRIP. MAR (Modèle Atmosphérique Régional) is a limited area climate model which
has been developed for the polar regions. It is based on the fully compressible equations of atmospheric
dynamics with the hydrostatic assumption. It also contains detail descriptions of cloud microphysics and
the snow pack. More details may be found in (Gallée et al., 2015) and references therein. Figure 3 provides
the extracted data over the period of interest in this work, 2009 - 2017.
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APPENDIX C: ORDER-OF-MAGNITUDE MODELLING OF THE EVOLUTION OF
CRYSTALLOGRAPHIC ANISOTROPY

For sake of simplicity we suppose that individual snow grains deform plastically under a compression load
applied from the above snowpack. The vertical component of the compression load can be estimated as:

σzz =

∫ z

z0

ρg dz (4)

with ρ the snow density, and g = 9.8 m s−2. Here, we consider the viscoplastic deformation of snow grains,
therefore, only the deviatoric part of σ, Sij = σij − pδij is to be taken into account, with (i,j) as (x,y,z) and
p = σzz

3 the isotropic pressure. At a depth z = 2 m, with an average snow density of 350 kg m−3, Szz =
4573 Pa.
Let’s now consider an individual snow crystal with its c-axis oriented at an angle θ from the vertical direction
(see scheme on Figure 4). Owing to the strong viscoplastic anisotropy of ice (Duval et al., 1983), we can
assume that this crystal will deform only by dislocations gliding in the basal plane, the crystallographic
plane perpendicular to the c-axis. From (Alley, 1988), during a strain increment ∆ε the crystal rotates of
∆θ = ∆ε sin θcos θ . The Orowan equation further relates the strain rate to the dislocation activity (density of
mobile dislocations dm and velocity vd), and Shearwood and Whitworth (1991) provide a relation between
the mobile dislocation velocity and the resolved shear stress in the basal plane (τ = Szz cos θ sin θ), with a
Arrhenius type of dependency on temperature. The rotation of an individual crystal follows equation 5,
with parameters given in table 1.

dε = dmbK(T )τdt

dθ = dmbK(T )Szz sin2(θ)dt
(5)

A simple test of this phenomenological model has been done by considering the assumption of a

Table 1. Parameters used for the grain rotation calculation. Only screw dislocations are considered and
Kscrew(T) is taken from (Shearwood and Whitworth, 1991).

dm(min) dm(max) Kscrew (-20◦C) Kscrew (-40◦C) Szz(2m) b
m−2 m−2 µm s−1MPa−1 µm s−1MPa−1 kPa m
106 108 1 0.01 4.57 4.5×10−10

homogeneous stress (also called Sachs approximation (Sachs, 1928)) applied to all the grains in a 1
m3 volume located below the 2 m depth EastGRIP snow pack. This approximation, that does not guaranty
the strain compatibility between grains, appears as a reasonable first approximation in the frame of a low
density snow pack but should, of course, be reconsidered when dealing with increasing density.
To estimate the evolution of texture of the snow grains, an initial population of 1000 randomly oriented
grains was considered. The texture evolution with time was followed by using the a(2)1 eigenvalue of the
second order orientation tensor a(2).
We considered an initial mobile dislocation density randomly varying between dm = 106 and dm = 108 m−2

(Higashi, 1988), and an enhancement factor E for local stress concentration varying randomly between 1
and 10 (Hagenmuller et al., 2014). Several trials were done to obtain a range of evolution. Figure 5 (a), that
represents the evolution of a(2)1 as a function of time for a temperature relevant to EastGRIP (-20◦C) and
a temperature relevant to Point Barnola (-40◦C), illustrates the fact that temperature has a strong impact
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on dislocation mobility, and therefore on the c-axis rotation with strain. In particular, it is shown that
the crystallographic fabric of the snow grain population considered can reach anisotropy of the order of
magnitude of the one measured in the third meter of the EastGRIP snow pack after about 8 to 11 years,
in the temperature conditions relevant to EastGRIP. On the contrary, too low temperatures reduce the
dislocation mobility to the point that individual grain rotation is inhibited at the time scale considered. The
choice of the initial mobile dislocation density range has a strong impact on the anisotropy evolution but
can not be constrained more than based on values obtained on ice single crystals.
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Figure 1. [Figure 2 in main text] (a) Temperature data (Courtesy of H-C. Steen-Larsen) measured from
April 2016 to March 2017 at different depths in m (legend). (b) Temperature profile of the first 1.3 m depth
of the snowpack measured at EastGRIP on May 24th, 2016.

Figure 2. [Figure 8 in main text] (a): Modeled evolution of the structural anisotropy ε over two years
with temperature and temperature gradient time series taken from the EastGRIP field measurements at fixed
depth in m (legend). (b): Modeled anisotropy profile using spatio-temporal interpolation of the measured
temperatures and gradients for different (constant) accumulation rates in m/year (legend). The start of the
time series in (a) and the surface (b) corresponds to May 12. For details see text.
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Figure 4. [Figure 10 in main text] Schematic view of the loading state of the single crystal. c is the c-axis
orientation.

Figure 5. [Figure 11 in main text] Modeled evolution of a(2)1 as a function of time, based on 1000 random
initial orientations, following the homogeneous stress hypothesis (Sachs), with initial density varying
randomly between dm(min) and dm(max) (table 1) and stress concentration E varying randomly between
1 and 10. (a) Comparison between the two temperature conditions of Point Barnola (-40◦C) and EastGRIP
(-20◦C) for on single run. (b) 10 runs performed for EastGRIP conditions (-20◦C). No variation between
the runs is observed for Point Barnola conditions.
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