Supporting information

Title: Identification and Development of A New Positron Emission TomographyLigand4-(2-Fluoro-4-[^{11}C]methoxyphenyl)-5-((1-methyl-1H-pyrazol-3-yl)methoxy)picolinamide for Imaging Metabotropic Glutamate Receptor Subtype 2(mGlu2)

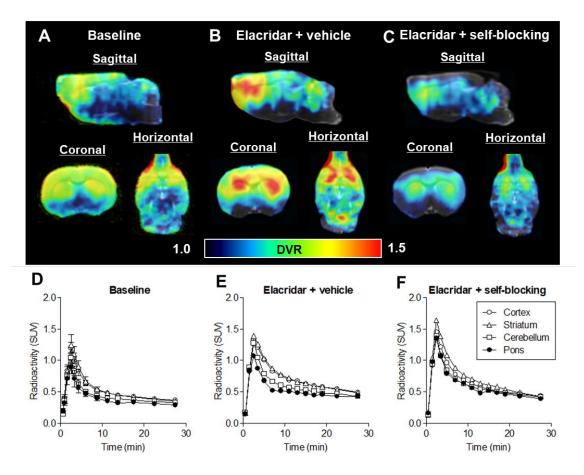
Tomoteru Yamasaki,^{†,°} Xiaofei Zhang,^{‡,°} Katsushi Kumata,^{†,°} Yiding Zhang,[†] Xiaoyun Deng,[‡] Masayuki Fujinaga,[†] Zhen Chen,[‡] Wakana Mori,[†] Kuan Hu,[†] Hidekatsu Wakizaka,[†] Akiko Hatori,[†] Lin Xie,[†] Masanao Ogawa,^{†,§} Nobuki Nengaki,^{†,§} Richard Van,[†] Yihan Shao,[†] Douglas J. Sheffler,[⊥] Nicholas D. P. Cosford,[⊥] Steven H. Liang^{‡,*} and Ming-Rong Zhang^{†,*}

[†]Department of Advanced Nuclear Medicine Sciences, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Japan

^{*}Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, USA

[§]SHI Accelerator Service, Ltd, 1-17-6 Osaki, Shinagawa-ku, Tokyo, 141-0032, Japan ^IDepartment of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States

[⊥] Cancer Metabolism and Signaling Networks Program and Conrad Prebys Center for Chemical Genomics, Sanford-Burnham Prebys Medical Discovery Institute, La Jolla, California 92037, United States


Table of contents:

- 1. Table S1: Inhibition of **5i** for multiple receptors and transporters.
- 2. Figure S1: Parametric PET/MRI images and time-activity curves of [¹¹C]**5i** in the brain of rat treated with or without elacridar (5 mg/kg).
- 3. Procedure of PET assessment using elacridar.

Target name	% inhibition		tion	Target name	% inhibition		
5-HT1A (Human)	-4.6	±	12.5	Dopamine D1 (Human)	3.0	±	15.6
5-HT1B (Human)	-1.8	±	9.4	Dopamine D2 (Human)	-8.5	±	18.3
5-HT1D (Human)	-7.5	±	7.7	Dopamine D3 (Human)	10.7	±	9.6
5-HT1E (Human)	7.1	±	7.2	Dopamine D4 (Human)	9.7	±	16.9
				Dopamine transporter			
5-HT2A (Human)	2.6	±	5.8	(Human)	-32.0	±	22.0
5-HT2B (Human)	7.2	±	6.0	Histamine H1 (Human)	0.9	±	4.6
5-HT2C (Human)	-5.7	±	4.3	Histamine H2 (Human)	18.1	±	16.2
5-HT3 (Human)	-8.7	±	4.3	Histamine H3 (Human)	43.5	±	28.3
5-HT5A (Human)	-7.7	±	4.7	Histamine H4 (Human)	-12.0	±	6.5
5-HT6 (Human)	0.4	±	7.6	Muscarine M1 (Human)	0.2	±	9.0
5-HT7A (Human)	-4.5	±	7.9	Muscarine M2 (Human)	25.4	±	9.2
Alpha 1a-adrenergic (Human)	-4.7	±	8.1	Muscarine M4 (Human)	-19.0	±	15.6
Alpha 1b-adrenergic (Human)	-10.2	±	9.1	Muscarine M5 (Human)	-5.9	±	7.7
Alpha 1d-adrenergic (Human)	-7.7	±	8.1	Delta opioid (Human)	0.2	±	13.6
Alpha 2a-adrenergic (Human)	11.4	±	8.1	Kappa opioid (Human)	44.2	±	9.2
Alpha 2b-adrenergic (Human)	-0.9	±	8.2	Mu opioid (Human)	-0.6	±	8.2
Alpha 2c-adrenergic (Human)	11.5	±	6.3	Norepinephrine transporter	-12.3	±	20.5
Beta 1-adrenergic (Human)	-16.7	±	28.3	Serotonin transporter (Human)	0.1	±	9.2
Beta 2-adrenergic (Human)	7.3	±	13.7	Sigma 1 (Human)	2.3	±	19.0
Beta 3-adrenergic (Human)	-2.1	±	28.2	Sigma 2 (Human)	19.1	±	23.2
Peripheral benzodiazepine							
(Rat)	-1.5	±	15.7				

Table S1. Affinity	v of compound	l 5i for multir	ble receptors an	d transporters	$(\text{means} \pm \text{SD}).$

CNS off-target binding screens were conducted with quadruplicate samples of 10 μ M compound **5i** by the NIMH PDSP program.

Figure S1. Parametric PET/MRI images (A-C) and time-activity curves (D-F) of [¹¹C]**5***i* in the brain of rat treated with or without elacridar (5 mg/kg).

Procedure of PET assessment using elacridar

Prior to PET assessment, the Sprague-Dawley rat (male, 8 wk, 260-270 g) was anesthetized with isoflurane (1.5% in air), inserted a 24-gauge intravenous catheter into the tail vein, and placed on the PET scanner (Inveon) keeping anesthesia with isoflurane. Subsequently, elacridar (dissolved in 20% ethanol containing 0.1% Tween80 in saline) of 5 mg/kg were administrated via tail vein catheter of rat at 20 min before PET scan start. PET scans were performed as described in the method section of the manuscript.