Supporting Information

Design, Synthesis and Structure-Activity Relationships of Indoline-Based Kelch-like ECH Associated Protein 1-Nuclear Factor (Erythroidderived 2)-like 2 (Keap1-Nrf2) Protein-Protein Interaction Inhibitors

Hai-Shan Zhou^{a,b}, Lv-Bin Hu^{a,b}, Han Zhang^{a,b}, Wen-Xin Shan^{a,b}, Yan Wang^{a,b}, Xue Li^{a,b}, Tian Liu^{a,b}, Jing Zhao^{a,b}, Qi-Dong You^{a,b*} and Zheng-Yu Jiang^{a,b*}

^aState Key Laboratory of Natural Medicines, and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China

^bDepartment of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University,

Nanjing 210009, China

Table of contents:

S1. Characterization of the Representative Intermediates.	2
S2. Characterization of the Target Compounds.	15
S3. Keap1 Kelch Domain Expression and Purification.	47
S4. Fluoresce Polarization (FP) Competition Assay.	
S5. The Binding Mode of Compound 15 with Keap1.	49
S6. Determination of Thermodynamics Data Based on a Tracer Displacement As	say. 49

S7. Isothermal Titration Calorimetry (ITC) Assay.	51
S8. Biolayer Interferometry (BLI) Assay	51
S9. ARE-Luciferase Activity Assay.	52
S10. Cell Viability Assay.	53
S11. RNA Extraction and qRT-PCR Analysis.	54
S12. Western Blot Analysis.	54
S13. IL-1β, IL-6, and TNF-α Production.	55
S14. Evaluation of GSH/GSSG Ratio.	55
S15. Detection of ROS Level.	55
S16. Animal Experiments.	56
S17. Statistical Analysis.	58
S18. References.	58
S19. ¹ H-NMR, ¹³ C-NMR, HRMS and HPLC Spectra for Representative Target	
Compounds	59

S1. Characterization of the Representative Intermediates.

2,4,6-trimethyl-*N***-(o-tolyl)benzenesulfonamide (20).** To a solution of 2-nitrotoluene (412 mg, 3.0 mmol) in methanol (15 mL) was added Pd/C. The reaction mixture was stirred under hydrogen for 2 hours. The solution was filtered to remove the catalyst. The filtrate was concentrated under reduced pressure to give the gray oil and dissolved in toluene (10 mL). 2-mesitylenesulfonyl chloride (780 mg, 3.6 mmol) and pyridine (355 mg, 4.5 mmol) was added to the solution. The reaction mixture was stirred at 80 °C for 4 h under nitrogen. After cooling to room temperature, reaction mixture was then diluted in 40 mL of petroleum ether. After filtration, the solid was

collected and washed with 1 M hydrochloric acid. Purification by silica gel column chromatography afforded the compound **20** as the gray solid, yield 72%; ¹H NMR (300 MHz, Chloroform-*d*) δ 7.43 (d, J = 8.1 Hz, 1H), 6.99 (s, 1H), 6.94 – 6.88 (m, 2H), 6.78 (ddd, J = 8.1, 2.2, 0.9 Hz, 1H), 6.42 (s, 1H), 2.61 (s, 6H), 2.31 (s, 6H); ESI-MS *m/z*: 299.1 [M+H]⁺.

methyl *N*-(mesitylsulfonyl)-*N*-(o-tolyl) glycinate (21). To a solution of 20 (580 mg, 2.0 mmol) in DMF (5 mL) was added K₂CO₃ (415 mg, 3.0 mmol) followed by ethyl bromoacetate (460 mg, 3.0 mmol). After 2 h stirring at room temperature, the reaction mixture was then diluted in 30 mL of water and quenched with 2 M hydrochloric acid to pH 5. The crude product was obtained through filtration. Purification by silica gel column chromatography afforded the compound **21** as the white solid, yield 74%, ¹H NMR (300 MHz, Chloroform-*d*) δ 7.42 (s, 1H), 6.97 (t, *J* = 7.7 Hz, 1H), 6.90 (s, 2H), 6.79 (dd, *J* = 8.0, 2.3 Hz, 1H), 6.72 (t, *J* = 2.3 Hz, 1H), 4.42 (s, 2H), 3.82 (s, 3H), 2.41 (s, 6H), 2.29 (s, 3H), 2.11 (s, 3H); ESI-MS *m/z*: 362.1 [M+H]⁺.

4-methyl-3-nitrophenyl trifluoromethanesulfonate (23a). To a solution of commercial **22a** (460 mg, 3.0 mmol) in DCM (20 mL), Et₃N (450 mg, 4.5 mmol) and Tf₂O (750 mg, 3.6 mmol) was added, and the reaction mixture was stirred for 2 h at room temperature. After the completion of the reaction monitored by TLC, the reaction mixture was extracted with EtOAc (×3). The combined organic extracts were washed with saturated NaHCO₃ solution, H₂O and saturated NaCl solution, then dried over Na₂SO₄, filtered, and concentrated in vacuo. Purification by silica gel column chromatography provided the compound **23a**, yield 66%; ¹H NMR (300 MHz,

Chloroform-*d*) δ 7.96 (s, 1H), 7.03 (dd, *J* = 5.2, 3.0 Hz, 2H), 2.28 (s, 3H); ESI-MS *m/z*: 285.9 [M+H]⁺.

N-(3-methoxyphenyl)-4-methyl-3-nitroaniline (24a). A round bottomed flask was charged with 28.0 mg (0.12 mmol) of Pd(AcO)₂, 69.0 mg (0.12 mmol) of Xantphos, and 1.6 g (5.0 mmol) of CsCO₃ under a dry nitrogen atmosphere. The solid materials were suspended in 15 mL of toluene. **23a** (710 mg, 2.5 mmol) and 3-methoxyaniline (256.0 mg, 2.1 mmol) was dissolved in 5 mL of toluene and added to the flask. After heating at 100 °C for 12 h under nitrogen atmosphere, the resulting suspension was cooled to room temperature and filtered through a pad of Celite eluting with ethyl acetate, and the inorganic salts were removed. The solvent was evaporated and the crude residue was purified by silica gel chromatography, using n-hexane/EtOAc as eluent to provide the compound **24a**, yield 65%; ¹H NMR (300 MHz, Chloroform-*d*) δ 7.71 – 7.66 (m, 1H), 7.24 (d, *J* = 8.1 Hz, 1H), 7.20 (s, 2H), 6.68 (ddd, *J* = 7.9, 2.2, 0.9 Hz, 1H), 6.64 (t, *J* = 2.3 Hz, 1H), 6.58 (ddd, *J* = 8.2, 2.5, 0.9 Hz, 1H), 5.83 (s, 1H), 3.81 (s, 3H), 2.53 (s, 3H); ESI-MS *m/z*: 259.1 [M+H]⁺.

N-(5-((3-methoxyphenyl)amino)-2-methylphenyl)-2,4,6-trimethylbenzenesulfonamide

(26a). To a solution of 24a (516 mg, 2.0 mmol) in methanol (15 mL) was added Pd/C. The reaction mixture was stirred under hydrogen for 2 hours. The solution was filtered to remove the catalyst. The filtrate was concentrated under reduced pressure to give the gray oil. The crude product, 25a, was used without further purification. 2-mesitylenesulfonyl chloride (525 mg, 2.4 mmol) and pyridine (237 mg, 3.0 mmol) was added to the solution of toluene (10 mL) and 25a. The reaction

mixture was stirred at 80 °C for 4 h under nitrogen. After cooling to room temperature, reaction mixture was then diluted in 40 mL of petroleum ether. After filtration, the solid was collected and washed with 1 M hydrochloric acid. The crude residue was purified by silica gel chromatography to provide the the gray solid **26a**, yield 50%; ¹H NMR (300 MHz, Chloroform-*d*) δ 8.21 (s, 1H), 7.38 (d, *J* = 2.4 Hz, 1H), 7.06 (t, *J* = 8.1 Hz, 1H), 7.00 (d, *J* = 7.9 Hz, 3H), 6.90 (dd, *J* = 8.2, 2.4 Hz, 1H), 6.58 (t, *J* = 2.2 Hz, 1H), 6.49 (dd, *J* = 7.8, 2.0 Hz, 1H), 6.37 (dd, *J* = 8.0, 2.3 Hz, 1H), 2.28 (s, 6H), 2.24 (s, 3H), 1.69 (s, 3H); ESI-MS *m/z*: 411.2 [M+H]⁺.

methyl *N*-(mesitylsulfonyl)-*N*-(5-((3-methoxyphenyl)amino)-2-methylphenyl)glycinate (27a). To a solution of 26a (615 mg, 1.5 mmol) in DMF (5 mL) was added K₂CO₃ (415 mg, 3.0 mmol) followed by ethyl bromoacetate (306 mg, 2.0 mmol). After 2 h stirring at room temperature, the reaction mixture was then diluted in 30 mL of water and quenched with 2 M hydrochloric acid to pH 5. The crude product was obtained through filtration. The crude residue was purified by silica gel chromatography to provide the the white solid 27a, yield 78%; ¹H NMR (300 MHz, Chloroform-*d*) δ 7.42 (s, 1H), 7.21 – 7.16 (m, 1H), 6.96 (t, *J* = 7.9 Hz, 1H), 6.90 (s, 2H), 6.79 (dd, *J* = 8.0, 2.3 Hz, 1H), 6.78 (t, *J* = 2.3 Hz, 1H), 6.69 (dd, *J* = 7.9, 1.0 Hz, 1H), 6.53 (dd, *J* = 8.0, 2.3 Hz, 1H), 4.50 (s, 2H), 3.82 (s, 3H), 3.72 (s, 3H), 2.41 (s, 6H), 2.29 (s, 6H). ESI-MS *m/z*: 483.2 [M+H]⁺.

1-(3-methoxyphenyl)-4-nitro-1H-indole (30). To a solution of **28** (2.0 g, 12.3 mmol) and **29** (2.8 g, 18.5 mmol) in DCM (20 ml) was added 2 equiv of Cu(OAc)₂ and 2 equiv of triethylamine. The reaction mixture was stirring at room temperature for 24 hours, and then was concentrated and the product **30** was purified by silica gel column chromatography (petroleumether/ethyl acetate = 20:1 to 2:1 v/v) to afford 2.9 g (70%) of desired product as light yellow solid. ¹H NMR (300 MHz, Chloroform-*d*) δ 8.20 (dd, J = 8.0, 0.8 Hz, 1H), 7.85 (dt, J = 8.2, 0.9 Hz, 1H), 7.59 (d, J = 3.3 Hz, 1H), 7.51 – 7.42 (m, 2H), 7.32 (d, J = 8.1 Hz, 1H), 7.08 (dt, J = 7.9, 1.2 Hz, 1H), 7.00 (dq, J = 8.1, 1.2 Hz, 2H), 3.90 (s, 3H). ESI-MS *m/z*: 269.1 (M+H)⁺.

1-(3-methoxyphenyl)-4-nitroindoline (31). To a solution of **30** (1.0 g, 3.7 mmol) and trifluoroacetic acid (6 ml) in DCM (20 ml) was added 4 equiv of sodium cyanoborohydride portionwise at 0 °C. After the addition was complete, the reaction mixture was stirring at room temperature for 12 hours, and then was diluted with saturated NaHCO₃. The organic layer was extracted and washed with 2 x 20 ml of brine followed by 2 x 20 ml of H₂O. The organics were dried over anhydrous Na₂SO₄ and crude material was purified by flash chromatography (petroleumether/ethyl acetate = 20:1 to 2:1 v/v) to afford 0.66 g (66%) of the desired product as a red solid. ¹H NMR (300 MHz, Chloroform-*d*) δ 7.20 (d, J = 8.0 Hz, 1H), 6.93 (s, 1H), 6.90 - 6.85 (m, 2H), 6.77 (ddd, J = 8.3, 2.2, 0.9 Hz, 1H), 6.57 - 6.53 (m, 1H), 6.42 (s, 1H), 6.35 (dd, J = 6.8, 2.1 Hz, 1H), 3.91 (t, J = 8.5 Hz, 2H), 3.81 (s, 3H), 2.97 (t, J = 8.4 Hz, 2H), 2.62 (s, 6H), 2.32 (s, 3H); ESI-MS *m/z*: 271.1 (M+H)⁺.

N-(1-(3-methoxyphenyl)indolin-4-yl)-2,4,6-trimethylbenzenesulfonamide (33a). To a solution of **31** (540 mg, 2.0 mmol) in methanol (15 mL) was added Pd/C. The reaction mixture was stirred under hydrogen for 2 hours. The solution was filtered to remove the catalyst. The filtrate was concentrated under reduced pressure to give the gray oil. The crude product, **32**, was

used without further purification. 2-mesitylenesulfonyl chloride (525 mg, 2.4 mmol) and pyridine (237 mg, 3.0 mmol) was added to the solution of toluene (10 mL) and **32**. The reaction mixture was stirred at 80 °C for 4 h under nitrogen. After cooling to room temperature, reaction mixture was then diluted in 40 mL of petroleum ether. After filtration, the solid was collected and washed with 1 M hydrochloric acid. Recrystallization from acetonitrile gave the gray solid 532 mg, yield 63%; ¹H NMR (300 MHz, Chloroform-*d*) δ 7.24 (d, J = 8.2 Hz, 1H), 6.96 (s, 2H), 6.95 – 6.90 (m, 2H), 6.79 (ddd, J = 8.1, 2.2, 0.9 Hz, 1H), 6.74 (t, J = 2.3 Hz, 1H), 6.57 – 6.53 (m, 1H), 6.42 (s, 1H), 6.35 (dd, J = 6.8, 2.1 Hz, 1H), 3.92 (t, J = 8.5 Hz, 2H), 3.82 (s, 3H), 2.98 (t, J = 8.4 Hz, 2H), 2.61 (s, 6H), 2.31 (s, 3H). ESI-MS *m/z*: 423.1 [M+H]⁺.

methyl *N*-(mesitylsulfonyl)-*N*-(1-(3-methoxyphenyl)indolin-4-yl)glycinate (34a). To a solution of **33a** (630 mg, 1.5 mmol) in DMF (5 mL) was added K₂CO₃ (415 mg, 3.0 mmol) followed by ethyl bromoacetate (306 mg, 2.0 mmol). After 2 h stirring at room temperature, the reaction mixture was then diluted in 30 mL of water and quenched with 2 M hydrochloric acid to pH 5. The crude product was obtained through filtration. Recrystallization from ethyl acetate/nhexane gave the **34a** as a white solid 550 mg, yield 74%; ¹H NMR (300 MHz, Chloroform-*d*) δ 7.22 (s, 1H), 7.11 – 7.06 (m, 1H), 6.99 (t, *J* = 7.9 Hz, 1H), 6.90 (s, 2H), 6.78 (dd, *J* = 8.2, 2.1 Hz, 1H), 6.72 (t, *J* = 2.3 Hz, 1H), 6.68 (dd, *J* = 7.9, 1.0 Hz, 1H), 6.54 (dd, *J* = 8.0, 2.3 Hz, 1H), 4.52 (s, 2H), 3.82 (s, 3H), 3.75 (t, *J* = 8.4 Hz, 2H), 3.71 (s, 3H), 2.82 (t, *J* = 8.3 Hz, 2H), 2.41 (s, 6H), 2.29 (s, 3H). ESI-MS *m/z*: 493.2 [M+H]⁺.

5-nitro-1,2,3,4-tetrahydroquinoline (36). To a solution of **35** (1.0 g, 5.7 mmol) in chloroform (20 ml) was added Fe(OTf)₂ (20 mg, 1 mol%) and diethyl 1,4-dihydro-2,6-dimethyl-3,5-pyridinedicarboxylate (Hantzsch ester, 3.6 g , 14.2 mmol). After the addition was complete, the reaction mixture was stirring at 40 °C under nitrogen for 4 hours, and then was diluted with H₂O. The organic layer was extracted and washed with 2 x 20 ml of brine followed by 2 x 20 ml of H₂O. The organics were dried over anhydrous Na₂SO₄ and crude material was purified by flash chromatography (petroleumether/ethyl acetate = 40:1 to 20:1 v/v) to afford 608 mg (60%) of the desired product as a yellow solid. ¹H NMR (300 MHz, Chloroform-*d*) δ 7.14 (dd, *J* = 8.0, 1.3 Hz, 1H), 7.04 (t, *J* = 8.0 Hz, 1H), 6.65 (dd, *J* = 7.9, 1.3 Hz, 1H), 4.23 (s, 1H), 3.34 (t, *J* = 5.5 Hz, 2H), 2.94 (t, *J* = 6.5 Hz, 2H), 1.98 – 1.87 (m, 2H); ESI-MS *m/z*: 179.1 (M+H)⁺.

1-(3-methoxyphenyl)-5-nitro-1,2,3,4-tetrahydroquinoline (37). To a solution of **36** (890 g, 5.0 mmol) and 3-methoxybenzeneboronic acid (910 mg, 6.0 mmol) in DCM (20 ml) was added 2 equiv of Cu(OAc)₂ and 2 equiv of triethylamine. The reaction mixture was stirring at room temperature for 24 hours, and then was concentrated and the product **37** was purified by silica gel column chromatography (petroleumether/ethyl acetate = 40:1 to 10:1 v/v) to afford 780 mg (55%) of desired product as light yellow solid. ¹H NMR (300 MHz, Chloroform-*d*) δ 7.36 – 7.30 (m, 1H), 7.18 (dd, *J* = 7.9, 1.3 Hz, 1H), 6.99 (t, *J* = 8.2 Hz, 1H), 6.88 (dd, *J* = 8.4, 1.3 Hz, 1H), 6.82 (ddd, *J* = 7.9, 1.9, 1.0 Hz, 1H), 6.77 (tp, *J* = 2.5, 1.3 Hz, 2H), 3.82 (s, 3H), 3.68 – 3.62 (m, 2H), 3.04 (t, *J* = 6.5 Hz, 2H), 2.10 – 2.01 (m, 2H); ESI-MS *m/z*: 285.1 (M+H)⁺.

N-(1-(3-methoxyphenyl)-1,2,3,4-tetrahydroquinolin-5-yl)-2,4,6-

trimethylbenzenesulfonamide (39). To a solution of 37 (568 mg, 2.0 mmol) in methanol (15 mL) was added Pd/C. The reaction mixture was stirred under hydrogen for 2 hours. The solution was filtered to remove the catalyst. The filtrate was concentrated under reduced pressure to give the gray oil. The crude product, **38**, was used without further purification. 2-mesitylenesulfonyl chloride (525 mg, 2.4 mmol) and pyridine (237 mg, 3.0 mmol) was added to the solution of toluene (10 mL) and 38. The reaction mixture was stirred at 80 °C for 4 h under nitrogen. After cooling to room temperature, reaction mixture was then diluted in 40 mL of petroleum ether. After filtration, the solid was collected and washed with 1 M hydrochloric acid. Recrystallization from acetonitrile gave the gray solid 453 mg, yield 52%; ¹H NMR (300 MHz, Chloroform-d) δ 7.25 (d, J = 8.0 Hz, 1H), 6.99 (s, 2H), 6.96 - 6.91 (m, 2H), 6.82 (ddd, J = 8.0, 2.2, 0.9 Hz, 1H), 6.76 (t, J = 2.3 Hz, 1H), 6.56 - 6.52 (m, 1H), 6.41 (s, 1H), 6.36 (dd, J = 6.8, 2.1 Hz, 1H), 3.82 (s, 3H), 3.67 - 3.60 (m, 2H), 3.03 (t, J = 6.5 Hz, 2H), 2.62 (s, 6H), 2.30 (s, 3H), 2.11 – 2.00 (m, 2H). ESI-MS m/z: 437.2 $[M+H]^+$.

methyl *N*-(mesitylsulfonyl)-*N*-(1-(3-methoxyphenyl)-1,2,3,4-tetrahydroquinolin-5-yl) glycinate (40). To a solution of 39 (654 mg, 1.5 mmol) in DMF (5 mL) was added K_2CO_3 (415 mg, 3.0 mmol) followed by ethyl bromoacetate (306 mg, 2.0 mmol). After 2 h stirring at room temperature, the reaction mixture was then diluted in 30 mL of water and quenched with 2 M hydrochloric acid to pH 5. The crude product was obtained through filtration. Recrystallization from ethyl acetate/nhexane gave the 40 as a white solid 548 mg, yield 72%; ¹H NMR (300 MHz,

Chloroform-*d*) δ 7.21 (s, 1H), 7.10 – 7.05 (m, 1H), 6.96 (t, *J* = 7.7 Hz, 1H), 6.91 (s, 2H), 6.76 (dd, *J* = 8.0, 2.1 Hz, 1H), 6.73 (t, *J* = 2.5 Hz, 1H), 6.67 (dd, *J* = 7.9, 1.0 Hz, 1H), 6.55 (dd, *J* = 8.0, 2.3 Hz, 1H), 4.51 (s, 2H), 3.85 (s, 3H), 3.74 (t, *J* = 8.4 Hz, 2H), 3.81 (s, 3H), 3.68 – 3.61 (m, 2H), 3.02 (t, *J* = 6.5 Hz, 2H), 2.61 (s, 6H), 2.31 (s, 3H), 2.12 – 2.00 (m, 2H). ESI-MS *m/z*: 509.2 [M+H]⁺.

tert-butyl 4-nitro-1*H*-indole-1-carboxylate (41). To a solution of 28 (5.0 g, 30.8 mmol) and triethylamine (3.7 g, 36.9 mmol) in DCM (50 mL) was added (Boc)₂O (10.0 g, 45.7 mmol) dropwise at 0 °C and stirred for 2 h. Upon completion, the solution was concentrated under reduced pressure, and then the product 41 was purified by silica gel column chromatography (petroleumether/ethyl acetate = 40:1 to 10:1 v/v) to afford 5.7 g (71%) of desired product as white solid. ¹H NMR (300 MHz, DMSO-*d*₆) δ 8.08 (s, 1H), 7.86 (t, *J* = 6.0 Hz, 1H), 7.51 (d, *J* = 7.7 Hz, 1H), 6.71 (d, *J* = 7.3 Hz, 1H), 6.38 (s, 1H), 2.01 (s, 9H); ESI-MS *m/z*: 263.1 [M+H]⁺.

tert-butyl 4-((2,4,6-trimethylphenyl)sulfonamido)indoline-1-carboxylate (42). To a solution of 41 (5.0 g, 19.1 mmol) in methanol (15 mL) was added Pd/C. The reaction mixture was stirred under hydrogen at 60 °C for 10 hours. The solution was filtered to remove the catalyst. The filtrate was concentrated under reduced pressure to give the gray oil without further purification. 2-mesitylenesulfonyl chloride (5.0 g, 22.9 mmol) and pyridine (237 mg, 28.6 mmol) was added to the solution of toluene (20 mL). The reaction mixture was stirred at 80 °C for 4 h under nitrogen. After cooling to room temperature, reaction mixture was then diluted in 40 mL of petroleum ether. After filtration, the solid was collected and washed with 1 M hydrochloric acid. Recrystallization from acetonitrile gave the gray solid 4.2 g, yield 53%; ¹H NMR (300 MHz, DMSO-*d*₆) δ 10.12 (s,

1H), 7.22 (s, 2H), 6.98 (s, 1H), 6.84 (t, *J* = 8.0 Hz, 1H), 6.51 (d, *J* = 7.9 Hz, 1H), 3.80 (s, 2H), 3.12 (d, *J* = 8.5 Hz, 2H), 2.28 (s, 6H), 2.25 (s, 3H), 1.81 (s, 9H); ESI-MS *m/z*: 417.2 [M+H]⁺.

tert-butyl **4-((N-(2-methoxy-2-oxoethyl)-2,4,6-trimethylphenyl)sulfonamido)indoline-1**carboxylate (43). To a solution of **42** (4.0 g, 9.6 mmol) in DMF (10 mL) was added K₂CO₃ (2.0 g, 14.4 mmol) followed by ethyl bromoacetate (1.7 g, 11.5 mmol). After 2 h stirring at room temperature, the reaction mixture was then diluted in 30 mL of water and quenched with 2 M hydrochloric acid to pH 5. The crude product was obtained through filtration. Recrystallization from ethyl acetate/nhexane gave the **43** as a white solid 3.5 g, yield 75%; ¹H NMR (300 MHz, DMSO-*d*₆) δ 10.12 (s, 1H), 7.22 (s, 2H), 6.98 (s, 1H), 6.84 (t, *J* = 8.0 Hz, 1H), 6.51 (d, *J* = 7.9 Hz, 1H), 4.32 (s, 2H), 3.84 (s, 3H), 3.80 (s, 2H), 3.12 (d, *J* = 8.5 Hz, 2H), 2.28 (s, 6H), 2.25 (s, 3H), 1.81 (s, 9H); ESI-MS *m/z*: 489.2 [M+H]⁺.

methyl *N*-(indolin-4-yl)-*N*-(mesitylsulfonyl)glycinate (44): To a solution of 43 (3.0 g, 6.1 mmol) in DCM (10 mL) was added CF₃COOH (5 mL). After 1 h stirring at room temperature, the reaction mixture was concentrated under reduced pressure and quenched with 2 M NaHCO₃. The crude product was obtained through recrystallization from ethyl acetate/nhexane gave the 44 as a white solid 1.7 g, yield 75%; ¹H NMR (300 MHz, DMSO-*d*₆) δ 6.98 (s, 2H), 6.86 (t, *J* = 8.0 Hz, 1H), 6.51 (d, *J* = 7.9 Hz, 1H), 6.41 (d, *J* = 7.5 Hz, 1H), 4.34 (s, 2H), 3.82 (s, 3H), 3.13 (d, *J* = 8.3 Hz, 2H), 2.29 (s, 6H), 2.25 (s, 3H). ESI-MS *m/z*: 389.1 [M+H]⁺.

4-nitroindoline (45). To a solution of **28** (3.0 g, 18.5 mmol) and trifluoroacetic acid (6 ml) in DCM (20 ml) was added 4 equiv of sodium cyanoborohydride portionwise at 0 °C. After the

addition was complete, the reaction mixture was stirring at room temperature for 12 hours, and then was diluted with saturated NaHCO₃. The organic layer was extracted and washed with 2 x 20 ml of brine followed by 2 x 20 ml of H₂O. The organics were dried over anhydrous Na₂SO₄ and crude material was purified by flash chromatography (petroleumether/ethyl acetate = 20:1 to 4:1 v/v) to afford 2.4 g of the desired product as a red solid, yield 79%; ¹H NMR (300 MHz, Chloroform-*d*) δ 7.14 (dd, *J* = 8.0, 1.3 Hz, 1H), 7.04 (t, *J* = 8.0 Hz, 1H), 6.65 (dd, *J* = 7.9, 1.3 Hz, 1H), 3.34 (t, *J* = 5.5 Hz, 2H), 2.94 (t, *J* = 6.5 Hz, 2H); ESI-MS *m/z*: 165.1 (M+H)⁺.

methyl 2-bromo-2-(3-methoxyphenyl)acetate (47). I To a solution of 46 (3.0 g, 16.7 mmol) in CCl₄ (20 mL) was added NBS (2.9 g, 16.7 mmol) followed by AIBN (260 mg, 1.6 mmol). The reaction was heated to reflux for 6h under nitrogen. After cooling to room temperature, the reaction mixture was concentrated in vacuo and purified by silica gel column chromatography to give compound 47 as red oil, yield 56%; ¹H NMR (300 MHz, Chloroform-*d*) δ 7.16 (dd, *J* = 8.2, 1.5 Hz, 1H), 7.06 (t, *J* = 8.0 Hz, 2H), 6.68 (dd, *J* = 7.7, 1.5 Hz, 1H), 5.91 (s, 1H), 3.82 (s, 3H), 3.74 (s, 3H); ESI-MS *m/z*: 258.9 (M+H)⁺.

methyl 2-(3-methoxyphenyl)-2-(4-nitroindolin-1-yl)acetate (48). To a solution of 45 (330 mg, 2.0 mmol) in DMF (5 mL) was added NaH (53 mg, 2.2 mmol) and 47 (567 mg, 2.2 mmol) at 0 °C, then the reaction mixture was stirred at 60 °C for 4 h under nitrogen. Upon completion, the solution was diluted in 30 mL of water and quenched with 2 M hydrochloric acid to pH 5. The crude product was obtained through filtration and purified by silica gel column chromatography, yield 59%; ¹H NMR (300 MHz, Chloroform-*d*) δ 7.51 (d, *J* = 8.3 Hz, 1H), 7.38 (t, *J* = 7.8 Hz, 1H), 7.23 (t, *J* =

8.1 Hz, 1H), 7.02 - 6.92 (m, 3H), 6.66 (d, J = 7.9 Hz, 1H), 5.35 (s, 1H), 3.87 (d, J = 1.7 Hz, 3H),
3.83 (d, J = 1.7 Hz, 3H), 3.65 - 3.52 (m, 1H), 3.52 - 3.39 (m, 1H), 3.38 - 3.26 (m, 1H), 3.05 - 2.91 (m, 1H); ESI-MS *m*/*z*: 343.1 (M+H)⁺.

2-(3-methoxyphenyl)-2-(4-nitroindolin-1-yl)acetic acid (49). To a solution of LiOH (1.0 g) in MeOH/H₂O (15/5 mL) was added **48** (343 mg, 1.0 mmol). The reaction mixture was stirring at room temperature overnight, then quenched with 2 M hydrochloric acid to pH 2 and diluted with 50 mL of water. Precipitate removed by filtration and washed with 5×10 mL water, then dried overnight in a vacuum desiccator, yielding **49** as a yellow solid, yield 84%; ¹H NMR (300 MHz, Chloroform-*d*) δ 7.52 (d, *J* = 8.5 Hz, 1H), 7.34 (t, *J* = 7.8 Hz, 1H), 7.21 (t, *J* = 8.1 Hz, 1H), 7.01 - 6.94 (m, 3H), 6.67 (d, *J* = 7.7 Hz, 1H), 5.35 (s, 1H), 3.82 (d, *J* = 1.7 Hz, 3H), 3.65 - 3.52 (m, 1H), 3.52 - 3.39 (m, 1H), 3.36 - 3.24 (m, 2H); ESI-MS *m/z*: 329.1 (M+H)⁺.

2-(3-methoxyphenyl)-2-(4-nitroindolin-1-yl)-*N***-(phenylsulfonyl)acetamide (50a). 49** (328 mg, 1.0 mmol) was dissolved in 10 mL of distilled CH₂Cl₂. To this stirred solution, 2 equiv of EDCI and 2 equiv of DMAP and benzenesulfonamide (158 mg, 1.0 mmol) were added. The reaction was stirred for 4 hours at 40 °C. The organic layer was extracted and washed with 2 x 20 ml of brine followed by 2 x 20 ml of H₂O. The organics were dried over anhydrous Na₂SO₄ and crude material was purified by flash chromatography to afford the desired product as a yellow solid, yield 72%; ¹H NMR (300 MHz, DMSO-*d*₆) δ 12.82 (s, 1H), 7.89 (d, *J* = 8.1 Hz, 2H), 7.63 (t, *J* = 7.8 Hz, 2H), 7.21 (s, 2H), 6.96 - 6.87 (m, 3H), 6.66 (s, 2H), 6.56 (d, *J* = 7.7 Hz, 1H), 5.17 (d, *J* = 8.5 Hz, 1H), 3.78 (s, 3H), 3.47 (s, 2H), 3.22 (s, 2H); ESI-MS *m/z*: 468.1 (M+H)⁺.

2-(3-methoxyphenyl)-N-(phenylsulfonyl)-2-(4-((2,4,6-

trimethylphenyl)sulfonamido)indolin-1-yl)acetamide (52a). 50a was synthesized according to the procedure of **42**, white solid, yield 51%; ¹H NMR (300 MHz, DMSO-*d*₆) δ 12.40 (s, 1H), 7.62 (d, *J* = 8.3 Hz, 2H), 7.42 (t, *J* = 7.8 Hz, 2H), 7.26 (s, 2H), 6.97 - 6.87 (m, 3H), 6.61 (s, 2H), 6.52 (d, *J* = 7.3 Hz, 1H), 6.19 (d, *J* = 7.8 Hz, 1H), 5.19 (d, *J* = 8.7 Hz, 1H), 3.47 (s, 2H), 3.02 (s, 2H), 2.22 (dd, *J* = 13.0, 6.9 Hz, 9H); ESI-MS *m/z*: 620.2 (M+H)⁺.

methyl*N*-(mesitylsulfonyl)-*N*-(1-(1-(3-methoxyphenyl)-2-oxo-2-(phenylsulfonamido)ethyl)indolin-4-yl)glycinate (53a). 53a was synthesized according to theprocedure of 43, white solid, yield 79%; ¹H NMR (300 MHz, DMSO- d_6) δ 12.42 (s, 1H), 7.97 (d,J = 7.1 Hz, 2H), 7.72 (t, J = 8.6 Hz, 2H), 7.31 (s, 2H), 6.93 - 6.81 (m, 3H), 6.76 (s, 2H), 6.66 (d, J= 7.9 Hz, 1H), 6.29 (d, J = 7.8 Hz, 1H), 5.21 (d, J = 8.0 Hz, 1H), 4.28 (d, J = 8.2 Hz, 2H), 3.77 (s,3H), 3.40 (s, 2H), 3.22 (s, 2H), 2.22 (dd, J = 13.0, 6.9 Hz, 9H); ESI-MS *m/z*: 692.2 (M+H)⁺.

methyl 2-(4-((N-(2-methoxy-2-oxoethyl)-2,4,6-trimethylphenyl)sulfonamido)indolin-1-yl)-

2-(3-methoxyphenyl)acetate (54). To a solution of **44** (776 mg, 2.0 mmol) in DMF (5 mL) was added NaH (53 mg, 2.2 mmol) and **47** (567 mg, 2.2 mmol) at 0 °C, then the reaction mixture was stirred at 60 °C for 4 h under nitrogen. Upon completion, the solution was diluted in 30 mL of water and quenched with 2 M hydrochloric acid to pH 5. The crude product was obtained through filtration and purified by silica gel column chromatography, yield 54%; ¹H NMR (300 MHz, Chloroform-*d*) δ 8.06 (ddd, *J* = 16.8, 7.7, 1.7 Hz, 1H), 7.89 (dd, *J* = 7.6, 1.8 Hz, 1H), 7.62 (d, *J* = 8.0 Hz, 1H), 7.48 – 7.39 (m, 3H), 7.37 – 7.29 (m, 1H), 6.85 – 6.76 (m, 2H), 4.74 (d, *J* = 7.4 Hz,

1H), 4.47 (d, J = 17.7 Hz, 2H), 3.96 (s, 3H), 3.84 (s, 3H), 3.72 (s, 3H), 3.29 (t, J = 8.7 Hz, 2H),
3.20 (s, 2H), 2.35 (s, 6H), 2.22 (s, 3H); EI-MS m/z :567.2 [M+H]⁺.

S2. Characterization of the Target Compounds.

N-(2,4,6-trimethylphenylsulfonyl)-*N*-(o-tolyl) glycine (9). To a solution of LiOH (240 mg, 10.0 mmol) in MeOH/H₂O (5/5 mL) was added 21 (506 mg, 1.4 mmol). The reaction mixture was stirring at room temperature overnight, then quenched with 2 M hydrochloric acid to pH 2 and diluted with 50 mL of water. Precipitate removed by filtration and washed with 5 × 10 mL water, then dried overnight in a vacuum desiccator, yielding 9 as a white solid, yield 75%; mp: 164-166 °C. ¹H NMR (300 MHz, DMSO-*d*₆) δ 12.82 (s, 1H), 6.97 (d, *J* = 8.5 Hz, 1H), 6.90 (d, *J* = 4.7 Hz, 3H), 6.81-6.71 (m, 1H), 4.30 (s, 2H), 2.15 (d, *J* = 2.9 Hz, 9H), 1.68 (s, 3H); HRMS (ESI): found 370.1191 (C₁₈H₂₁NO₄S, [M+Na]⁺, requires 370.1198); HPLC (90:10 methanol:water): t_R= 6.72 min, 97.3%.

N-(mesitylsulfonyl)-*N*-(3-((3-methoxyphenyl) amino)-5-methylphenyl) glycine (10b). 10b was synthesized according to the procedure of 10a, white solid, yield 77%; mp: 172-174 °C. ¹H NMR (300 MHz, DMSO-*d*₆) δ 12.63 (s, 1H), 8.10 (s, 1H), 6.96 (d, *J* = 8.1 Hz, 1H), 6.92 (s, 2H), 6.74 (t, *J* = 2.1 Hz, 1H), 6.61 (s, 1H), 6.42 (dd, *J* = 5.4, 3.0 Hz, 2H), 6.29 (ddd, *J* = 10.6, 7.9, 2.2 Hz, 2H), 4.29 (s, 2H), 2.30 (s, 6H), 2.15 (s, 3H), 2.05 (s, 3H); HRMS (ESI): found 469.1788 (C₂₅H₂₉N₂O₅S. [M+H]⁺ requires 469.1791); HPLC (90:10 methanol:water): t_R= 6.11 min, 97.5%. *N*-(mesitylsulfonyl)-*N*-(3-((3-methoxyphenyl) amino)-4-methylphenyl) glycine (10c). 10c was synthesized according to the procedure of 10a, white solid, yield 75%; mp: 136-138 °C. ¹H NMR (300 MHz, DMSO-*d*₆) δ 12.63 (s, 1H), 8.10 (s, 1H), 6.96 (d, *J* = 8.1 Hz, 1H), 6.92 (s, 2H), 6.74 (t, *J* = 2.1 Hz, 1H), 6.61 (s, 1H), 6.42 (dd, *J* = 5.4, 3.0 Hz, 2H), 6.29 (ddd, *J* = 10.6, 7.9, 2.2 Hz, 2H), 4.29 (s, 2H), 2.30 (s, 6H), 2.15 (s, 3H), 2.05 (s, 3H); HRMS (ESI): found 469.1791 (C₂₅H₂₉N₂O₅S. [M+H]⁺ requires 469.1791); HPLC (90:10 methanol:water): t_R= 6.05 min, 96.5%.

N-(mesitylsulfonyl)-*N*-(3-((3-methoxyphenyl) amino)-2-methylphenyl) glycine (10d). 10d was synthesized according to the procedure of 10a, white solid, yield 72%; mp: 158-160 °C. ¹H NMR (300 MHz, DMSO-*d*₆) δ 12.63 (s, 1H), 8.10 (s, 1H), 6.96 (d, *J* = 8.1 Hz, 1H), 6.92 (s, 2H), 6.74 (t, *J* = 2.1 Hz, 1H), 6.61 (s, 1H), 6.42 (dd, *J* = 5.4, 3.0 Hz, 2H), 6.29 (ddd, *J* = 10.6, 7.9, 2.2 Hz, 2H), 4.29 (s, 2H), 2.30 (s, 6H), 2.15 (s, 3H), 2.05 (s, 3H); HRMS (ESI): found 469.1789 (C₂₅H₂₉N₂O₅S. [M+H]⁺ requires 469.1791); HPLC (90:10 methanol:water): t_R= 6.14 min, 96.7%.

N-(mesitylsulfonyl)-*N*-(3-((3-methoxyphenyl) amino) phenyl) glycine (10e). 10e was synthesized according to the procedure of 10a, white solid, yield 83%; mp: 174-176 °C. ¹H NMR (300 MHz, DMSO-*d*₆) δ 8.30 (s, 1H), 7.25 – 7.13 (m, 1H), 7.12 – 7.04 (m, 2H), 7.02 (d, *J* = 5.5 Hz, 2H), 6.89 (dd, *J* = 8.1, 2.3 Hz, 1H), 6.68 – 6.62 (m, 1H), 6.53 (t, *J* = 2.2 Hz, 1H), 6.40 (td, *J* = 8.1, 2.2 Hz, 2H), 4.41 (s, 2H), 3.71 (s, 3H), 2.37 (d, *J* = 3.8 Hz, 6H), 2.24 (s, 3H); HRMS (ESI): found 455.1635 (C₂₄H₂₇N₂O₅S. [M+H]⁺ requires 455.1635); HPLC (90:10 methanol:water): t_R= 6.01 min, 95.7%.

N-(mesitylsulfonyl)-*N*-(3-((3-methoxyphenyl) amino)-4-(trifluoromethyl) phenyl) glycine (10f). 10g was synthesized according to the procedure of 10a, white solid, yield 71%; mp: 192-194 °C. ¹H NMR (300 MHz, DMSO-*d*₆) δ 12.75 (s, 1H), 8.15 (s, 1H), 7.46 (d, *J* = 2.6 Hz, 1H), 7.16 (d, *J* = 8.2 Hz, 1H), 7.05 – 6.97 (m, 1H), 6.94 (d, *J* = 4.8 Hz, 2H), 6.83 (d, *J* = 7.9 Hz, 1H), 6.55 (t, *J* = 2.4 Hz, 1H), 6.47 (dd, *J* = 8.1, 2.0 Hz, 1H), 6.33 (dd, *J* = 8.0, 2.3 Hz, 1H), 4.38 (s, 2H), 3.70 (s, 3H), 2.34 (s, 6H), 2.24 (s, 3H); HRMS (ESI): found 523.1432 (C₂₅H₂₆F₃N₂O₅S. [M+H]⁺ requires 523.1441); HPLC (90:10 methanol:water): t_R= 6.13 min, 96.4%.

N-(2-fluoro-3-((3-methoxyphenyl) amino) phenyl)-*N*-(mesitylsulfonyl) glycine (10g). 10g was synthesized according to the procedure of 10a, white solid, yield 73%; mp: 170-172 °C. ¹H NMR (300 MHz, DMSO- d_6) δ 12.88 (s, 1H), 7.44 (s, 1H), 7.13 (d, *J* = 2.6 Hz, 3H), 7.04 – 6.96 (m, 3H), 6.35 – 6.26 (m, 2H), 6.15 (dd, *J* = 8.0, 2.0 Hz, 1H), 4.55 (d, *J* = 17.8 Hz, 1H), 4.26 (s, 1H), 3.77 (s, 3H), 2.24 (d, *J* = 3.7 Hz, 9H); HRMS (ESI): found 473.1539 (C₂₄H₂₆FN₂O₅S. [M+H]⁺ requires 473.1541); HPLC (90:10 methanol:water): t_R= 6.21 min, 95.1%.

N-(mesitylsulfonyl)-*N*-(2-methoxy-3-((3-methoxyphenyl) amino) phenyl) glycine (10h). 10h was synthesized according to the procedure of 10a, white solid, yield 72%; mp: 140-142 °C. ¹H NMR (300 MHz, DMSO-*d*₆) δ 12.87 (s, 1H), 7.57 (s, 1H), 7.24 (d, *J* = 2.8 Hz, 3H), 7.14 – 6.97 (m, 4H), 6.35 – 6.26 (m, 3H), 6.16 (dd, *J* = 8.2, 2.0 Hz, 1H), 4.55 (d, *J* = 18.0 Hz, 1H), 4.26 (s, 1H), 3.68 (s, 3H), 3.25 (s, 3H), 2.23 (d, *J* = 3.6 Hz, 9H); HRMS (ESI): found 485.1742 (C₂₅H₂₉N₂O₆S. [M+H]⁺ requires 485.1740); HPLC (90:10 methanol:water): t_R= 6.12 min, 97.5%. *N*-(mesitylsulfonyl)-*N*-(3-methoxy-4-((3-methoxyphenyl) amino) phenyl) glycine (10i). 10i was synthesized according to the procedure of 10a, white solid, yield 82%; mp: 142-144 °C. ¹H NMR (300 MHz, DMSO-*d*₆) δ 12.87 (s, 1H), 7.43 (s, 1H), 7.09 (dt, *J* = 8.1, 3.8 Hz, 2H), 7.00 (s, 2H), 6.75 (dd, *J* = 8.5, 2.3 Hz, 2H), 6.60 (ddt, *J* = 7.1, 2.1 Hz, 3H), 6.40 (dd, *J* = 8.0, 2.4 Hz, 1H), 3.68 (s, 3H), 2.36 (s, 6H), 2.24 (s, 3H); HRMS (ESI): found 455.1635 (C₂₄H₂₇N₂O₅S. [M+H]⁺ requires 455.1635); HPLC (90:10 methanol:water): t_R= 6.15 min, 97.5%.

N-(1-(3-methoxyphenyl) indolin-4-yl)-*N*-((4-nitrophenyl) sulfonyl) glycine (11b). 11b was synthesized according to the procedure of 11a, white solid, yield 76%; mp: 137-139 °C. ¹H NMR (300 MHz, DMSO-*d*₆) δ 12.76 (s, 1H), 8.31 (d, *J* = 10.1 Hz, 1H), 7.88 (d, *J* = 9.0 Hz, 1H), 7.53 (d, *J* = 10.3 Hz, 1H), 7.20 – 7.11 (m, 1H), 7.02 (d, *J* = 8.7 Hz, 1H), 6.93 (d, *J* = 17.1 Hz, 2H), 6.75 (s, 1H), 6.63 (s, 1H), 6.47 (d, *J* = 11.6 Hz, 1H), 6.26 – 6.14 (m, 1H), 4.28 (s, 1H), 4.15 (s, 1H), 3.76 (s, 3H), 3.74 (s, 2H), 3.67 (s, 3H), 2.98 (s, 2H); HRMS (ESI): found 484.1174 (C₂₃H₂₂N₃O₇S. [M+H]⁺ requires 484.1173); HPLC (85:15 methanol:water): t_R= 4.23 min, 96.6%.

N-(1-(3-methoxyphenyl) indolin-4-yl)-*N*-((4- methoxyphenyl) sulfonyl) glycine (11c). 11c was synthesized according to the procedure of 11a, white solid, yield 74%; mp: 142-144 °C. ¹H NMR (300 MHz, DMSO-*d*₆) δ 12.80 (s, 1H), 7.61 (s, 2H), 7.29 – 7.21 (m, 1H), 7.10 (s, 2H), 7.00 (d, *J* = 18.0 Hz, 2H), 6.84 (s, 1H), 6.73 (s, 1H), 6.55 (s, 1H), 6.25 (s, 1H), 4.25 (s, 1H), 3.86 (s, 3H), 3.84 (s, 1H), 3.76 (s, 3H), 3.05 (s, 2H); HRMS (ESI): found 469.1427 (C₂₄H₂₅N₂O₆S. [M+H]⁺ requires 469.1428); HPLC (85:15 methanol:water): t_R= 4.23 min, 97.9%. *N*-((4-acetamidophenyl) sulfonyl)-*N*-(1-(3-methoxyphenyl) indolin-4-yl) glycine (11d). 11d was synthesized according to the procedure of 11a, white solid, yield 79%; mp: 122-124 °C. ¹H NMR (300 MHz, DMSO-*d*₆) δ 12.73 (s, 2H), 10.30 (s, 1H), 7.68 (d, *J* = 9.1 Hz, 2H), 7.52 (d, *J* = 9.3 Hz, 2H), 7.20 – 7.12 (m, 1H), 6.91 (d, *J* = 11.6 Hz, 2H), 6.70 (s, 1H), 6.63 (s, 1H), 6.46 (d, *J* = 9.4 Hz, 1H), 6.16 (d, *J* = 8.7 Hz, 1H), 4.16 (s, 2H), 3.77 (s, 2H), 3.67 (s, 3H), 2.97 (d, *J* = 2.7 Hz, 2H), 2.00 (s, 3H); HRMS (ESI): found 496.1552 (C₂₅H₂₆N₃O₆S. [M+H]⁺ requires 496.1531); HPLC (85:15 methanol:water): t_R= 3.97 min, 98.5%.

N-(1-(3-methoxyphenyl) indolin-4-yl)-*N*-tosyl glycine (11e). 11e was synthesized according to the procedure of 11a, white solid, yield 80%; mp: 120-122 °C. ¹H NMR (300 MHz, DMSO-*d*₆) δ 12.82 (s, 1H), 7.71 (s, 2H), 7.28 – 7.21 (m, 1H), 7.12 (s, 2H), 7.01 (d, *J* = 16.0 Hz, 2H), 6.85 (s, 1H), 6.71 (s, 1H), 6.56 (s, 1H), 6.24 (s, 1H), 4.24 (s, 1H), 3.82 (s, 3H), 3.80 (s, 1H), 3.04 (s, 2H), 2.36 (s, 3H); HRMS (ESI): found 453.1431 (C₂₄H₂₅N₂O₅S. [M+H]⁺ requires 453.1415); HPLC (85:15 methanol:water): t_R= 4.25 min, 98.7%.

N-((4-fluorophenyl) sulfonyl)-*N*-(1-(3-methoxyphenyl) indolin-4-yl) glycine (11f). 11f was synthesized according to the procedure of 11a, white solid, yield 72%; mp: 151-153 °C. ¹H NMR (300 MHz, DMSO-*d*₆) δ 12.73 (s, 1H), 8.36 (d, *J* = 10.3 Hz, 1H), 7.85 (d, *J* = 9.0 Hz, 1H), 7.63 (d, *J* = 10.7 Hz, 1H), 7.21 – 7.11 (m, 1H), 7.01 (d, *J* = 8.7 Hz, 1H), 6.92 (d, *J* = 15.1 Hz, 2H), 6.77 (s, 1H), 6.61 (s, 1H), 6.45 (d, *J* = 11.6 Hz, 1H), 6.27 – 6.16 (m, 1H), 4.27 (s, 1H), 4.14 (s, 1H), 3.72 (s, 3H), 3.72 (s, 2H), 3.66 (s, 3H), 2.99 (s, 2H); HRMS (ESI): found 457.1278 (C₂₃H₂₂FN₂O₅S. [M+H]⁺ requires 457.1271); HPLC (85:15 methanol:water): t_R= 4.11 min, 95.4%.

N-(mesitylsulfonyl)-*N*-(1-(3-methoxyphenyl)-1H-indol-4-yl) glycine (12). 12 was synthesized according to the procedure of 11a, white solid, yield 73%; mp: 186-188 °C. ¹H NMR (300 MHz, DMSO-*d*₆) δ 12.80 (s, 1H), 7.64 (d, *J* = 3.3 Hz, 1H), 7.56 (p, *J* = 3.9 Hz, 1H), 7.48 (d, *J* = 8.1 Hz, 1H), 7.13 (d, *J* = 13.1 Hz, 3H), 7.09 (t, *J* = 2.2 Hz, 1H), 6.99 (s, 3H), 6.55 (d, *J* = 3.6 Hz, 1H), 4.51 (s, 2H), 3.83 (s, 3H), 2.36 (s, 6H), 2.22 (s, 3H); HRMS (ESI): found 479.1641 (C₂₆H₂₇N₂O₅S. [M+H]⁺ requires 479.1635); HPLC (85:15 methanol:water): t_R= 4.26 min, 97.6%.

N-(mesitylsulfonyl)-N-(1-(3-methoxyphenyl)-1,2,3,4-tetrahydroquinolin-5-yl) glycine (13). 13 was synthesized according to the procedure of 11a, white solid, yield 76%; mp: 149-151 °C. ¹H NMR (300 MHz, DMSO-*d*₆) δ 12.82 (s, 1H), 7.28 (t, J = 8.2 Hz, 1H), 7.16 – 7.06 (m, 4H), 6.82 – 6.78 (m, 1H), 6.74 – 6.69 (m, 1H), 6.66 (d, J = 2.3 Hz, 1H), 6.54 (s, 1H), 4.42 (s, 2H), 3.75 (s, 3H), 3.70 (s, 2H), 2.70 (d, J = 8.3 Hz, 2H), 2.34 (d, J = 9.3 Hz, 6H), 2.22 (s, 3H), 2.10 – 2.00 (m, 2H); HRMS (ESI): found 495.1993 (C₂₇H₃₁N₂O₅S. [M+H]⁺ requires 495.1991); HPLC (85:15 methanol:water): t_R= 4.11 min, 96.5%.

N-(mesitylsulfonyl)-*N*-(1-(3-methoxybenzoyl) indolin-4-yl) glycine (14a). 14a was synthesized according to the procedure of 11a, white solid, yield 62%; mp: 162-164 °C. ¹H NMR (300 MHz, DMSO-*d*₆) δ 12.87 (s, 1H), 7.57 – 7.34 (m, 2H), 7.21 – 7.04 (m, 4H), 7.04 – 6.96 (m, 3H), 4.39 (s, 2H), 3.84 (t, *J* = 8.2 Hz, 2H), 3.80 (s, 3H), 2.85 (s, 2H), 2.30 (s, 6H), 2.26 (s, 3H); HRMS (ESI): found 509.1738 (C₂₇H₂₉N₂O₆S. [M+H]⁺ requires 509.1740); HPLC (85:15 methanol:water): t_R= 4.02 min, 96.2%.

N-(mesitylsulfonyl)-*N*-(1-((4-methoxyphenyl) sulfonyl) indolin-4-yl) glycine (14b). 14b was synthesized according to the procedure of 11a, white solid, yield 62%; mp: 132-134 °C. ¹H NMR (300 MHz, DMSO-*d*₆) δ 12.82 (s, 1H), 7.60 – 7.51 (m, 2H), 7.20 – 7.05 (m, 4H), 7.01 – 6.94 (m, 3H), 4.42 (s, 2H), 3.82 (t, *J* = 8.2 Hz, 2H), 3.80 (s, 3H), 2.84 (s, 2H), 2.32 (s, 6H), 2.24 (s, 3H); HRMS (ESI): found 545.1348 (C₂₆H₂₉N₂O₇S₂. [M+H]⁺ requires 545.1350); HPLC (85:15 methanol:water): t_R= 3.89 min, 98.2%.

N-(mesitylsulfonyl)-*N*-(1-(4-methoxybenzyl) indolin-4-yl) glycine (14d). 14d was synthesized according to the procedure of 11a, white solid, yield 72%; mp: 161-163 °C. ¹H NMR (300 MHz, DMSO- d_6) δ 7.17 (d, *J* = 8.2 Hz, 2H), 6.90 (s, 2H), 6.86 (dd, *J* = 8.2, 3.8 Hz, 3H), 6.51 (dd, *J* = 7.9, 5.9 Hz, 2H), 4.12 (s, 2H), 4.06 (s, 2H), 3.72 (s, 3H), 2.93 (t, *J* = 8.2 Hz, 2H), 2.27 (s, 6H), 2.20 (s, 3H) ; HRMS (ESI): found 495.1938 (C₂₇H₃₁N₂O₅S. [M+H]⁺ requires 495.1947); HPLC (85:15 methanol:water): t_R= 4.12 min, 97.4%.

N-(mesitylsulfonyl)-*N*-(1-(4-methylbenzyl) indolin-4-yl) glycine (14e). 14e was synthesized according to the procedure of 11a, white solid, yield 77%; mp: 162-164 °C. ¹H NMR (300 MHz, DMSO-*d*₆) δ 12.80 (s, 1H), 7.16 (d, *J* = 3.4 Hz, 1H), 7.14 – 7.09 (m, 3H), 6.95 (d, *J* = 10.3 Hz, 3H), 6.56 (td, *J* = 8.8, 7.4, 4.5 Hz, 2H), 4.35 (d, *J* = 13.8 Hz, 2H), 4.17 (d, *J* = 5.5 Hz, 2H), 2.98 (q, *J* = 8.3, 6.7 Hz, 2H), 2.27 (p, *J* = 8.7, 8.0 Hz, 10H), 2.20 (s, 3H); HRMS (ESI): found 479.1999 (C₂₇H₃₁N₂O₄S. [M+H]⁺ requires 479.1999); HPLC (85:15 methanol:water): t_R= 4.21 min, 96.1%.

N-(mesitylsulfonyl)-*N*-(1-(4-(trifluoromethyl) benzyl) indolin-4-yl) glycine (14f). 14f was synthesized according to the procedure of **11a**, white solid, yield 80%; mp: 181-183 °C. ¹H NMR

(300 MHz, DMSO-*d*₆) δ 12.75 (s, 1H), 7.70 (s, 3H), 7.49 (s, 2H), 6.94 (s, 3H), 6.61 – 6.51 (m, 2H),
4.71 (d, *J* = 4.0 Hz, 0H), 4.49 (s, 1H), 4.34 (s, 3H), 3.06 (s, 2H), 2.37 (d, *J* = 4.1 Hz, 1H), 2.28 (s,
6H), 2.23 (s, 3H); HRMS (ESI): found 533.1713 (C₂₇H₂₈F₃N₂O₄S. [M+H]⁺ requires 533.1716);
HPLC (85:15 methanol:water): t_R= 4.17 min, 96.2%.

N-(1-(4-bromobenzyl) indolin-4-yl)-*N*-(mesitylsulfonyl) glycine (14g). 14g was synthesized according to the procedure of 11a, white solid, yield 74%; mp: 153-155 °C. ¹H NMR (300 MHz, DMSO-*d*₆) δ 12.78 (s, 1H), 7.55 (s, 2H), 7.24 (s, 2H), 6.95 (s, 4H), 6.55 (d, *J* = 3.8 Hz, 1H), 4.56 (s, 1H), 4.33 (s, 2H), 4.20 (s, 2H), 3.00 (s, 2H), 2.37 (s, 2H), 2.27 (s, 6H), 2.22 (s, 3H) ; HRMS (ESI): found 543.0929 (C₂₆H₂₈BrN₂O₄S. [M+H]⁺ requires 543.0947); HPLC (85:15 methanol:water): t_R= 4.12 min, 97.8%.

N-(1-(4-chlorobenzyl) indolin-4-yl)-*N*-(mesitylsulfonyl) glycine (14h). 14h was synthesized according to the procedure of 11a, white solid, yield 75%; mp: 145-147 °C. ¹H NMR (300 MHz, DMSO-*d*₆) δ 12.81 (s, 1H), 7.31 (d, *J* = 7.0 Hz, 2H), 7.24 (d, *J* = 8.7 Hz, 2H), 6.93 (d, *J* = 8.1 Hz, 3H), 6.55 (s, 2H), 4.34 (s, 2H), 4.22 (s, 2H), 3.05 – 2.94 (m, 2H), 2.44 (d, *J* = 8.9 Hz, 2H), 2.26 (s, 6H), 2.21 (s, 3H); HRMS (ESI): found 499.1453 (C₂₆H₂₈ClN₂O₄S. [M+H]⁺ requires 499.1452); HPLC (85:15 methanol:water): t_R= 4.11 min, 95.3%.

N-(mesitylsulfonyl)-*N*-(1-(2-methoxybenzyl)indolin-4-yl)glycine (14i). 14i was synthesized according to the procedure of 11a, white solid, yield 72%; mp: 186-188 °C. ¹H NMR (300 MHz, DMSO-*d*₆) δ 12.81 (s, 1H), 7.21 (d, *J* = 7.8 Hz, 1H), 6.93 (d, *J* = 7.7 Hz, 3H), 6.84 - 6.77 (m, 3H), 6.55 (t, *J* = 8.2 Hz, 2H), 4.35 (s, 2H), 4.21 (s, 2H), 3.72 (s, 3H), 3.69 (s, 1H), 2.47 (d, *J* = 6.3 Hz,

2H), 2.26 (s, 6H), 2.20 (s, 3H); HRMS (ESI): found 495.1937 (C₂₇H₃₁N₂O₅S. [M+H]⁺ requires 495.1948); HPLC (85:15 methanol:water): t_R= 4.18 min, 97.2%.

N-(1-benzylindolin-4-yl)-*N*-(mesitylsulfonyl) glycine (14j). 14j was synthesized according to the procedure of 11a, white solid, yield 70%; mp: 166-168 °C. ¹H NMR (300 MHz, DMSO-*d*₆) δ 12.81 (s, 1H), 7.31 (d, *J* = 7.0 Hz, 3H), 7.24 (d, *J* = 8.7 Hz, 3H), 6.93 (d, *J* = 8.1 Hz, 3H), 6.55 (s, 2H), 4.34 (s, 2H), 3.06 – 2.92 (m, 2H), 2.26 (s, 6H), 2.21 (s, 3H); HRMS (ESI): found 495.1834 (C₂₆H₂₉N₂O₄S. [M+H]⁺ requires 465.1827); HPLC (85:15 methanol:water): t_R= 4.30 min, 98.8%.

N-(mesitylsulfonyl)-*N*-(1-(3-methylbenzyl) indolin-4-yl) glycine (14k). 14k was synthesized according to the procedure of 11a, white solid, yield 71%; mp: 125-127 °C. ¹H NMR (300 MHz, DMSO- d_6) δ 12.83 (s, 1H), 7.24 (d, *J* = 7.9 Hz, 1H), 6.95 (d, *J* = 7.3 Hz, 3H), 6.83 – 6.76 (m, 3H), 6.53 (t, *J* = 8.0 Hz, 2H), 4.32 (s, 2H), 4.21 (s, 2H), 3.74 (s, 3H), 2.48 (d, *J* = 6.3 Hz, 2H), 2.26 (s, 6H), 2.22 (s, 3H), 2.01 (s, 3H); HRMS (ESI): found 479.1999 (C₂₇H₃₁N₂O4S. [M+H]⁺ requires 479.1999); HPLC (85:15 methanol:water): t_R= 4.31 min, 97.3%.

N-(mesitylsulfonyl)-*N*-(1-(3-(trifluoromethyl) benzyl) indolin-4-yl) glycine (14l). 14l was synthesized according to the procedure of 11a, white solid, yield 76%; mp: 173-175 °C. ¹H NMR (300 MHz, DMSO-*d*₆) δ 12.81 (s, 1H), 7.21 (d, *J* = 7.7 Hz, 2H), 6.91 (d, *J* = 7.2 Hz, 2H), 6.81 – 6.72 (m, 4H), 6.52 (t, *J* = 8.4 Hz, 3H), 4.34 (s, 2H), 4.21 (s, 2H), 3.75 (s, 3H), 2.46 (d, *J* = 6.5 Hz, 2H), 2.28 (s, 6H), 2.21 (s, 3H), 2.01 (s, 3H); HRMS (ESI): found 533.1713 (C₂₇H₂₈F₃N₂O₄S. [M+H]⁺ requires 533.1716); HPLC (85:15 methanol:water): t_R= 4.24 min, 97.9%.

N-(1-(3-bromobenzyl) indolin-4-yl)-*N*-(mesitylsulfonyl) glycine (14m). 14m was synthesized according to the procedure of 11a, white solid, yield 73%; mp: 136-138 °C. ¹H NMR (300 MHz, DMSO-*d*₆) δ 12.80 (s, 1H), 7.65 (s, 2H), 7.25 (s, 2H), 6.98 (s, 3H), 6.56 (d, *J* = 3.8 Hz, 2H), 4.55 (s, 1H), 4.32 (s, 2H), 4.21 (s, 2H), 3.01 (s, 2H), 2.38 (s, 2H), 2.26 (s, 6H), 2.20 (s, 3H) ; HRMS (ESI): found 543.0929 (C₂₆H₂₈BrN₂O₄S. [M+H]⁺ requires 543.0947); HPLC (85:15 methanol:water): t_R= 4.14 min, 95.6%.

N-(1-(3-chlorobenzyl) indolin-4-yl)-*N*-(mesitylsulfonyl) glycine (14n). 14n was synthesized according to the procedure of 11a, white solid, yield 72%; mp: 147-149 °C. ¹H NMR (300 MHz, DMSO-*d*₆) δ 12.86 (s, 1H), 7.41 (s, 1H), 6.95 (s, 3H), 6.87 (s, 3H), 6.56 (s, 2H), 4.34 (s, 2H), 4.12 (s, 2H), 3.04 (s, 2H), 2.23 (s, 8H), 2.19 (s, 3H); HRMS (ESI): found 499.1453 (C₂₆H₂₈ClN₂O₄S. [M+H]⁺ requires 499.1452); HPLC (85:15 methanol:water): t_R= 4.09 min, 96.2%.

N-(1-(3-cyanobenzyl) indolin-4-yl)-*N*-(mesitylsulfonyl) glycine (14o). 14o was synthesized according to the procedure of 11a, white solid, yield 72%; mp: 149-151 °C. ¹H NMR (300 MHz, DMSO-*d*₆) δ 12.92 (s, 1H), 7.41 (s, 2H), 7.25 (s, 2H), 6.87 (s, 3H), 6.57 (s, 2H), 4.32 (s, 2H), 4.12 (s, 2H), 3.04 (s, 2H), 2.32 (s, 2H), 2.23 (s, 6H), 2.19 (s, 3H); HRMS (ESI): found 490.1753 (C₂₇H₂₈N₃O₄S. [M+H]⁺ requires 490.1752); HPLC (85:15 methanol:water): t_R= 4.04 min, 97.2%.

N-(1-([1,1'-biphenyl]-3-ylmethyl) indolin-4-yl)-*N*-(mesitylsulfonyl) glycine (14p). 14p was synthesized according to the procedure of 11a, white solid, yield 73%; mp: 147-149 °C. ¹H NMR (300 MHz, DMSO-*d*₆) δ 12.82 (s, 1H), 7.81 (s, 2H), 7.61 (d, *J* = 7.9 Hz, 2H), 7.59 (d, *J* = 7.4 Hz, 3H), 6.82 - 6.71 (m, 4H), 6.59 (t, *J* = 8.4 Hz, 2H), 6.52 (s, 1H), 4.33 (s, 2H), 4.12 (s, 2H), 3.05 (s,

2H), 2.35 (s, 2H), 2.21 (s, 6H), 2.18 (s, 3H); HRMS (ESI): found 541.2152 (C₃₂H₃₃N₂O₄S. [M+H]⁺ requires 541.2155); HPLC (85:15 methanol:water): t_R= 4.32 min, 95.7%.

N-(1-(3-theoxybenzyl) indolin-4-yl)-*N*-(mesitylsulfonyl) glycine (14q). 14q was synthesized according to the procedure of 11a, white solid, yield 62%; mp: 121-123 °C. ¹H NMR (300 MHz, DMSO-*d*₆) δ 12.81 (s, 1H), 7.25 (d, *J* = 7.1 Hz, 1H), 6.99 (d, *J* = 7.9 Hz, 2H), 6.87 – 6.79 (m, 4H), 6.54 (t, *J* = 8.4 Hz, 2H), 4.35 (s, 2H), 4.21 (s, 2H), 4.02 (s, 2H), 3.71 (s, 3H), 3.69 (s, 1H), 2.46 (d, *J* = 6.3 Hz, 2H), 2.27 (s, 6H), 2.22 (s, 3H), 1.54 (s, 3H); HRMS (ESI): found 509.2152 (C₂₈H₃₃N₂O₅S. [M+H]⁺ requires 509.2154); HPLC (85:15 methanol:water): t_R= 4.20 min, 96.5%.

N-(1-(3-isopropoxybenzyl) indolin-4-yl)-*N*-(mesitylsulfonyl) glycine (14r). 14r was synthesized according to the procedure of 11a, white solid, yield 64%; mp: 124-126 °C. ¹H NMR (300 MHz, DMSO-*d*₆) δ 12.82 (s, 1H), 7.27 (d, *J* = 6.9 Hz, 1H), 6.99 (d, *J* = 7.1 Hz, 1H), 6.89 – 6.77 (m, 5H), 6.53 (t, *J* = 8.2 Hz, 2H), 4.36 (s, 2H), 4.21 (s, 2H), 4.11 (s, 1H), 3.71 (s, 1H), 3.69 (s, 1H), 2.46 (d, *J* = 6.3 Hz, 2H), 2.27 (s, 6H), 2.22 (s, 3H), 1.46 (s, 6H); HRMS (ESI): found 525.2239 (C₂₉H₃₅N₂O₅S. [M+H]⁺ requires 525.2247); HPLC (85:15 methanol:water): t_R= 4.18 min, 96.2%.

N-(mesitylsulfonyl)-*N*-(1-(3-nitrobenzyl) indolin-4-yl) glycine (14s). 14s was synthesized according to the procedure of 11a, white solid, yield 73%; mp: 142-144 °C. ¹H NMR (300 MHz, DMSO-*d*₆) δ 12.90 (s, 1H), 8.14 (s, 2H), 7.74 (d, *J* = 7.8 Hz, 1H), 7.65 (t, *J* = 8.1 Hz, 1H), 6.96 (d, *J* = 7.7 Hz, 3H), 6.59 (t, *J* = 7.8 Hz, 2H), 4.37 (d, *J* = 12.3 Hz, 4H), 3.06 (t, *J* = 8.3 Hz, 2H), 2.39

(s, 2H), 2.24 (d, J = 17.6 Hz, 9H); HRMS (ESI): found 510.1692 (C₂₆H₂₈N₃O₄S. [M+H]⁺ requires 510.1693); HPLC (85:15 methanol:water): t_R= 4.17 min, 96.8%.

N-(1-(3,5-dimethylbenzyl) indolin-4-yl)-*N*-(mesitylsulfonyl) glycine (14t). 14t was synthesized according to the procedure of 11a, white solid, yield 72%; mp: 146-148 °C. ¹H NMR (300 MHz, DMSO-*d*₆) δ 12.82 (s, 1H), 7.92 – 7.82 (m, 2H), 7.56 – 7.39 (m, 2H), 6.95 (d, *J* = 9.3 Hz, 2H), 6.58 (t, *J* = 7.3 Hz, 2H), 4.32 (d, *J* = 12.7 Hz, 4H), 3.02 (t, *J* = 8.3 Hz, 2H), 2.46 (d, *J* = 9.3 Hz, 1H), 2.35 (s, 1H), 2.26 (s, 6H), 2.21 (s, 6H), 2.13 (s, 3H); HRMS (ESI): found 515.1989 (C₂₈H₃₂N₂NaO₄S. [M+Na]⁺ requires 515.1975); HPLC (85:15 methanol:water): t_R= 4.21 min, 96.2%.

N-(1-(2,3-dimethylbenzyl) indolin-4-yl)-*N*-(mesitylsulfonyl) glycine (14u). 14u was synthesized according to the procedure of 11a, white solid, yield 62%; mp: 151-153 °C. ¹H NMR (300 MHz, DMSO-*d*₆) δ 12.80 (s, 1H), 7.48 (d, *J* = 8.1 Hz, 3H), 7.33 (d, *J* = 7.2 Hz, 2H), 7.03 (d, *J* = 7.1 Hz, 2H), 6.69 (dd, *J* = 12.5, 7.7 Hz, 1H), 4.61 (s, 2H), 4.32 (s, 2H), 2.97 (t, *J* = 8.1 Hz, 2H), 2.34 (s, 6H), 2.19 (s, 3H), 2.03 (s, 6H); HRMS (ESI): found 515.1989 (C₂₈H₃₂N₂NaO4S. [M+Na]⁺ requires 515.1975); HPLC (85:15 methanol:water): t_R= 4.26 min, 97.3%.

N-(1-(3,5-dimethoxybenzyl) indolin-4-yl)-*N*-(mesitylsulfonyl) glycine (14v). 14v was synthesized according to the procedure of 11a, white solid, yield 60%; mp: 138-140 °C. ¹H NMR (300 MHz, DMSO-*d*₆) δ 7.02 (s, 1H), 6.94 (s, 2H), 6.54 (dd, *J* = 12.1, 8.0 Hz, 2H), 6.40 (s, 2H), 6.21 (t, *J* = 2.1 Hz, 1H), 4.47 (s, 2H), 4.15 (s, 2H), 3.92 (s, 3H); 3.81 (s, 3H); 3.70 (s, 3H), 3.02 (t, *J* = 8.4 Hz, 2H), 2.46 (d, *J* = 8.3 Hz, 1H), 2.37 (s, 1H), 2.36 (s, 6H), 2.16 (s, 3H); HRMS (ESI):

found 525.2049 (C₂₈H₃₃N₂O₆S. [M+H]⁺ requires 525.2053); HPLC (85:15 methanol:water): t_R= 4.23 min, 97.1%.

N-(1-(3-fluoro-5-methoxybenzyl)indolin-4-yl)-*N*-(mesitylsulfonyl)glycine (14w). 14w was synthesized according to the procedure of 11a, white solid, yield 64%; mp: 134-136 °C. ¹H NMR (300 MHz, DMSO-*d*₆) δ 12.80 (s, 1H), 7.99 (s, 1H), 7.22 (s, 2H), 7.10 (s, 1H), 6.65 (dd, *J* = 10.1, 8.2 Hz, 2H), 6.42 (s, 1H), 6.21 (t, *J* = 2.1 Hz, 1H), 4.52 (s, 2H), 4.12 (s, 2H), 3.82 (s, 3H), 3.02 (t, *J* = 8.6 Hz, 2H), 2.47 (d, *J* = 8.5 Hz, 1H), 2.36 (s, 1H), 2.32 (s, 6H), 2.14 (s, 3H); HRMS (ESI): found 513.1845 (C₂₇H₃₀FN₂O₅S. [M+H]⁺ requires 513.1853); HPLC (85:15 methanol:water): t_R= 4.15 min, 98.1%.

N-(1-(3,4-dimethoxybenzyl) indolin-4-yl)-*N*-(mesitylsulfonyl) glycine (14x). 14x was synthesized according to the procedure of 11a, white solid, yield 64%; mp: 148-150 °C. ¹H NMR (300 MHz, DMSO-*d*₆) δ 12.84 (s, 1H), 7.52 (s, 1H), 7.34 (s, 2H), 6.55 (dd, *J* = 12.4, 8.7 Hz, 2H), 6.50 (s, 2H), 6.21 (t, *J* = 2.2 Hz, 1H), 4.45 (s, 2H), 4.28 (s, 2H), 3.82 (s, 3H); 3.71 (s, 3H), 3.05 (t, *J* = 8.6 Hz, 2H), 2.45 (d, *J* = 8.3 Hz, 1H), 2.37 (s, 1H), 2.34 (s, 6H), 2.14 (s, 3H); HRMS (ESI): found 525.2059 (C₂₈H₃₃N₂O₆S. [M+H]⁺ requires 525.2053); HPLC (85:15 methanol:water): t_R= 4.15 min, 98.6%.

N-(1-(3-bromo-5-methoxybenzyl) indolin-4-yl)-*N*-(mesitylsulfonyl) glycine (14y). 14y was synthesized according to the procedure of 11a, white solid, yield 70%; mp: 151-153 °C. ¹H NMR (300 MHz, DMSO-*d*₆) δ 12.80 (s, 1H), 7.52 (d, *J* = 8.6 Hz, 1H), 6.93 (s, 2H), 6.91 – 6.80 (m, 3H), 6.54 (d, *J* = 8.1 Hz, 1H), 6.39 (d, *J* = 7.8 Hz, 1H), 4.19 (s, 2H), 4.06 (s, 2H), 3.70 (s, 3H), 3.09 (t,

J = 8.4 Hz, 2H), 2.64 (d, J = 8.3 Hz, 1H), 2.37 (s, 1H), 2.34 (s, 6H), 2.14 (s, 3H); HRMS (ESI): found 573.1055 (C₂₈H₃₃N₂O₆S. [M+H]⁺ requires 573.1046); HPLC (85:15 methanol:water): t_R= 4.04 min, 96.5%.

N-(mesitylsulfonyl)-*N*-(1-(3-methoxy-5-methylbenzyl) indolin-4-yl) glycine (14z). 14z was synthesized according to the procedure of 11a, white solid, yield 67%; mp: 162-164 °C. ¹H NMR (300 MHz, DMSO-*d*₆) δ 12.72 (s, 1H), 6.90 (d, *J* = 13.3 Hz, 1H), 6.85 (s, 2H), 6.54 (d, *J* = 14.9 Hz, 3H), 6.44 (t, *J* = 7.8 Hz, 2H), 4.30 (d, *J* = 32.6 Hz, 2H), 4.05 (s, 2H), 3.61 (d, *J* = 3.8 Hz, 3H), 2.92 (t, *J* = 8.2 Hz, 2H), 2.24 (d, *J* = 11.1 Hz, 2H), 2.17 (d, *J* = 6.0 Hz, 9H), 2.11 (d, *J* = 11.1 Hz, 3H); HRMS (ESI): found 509.2045 (C₂₈H₃₃N₂O₅S. [M+H]⁺ requires 509.2037); HPLC (85:15 methanol:water): t_R= 4.20 min, 95.3%.

2-(4-((*N*-(carboxymethyl)-2,4,6-trimethylphenyl) sulfonamido) indolin-1-yl)-2-(3methoxyphenyl) acetic acid (15). To a solution of LiOH (1.0 g) in MeOH/H₂O (15/5 mL) was added 54 (560 mg, 1.0 mmol). The reaction mixture was stirring at room temperature overnight, then quenched with 2 M hydrochloric acid to pH 2 and diluted with 50 mL of water. Precipitate removed by filtration and washed with 5 × 10 mL water, then dried overnight in a vacuum desiccator, yielding 15 as a white solid, yield 76%; mp: 162-164 °C. ¹H NMR (300 MHz, DMSOd₆) δ 12.74 (s, 2H), 7.43 (d, *J* = 2.9 Hz, 1H), 7.20 (d, *J* = 8.3 Hz, 1H), 6.88 (d, *J* = 9.4 Hz, 2H), 6.83 (d, *J* = 4.1 Hz, 2H), 6.77 (d, *J* = 1.9 Hz, 1H), 6.46 (t, *J* = 7.6 Hz, 2H), 5.25 (s, 1H), 4.25 (d, *J* = 10.4 Hz, 2H), 3.65 (s, 3H), 3.29 (t, *J* = 8.7 Hz, 1H), 3.20 (s, 1H), 2.15 (s, 6H), 2.11 (s, 3H); HRMS (ESI): found 538.1871 (C₂₈H₃₁N₂O₇S, [M+H]⁺, requires 538.1875); HPLC (85:15 methanol:water with 1‰ TFA): $t_R = 5.01 \text{ min}$, 96.6%.

N-(mesitylsulfonyl)-*N*-(1-(1-(3-methoxyphenyl)-2-(methylsulfonamido)-2-oxoethyl) indolin-4-yl) glycine (16b). 16b was synthesized according to the procedure of 15, white solid, yield 68%; mp: 117-119 °C. ¹H NMR (300 MHz, DMSO-*d*₆) δ 12.88 (s, 2H), 8.03 (s, 1H), 7.82 (d, J = 1.8 Hz, 1H), 7.49 (t, J = 7.9 Hz, 1H), 6.99 (d, J = 7.2 Hz, 1H), 6.91 (s, 1H), 6.74 (d, J = 10.5Hz, 2H), 6.57 (d, J = 8.0 Hz, 1H), 6.25 (d, J = 7.7 Hz, 1H), 5.21 (s, 1H), 4.28 (s, 2H), 3.73 (s, 3H), 3.26 (d, J = 8.5 Hz, 1H), 2.94 (s, 3H), 2.67 (d, J = 8.2 Hz, 1H), 2.41 (s, 2H), 2.21 (s, 9H); HRMS (ESI): found 616.1735 (C₂₉H₃₄N₃O₈S₂. [M+H]⁺ requires 616.1746); HPLC (85:15 methanol:water with 1‰ TFA): t_R = 5.01 min, 95.8%.

N-(mesitylsulfonyl)-*N*-(1-(1-(3-methoxyphenyl)-2-oxo-2-((trifluoromethyl) sulfonamido) ethyl) indolin-4-yl) glycine (16c). 16c was synthesized according to the procedure of 15, white solid, yield 64%; mp: 105-107 °C. ¹H NMR (300 MHz, DMSO-*d*₆) 12.91 (s, 2H), δ 8.05 (s, 1H), 7.78 (d, *J* = 1.9 Hz, 1H), 7.29 (t, *J* = 7.9 Hz, 1H), 6.95 (d, *J* = 7.8 Hz, 1H), 6.90 (s, 1H), 6.70 (d, *J* = 10.3 Hz, 2H), 6.56 (d, *J* = 8.0 Hz, 1H), 6.23 (d, *J* = 7.9 Hz, 1H), 5.20 (s, 1H), 4.29 (s, 2H), 3.72 (s, 3H), 3.25 (d, *J* = 8.5 Hz, 1H), 2.66 (d, *J* = 8.2 Hz, 1H), 2.40 (s, 2H), 2.21 (s, 9H); HRMS (ESI): found 670.1422 (C₂₉H₃₁F₃N₃O₈S₂. [M+H]⁺ requires 670.1412); HPLC (85:15 methanol:water with 1‰ TFA): t_R = 5.08 min, 96.8%.

N-(mesitylsulfonyl)-*N*-(1-(1-(3-methoxyphenyl)-2-oxo-2-(pyridine-3-sulfonamido) ethyl) indolin-4-yl) glycine (16d). 16d was synthesized according to the procedure of 15, white solid, yield 70%; mp: 121-123 °C. ¹H NMR (300 MHz, DMSO-*d*₆) δ 12.82 (s, 2H), 8.90 (d, *J* = 4.1, 1.5 Hz, 1H), 8.42 (dd, *J* = 5.1, 1.4 Hz, 1H), 7.83 (d, *J* = 3.9 Hz, 1H), 7.27 (t, *J* = 8.3 Hz, 1H), 7.17 (t, *J* = 4.6 Hz, 1H), 6.91 (s, 3H), 6.67 (d, *J* = 6.3 Hz, 2H), 6.57 (d, *J* = 8.1 Hz, 1H), 6.15 (d, *J* = 7.7 Hz, 1H), 5.18 (s, 1H), 4.29 (s, 2H), 3.69 (s, 3H), 3.26 (d, *J* = 8.5 Hz, 1H), 2.69 - 2.60 (m, 1H), 2.24 (d, *J* = 6.4 Hz, 9H); HRMS (ESI): found 679.1879 (C₃₃H₃₅N₄O₈S₂. [M+H]⁺ requires 679.1890); HPLC (85:15 methanol:water with 1‰ TFA): t_R = 4.82 min, 98.3%.

N-(mesitylsulfonyl)-*N*-(1-(1-(3-methoxyphenyl)-2-oxo-2-(thiophene-2-sulfonamido) ethyl) indolin-4-yl) glycine (16e). 16e was synthesized according to the procedure of 15, white solid, yield 65%; mp: 98-100 °C. ¹H NMR (300 MHz, DMSO-*d*₆) δ 12.73 (s, 2H), 8.05 (dd, *J* = 5.1, 1.4 Hz, 1H), 7.75 (d, *J* = 3.7 Hz, 1H), 7.26 (t, *J* = 8.1 Hz, 1H), 7.18 (t, *J* = 4.4 Hz, 1H), 6.90 (s, 3H), 6.66 (d, *J* = 6.1 Hz, 2H), 6.55 (d, *J* = 8.1 Hz, 1H), 6.19 (d, *J* = 7.9 Hz, 1H), 5.17 (s, 1H), 4.28 (s, 2H), 3.68 (s, 3H), 3.25 (d, *J* = 8.3 Hz, 1H), 2.68 - 2.60 (m, 1H), 2.20 (d, *J* = 6.4 Hz, 9H); HRMS (ESI): found 706.1316 (C₃₂H₃₃N₃NaO₈S₃. [M+Na]⁺ requires 706.1322); HPLC (85:15 methanol:water with 1‰ TFA): t_R = 4.89 min, 97.2%.

N-(mesitylsulfonyl)-*N*-(1-(1-(3-methoxyphenyl)-2-((4-methoxyphenyl) sulfonamido)-2oxoethyl) indolin-4-yl) glycine (16f). 16f was synthesized according to the procedure of 15, white solid, yield 76%; mp: 112-114 °C. ¹H NMR (300 MHz, DMSO-*d*₆) δ 12.39 (s, 2H), 7.80 (dt, *J* = 9.5, 5.8 Hz, 2H), 7.25 (q, *J* = 7.5 Hz, 1H), 7.16 - 7.06 (m, 2H), 6.91 (s, 4H), 6.62 (s, 2H), 6.21 -6.10 (m, 1H), 5.15 (d, *J* = 7.6 Hz, 1H), 4.27 (d, *J* = 8.0 Hz, 2H), 3.87 - 3.79 (m, 3H), 3.25 (d, *J* = 8.6 Hz, 1H), 2.62 (s, 1H), 2.47 (s, 2H), 2.19 (d, *J* = 7.9 Hz, 9H); HRMS (ESI): found 708.2038 (C₃₅H₃₈N₃O₉S₂. [M+H]⁺ requires 708.2044); HPLC (85:15 methanol:water with 1‰ TFA): $t_R =$ 4.95 min, 99.0%.

N-(mesitylsulfonyl)-*N*-(1-(1-(3-methoxyphenyl)-2-((4-methylphenyl) sulfonamido)-2oxoethyl) indolin-4-yl) glycine (16g). 16g was synthesized according to the procedure of 15, white solid, yield 77%; mp: 106-108 °C. ¹H NMR (300 MHz, DMSO-*d*₆) δ 12.80 (s, 2H), 7.75 (s, 2H), 7.41 (s, 2H), 7.25 (d, *J* = 11.5 Hz, 2H), 6.92 (s, 4H), 6.64 (d, *J* = 11.5 Hz, 2H), 6.17 (d, *J* = 8.1 Hz, 1H), 5.16 (s, 1H), 4.28 (s, 2H), 3.79 (s, 3H), 3.13 (s, 2H), 2.63 (s, 2H), 2.39 (s, 3H), 2.22 (d, *J* = 8.0 Hz, 9H); HRMS (ESI): found 692.2097 (C₃₅H₃₈N₃O₈S₂. [M+H]⁺ requires 692.2094); HPLC (85:15 methanol:water with 1‰ TFA): t_R = 5.22 min, 96.8%.

N-(1-(2-((4-fluorophenyl) sulfonamido)-1-(3-methoxyphenyl)-2-oxoethyl) indolin-4-yl)-*N*-(mesitylsulfonyl) glycine (16h). 16h was synthesized according to the procedure of 15, white solid, yield 76%; mp: 102-104 °C. ¹H NMR (300 MHz, DMSO-*d*₆) δ 12.87 (s, 2H), 7.97 (d, *J* = 8.4 Hz, 2H), 7.78 (d, *J* = 8.2 Hz, 2H), 7.27 (t, *J* = 8.2 Hz, 1H), 6.99 (d, *J* = 9.2 Hz, 1H), 6.92 (s, 2H), 6.87 (d, *J* = 8.0 Hz, 1H), 6.69 (d, *J* = 7.6 Hz, 1H), 6.64 (s, 1H), 6.56 (d, *J* = 8.3 Hz, 1H), 6.18 (d, *J* = 7.8 Hz, 1H), 5.19 (s, 1H), 4.29 (s, 2H), 3.79 (s, 3H), 3.25 (d, *J* = 8.5 Hz, 1H), 2.64 (d, *J* = 7.8 Hz, 1H), 2.32 (d, *J* = 13.8 Hz, 2H), 2.20 (s, 9H); HRMS (ESI): found 696.1846 (C₃₄H₃₅FN₃O₈S₂. [M+H]⁺ requires 696.1844); HPLC (85:15 methanol:water with 1‰ TFA): t_R = 4.87 min, 97.8%.

N-(1-(2-((4-chlorophenyl) sulfonamido)-1-(3-methoxyphenyl)-2-oxoethyl) indolin-4-yl)-*N*-(mesitylsulfonyl) glycine (16i). 16i was synthesized according to the procedure of 15, white solid, yield 80%; mp: 105-107 °C. ¹H NMR (300 MHz, DMSO- d_6) δ 12.69 (s, 2H), 7.87 (d, *J* = 8.6 Hz, 2H), 7.70 (d, J = 8.4 Hz, 2H), 7.28 (t, J = 8.0 Hz, 1H), 6.95 (d, J = 9.0 Hz, 1H), 6.91 (s, 2H), 6.86 (d, J = 8.2 Hz, 1H), 6.69 (d, J = 7.4 Hz, 1H), 6.62 (s, 1H), 6.54 (d, J = 8.1 Hz, 1H), 6.18 (d, J = 7.8 Hz, 1H), 5.19 (s, 1H), 4.29 (s, 2H), 3.78 (s, 9H) 3.25 (d, J = 8.5 Hz, 1H), 2.64 (d, J = 7.8 Hz, 1H), 2.32 (d, J = 13.8 Hz, 2H), 2.20 (s, 9H); HRMS (ESI): found 712.1539 (C₃₄H₃₅ClN₃O₈S₂. [M+H]⁺ requires 712.1548); HPLC (85:15 methanol:water with 1‰ TFA): t_R = 4.91 min, 96.6%.

N-(1-(2-((4-bromophenyl) sulfonamido)-1-(3-methoxyphenyl)-2-oxoethyl) indolin-4-yl)-*N*-(mesitylsulfonyl) glycine (16j). 16j was synthesized according to the procedure of 15, white solid, yield 79%; mp: 108-110 °C. ¹H NMR (300 MHz, DMSO-*d*₆) δ 12.80 (s, 1H), 12.57 (s, 1H), 7.88 (d, *J* = 7.7 Hz, 2H), 7.73 (t, *J* = 7.3 Hz, 1H), 7.61 (t, *J* = 7.6 Hz, 2H), 7.25 (d, *J* = 8.1 Hz, 1H), 6.92 (d, *J* = 7.6 Hz, 3H), 6.66 (d, *J* = 5.0 Hz, 2H), 6.55 (d, *J* = 8.1 Hz, 1H), 6.18 (d, *J* = 7.8 Hz, 1H), 5.17 (s, 1H), 4.29 (s, 2H), 3.69 (s, 3H), 3.23 (d, *J* = 8.5 Hz, 1H), 2.61 (t, *J* = 8.0 Hz, 1H), 2.28 (d, *J* = 10.1 Hz, 2H), 2.21 (s, 9H); HRMS (ESI): found 756.1045 (C₃₄H₃₅BrN₃O₈S₂. [M+H]⁺ requires 756.1032); HPLC (85:15 methanol:water with 1‰ TFA): t_R = 4.88 min, 98.5%.

N-(mesitylsulfonyl)-*N*-(1-(1-(3-methoxyphenyl)-2-oxo-2-((4-(trifluoromethyl) phenyl) sulfonamido) ethyl) indolin-4-yl) glycine (16k). 16k was synthesized according to the procedure of 15, white solid, yield 74%; mp: 94-96 °C. ¹H NMR (300 MHz, DMSO-*d*₆) δ 12.91 (s, 2H), 8.08 (t, *J* = 6.8 Hz, 2H), 8.04 - 7.94 (m, 2H), 7.64 (s, 2H) 7.29 - 7.22 (m, 1H), 7.01 - 6.87 (m, 3H), 6.83 (d, *J* = 6.0 Hz, 1H), 6.67 (d, *J* = 7.0 Hz, 1H), 6.60 (s, 1H), 4.28 (d, *J* = 5.3 Hz, 2H), 3.73 - 3.62 (m, 3H), 3.25 (d, *J* = 8.7 Hz, 1H), 2.61 (s, 1H), 2.28 (d, *J* = 10.1 Hz, 2H), 2.31 - 2.08 (m, 9H); HRMS (ESI): found 768.1632 (C₃₅H₃₄F₃N₃NaO₈S₂. [M+Na]⁺ requires 768.1631); HPLC (85:15 methanol:water with 1‰ TFA): $t_R = 4.74 \text{ min}$, 98.1%.

N-(mesitylsulfonyl)-*N*-(1-(1-(3-methoxyphenyl)-2-((3-methylphenyl) sulfonamido)-2oxoethyl) indolin-4-yl) glycine (16l). 16l was synthesized according to the procedure of 15, white solid, yield 79%; mp: 100-102 °C. ¹H NMR (300 MHz, DMSO-*d*₆) δ 12.77 (s, 1H), 12.50 (s, 1H), 7.65 (d, *J* = 7.7 Hz, 1H), 7.61 (s, 1H), 7.52 (d, *J* = 7.6 Hz, 1H), 7.49 (d, *J* = 7.3 Hz, 1H), 7.26 (t, *J* = 8.2 Hz, 1H), 6.95 - 6.91 (m, 1H), 6.89 (s, 2H), 6.85 (d, *J* = 7.8 Hz, 1H), 6.69 - 6.62 (m, 2H), 6.54 (d, *J* = 8.1 Hz, 1H), 6.18 (d, *J* = 7.9 Hz, 1H), 5.15 (s, 1H), 4.27 (s, 2H), 3.68 (d, *J* = 4.8 Hz, 3H), 3.23 (d, *J* = 8.3 Hz, 1H), 2.62 (d, *J* = 7.9 Hz, 1H), 2.35 (s, 3H), 2.28 - 2.23 (m, 2H), 2.19 (d, *J* = 2.6 Hz, 9H); HRMS (ESI): found 692.2092 (C₃₅H₃₈N₃O₈S₂. [M+H]⁺ requires 692.2094); HPLC (85:15 methanol:water with 1‰ TFA): t_R = 5.16 min, 96.5%.

N-(mesitylsulfonyl)-*N*-(1-(1-(3-methoxyphenyl)-2-((2-methylphenyl) sulfonamido)-2oxoethyl) indolin-4-yl) glycine (16m). 16m was synthesized according to the procedure of 15, white solid, yield 71%; mp: 102-104 °C. ¹H NMR (300 MHz, DMSO-*d*₆) δ 12.63 (s, 2H), 7.95 (d, *J* = 8.0 Hz, 1H), 7.57 (d, *J* = 7.5 Hz, 1H), 7.42 (s, 1H), 7.36 (d, *J* = 7.5 Hz, 2H), 6.93 (s, 2H), 6.89 (s, 2H), 6.66 (s, 2H), 6.57 (d, *J* = 7.9 Hz, 1H), 6.26 (d, *J* = 7.9 Hz, 1H), 5.21 (s, 1H), 4.29 (s, 2H), 3.69 (s, 3H), 3.22 (d, *J* = 9.8 Hz, 2H), 2.28 (s, 2H), 2.20 (s, 9H), 2.03 (s, 3H); HRMS (ESI): found 714.1913 (C₃₅H₃₇N₃NaO₈S₂. [M+Na]⁺ requires 714.1914); HPLC (85:15 methanol:water with 1‰ TFA): t_R = 5.02 min, 98.5%. *N*-(mesitylsulfonyl)-*N*-(1-(1-(3-methoxyphenyl)-2-((2-methoxyphenyl) sulfonamido)-2oxoethyl) indolin-4-yl) glycine (16n). 16n was synthesized according to the procedure of 15, white solid, yield 69%; mp: 107-109 °C. ¹H NMR (300 MHz, DMSO-*d*₆) δ 12.79 (s, 2H), 7.82 (d, *J* = 7.7 Hz, 1H), 7.66 (t, *J* = 7.7 Hz, 1H), 7.29 (t, *J* = 7.8 Hz, 2H), 7.19 - 7.11 (m, 2H), 6.91 (d, *J* = 7.0 Hz, 3H), 6.73 - 6.66 (m, 2H), 6.57 (d, *J* = 8.1 Hz, 1H), 6.26 (d, *J* = 7.8 Hz, 1H), 5.22 (s, 1H), 4.29 (s, 2H), 3.70 (s, 3H), 3.68 (s, 3H), 3.65 (s, 2H), 3.21 (dd, *J* = 17.6, 8.3 Hz, 2H), 2.24 (s, 3H), 2.19 (s, 6H); HRMS (ESI): found 708.2042 (C₃₅H₃₈N₃O₉S₂. [M+H]⁺ requires 708.2044); HPLC (85:15 methanol:water with 1‰ TFA): t_R = 5.09 min, 98.8%.

N-(mesitylsulfonyl)-*N*-(1-(2-((2-(2-methoxyethoxy) phenyl) sulfonamido)-1-(3methoxyphenyl)-2-oxoethyl) indolin-4-yl) glycine (160). 160 was synthesized according to the procedure of 15, white solid, yield 65%; mp: 121-123 °C. ¹H NMR (300 MHz, DMSO-*d*6) δ 12.76 (s, 2H), 7.83 (dd, *J* = 7.8, 1.6 Hz, 1H), 7.64 (s, 1H), 7.28 (d, *J* = 7.4 Hz, 1H), 7.19 (d, *J* = 8.5 Hz, 1H), 7.11 (s, 1H), 6.95 (d, *J* = 8.3 Hz, 2H), 6.88 (s, 2H), 6.67 (d, *J* = 8.9 Hz, 2H), 6.56 (d, *J* = 8.0 Hz, 1H), 6.32 (d, *J* = 7.8 Hz, 1H), 5.26 (s, 1H), 4.28 (s, 2H), 3.88 – 3.81 (m, 2H), 3.71 (d, *J* = 10.1 Hz, 3H), 3.63 – 3.51 (m, 2H), 2.27 (d, *J* = 13.2 Hz, 2H), 2.19 (s, 9H), 1.34 (s, 3H); HRMS (ESI): found 722.2158 (C₃₆H₄₀N₃O₉S₂. [M+H]⁺ requires 722.2154); HPLC (85:15 methanol:water with 1‰ TFA): t_R = 5.05 min, 98.1%.

N-(1-(2-((2-ethylphenyl)sulfonamido)-1-(3-methoxyphenyl)-2-oxoethyl)indolin-4-yl)-*N*-(mesitylsulfonyl)glycine (16p). 16p was synthesized according to the procedure of 15, white solid, yield 72%; mp: 105-107 °C. ¹H NMR (300 MHz, DMSO- d_6) δ 12.65 (s, 2H), 7.98 (d, *J* = 8.1 Hz, 1H), 7.60 (d, J = 7.7 Hz, 1H), 7.40 (s, 1H), 7.37 (d, J = 7.7 Hz, 1H), 6.95 (s, 2H), 6.90 (s, 2H), 6.64 (s, 2H), 6.58 (d, J = 7.9 Hz, 1H), 6.27 (d, J = 7.7 Hz, 1H), 5.20 (s, 1H), 4.28 (s, 2H), 3.69 (s, 3H), 3.21 (d, J = 9.8 Hz, 1H), 2.65 (s, 2H), 2.28 (s, 2H), 2.21 (s, 9H), 1.28 (s, 3H); HRMS (ESI): found 722.2158 (C₃₆H₄₀N₃O₉S₂. [M+H]⁺ requires 722.2154); HPLC (85:15 methanol:water with 1‰ TFA): t_R = 5.26 min, 97.1%.

N-(1-(2-((2-fluorophenyl) sulfonamido)-1-(3-methoxyphenyl)-2-oxoethyl) indolin-4-yl)-*N*-(mesitylsulfonyl) glycine (16q). 16q was synthesized according to the procedure of 15, white solid, yield 74%; mp: 106-108 °C. ¹H NMR (300 MHz, DMSO-*d*₆) δ 12.95 (s, 2H), 7.92 (t, *J* = 7.5 Hz, 1H), 7.78 (d, *J* = 7.5 Hz, 1H), 7.43 (t, *J* = 8.3 Hz, 2H), 7.30 (t, *J* = 8.1 Hz, 1H), 6.96 (d, *J* = 10.3 Hz, 2H), 6.90 (s, 2H), 6.71 (d, *J* = 7.7 Hz, 2H), 6.57 (d, *J* = 8.0 Hz, 1H), 6.27 (d, *J* = 7.8 Hz, 1H), 5.24 (s, 1H), 4.29 (s, 2H), 3.72 (s, 3H), 3.23 (d, *J* = 8.6 Hz, 2H), 2.42 (d, *J* = 8.0 Hz, 2H), 2.20 (s, 3H), 2.18 (s, 6H); HRMS (ESI): found 718.1657 (C₃₄H₃₄FN₃NaO₈S₂. [M+Na]⁺ requires 718.1663); HPLC (85:15 methanol:water with 1‰ TFA): t_R = 5.67 min, 96.8%.

N-(1-(2-((2-chlorophenyl) sulfonamido)-1-(3-methoxyphenyl)-2-oxoethyl) indolin-4-yl)-*N*-(mesitylsulfonyl) glycine (16r). 16r was synthesized according to the procedure of 15, white solid, yield 75%; mp: 111-113 °C. ¹H NMR (300 MHz, DMSO-*d*₆) δ 12.93 (s, 2H), 7.91 (t, *J* = 7.7 Hz, 1H), 7.79 (d, *J* = 7.3 Hz, 2H), 7.44 (t, *J* = 8.5 Hz, 2H), 7.31 (t, *J* = 8.1 Hz, 1H), 6.96 (d, *J* = 10.3 Hz, 2H), 6.91 (s, 1H), 6.72 (d, *J* = 7.9 Hz, 2H), 6.56 (d, *J* = 8.0 Hz, 1H), 6.26 (d, *J* = 7.8 Hz, 1H), 5.23 (s, 1H), 4.28 (s, 2H), 3.71 (s, 3H), 3.235 (d, *J* = 8.6 Hz, 2H), 2.41 (d, *J* = 8.0 Hz, 2H), 2.21 (s, 3H), 2.18 (s, 6H); HRMS (ESI): found 734.1362 (C₃₄H₃₄ClN₃NaO₈S₂. [M+Na]⁺ requires 734.1368); HPLC (85:15 methanol:water with 1‰ TFA): t_R = 5.06 min, 98.9%.

N-(1-(2-((2-bromophenyl) sulfonamido)-1-(3-methoxyphenyl)-2-oxoethyl) indolin-4-yl)-*N*-(mesitylsulfonyl) glycine (16s). 16s was synthesized according to the procedure of 15, white solid, yield 78%; mp: 120-122 °C. ¹H NMR (300 MHz, DMSO-*d*₆) δ 13.01 (s, 2H), 8.16 – 8.10 (m, 1H), 7.87 – 7.81 (m, 1H), 7.62 (d, *J* = 6.3 Hz, 2H), 7.29 (d, *J* = 8.2 Hz, 1H), 6.99 – 6.92 (m, 2H), 6.90 (d, *J* = 5.6 Hz, 2H), 6.76 – 6.69 (m, 2H), 6.57 (d, *J* = 8.1 Hz, 1H), 6.37 (d, *J* = 7.9 Hz, 1H), 5.32 (s, 1H), 4.29 (s, 2H), 3.71 (s, 3H), 3.67 (s, 2H), 3.23 (d, *J* = 8.7 Hz, 1H), 2.66 (d, *J* = 8.2 Hz, 1H), 2.20 (s, 3H), 2.18 (s, 6H); HRMS (ESI): found 756.1018 (C₃₄H₃₅BrN₃O₈S₂. [M+H]⁺ requires 756.1043); HPLC (85:15 methanol:water with 1‰ TFA): t_R = 5.21 min, 96.4%.

N-(mesitylsulfonyl)-*N*-(1-(1-(3-methoxyphenyl)-2-oxo-2-((2-(trifluoromethyl) phenyl) sulfonamido) ethyl) indolin-4-yl) glycine (16t). 16t was synthesized according to the procedure of 15, white solid, yield 69%; mp: 101-103 °C. ¹H NMR (300 MHz, DMSO-*d*₆) δ 12.82 (s, 2H), 8.30 (s, 1H), 7.96 (d, *J* = 16.3 Hz, 3H), 7.27 (t, *J* = 8.0 Hz, 1H), 6.95 (d, *J* = 8.3 Hz, 1H), 6.90 (d, *J* = 7.1 Hz, 3H), 6.70 – 6.62 (m, 2H), 6.57 (d, *J* = 8.0 Hz, 1H), 6.27 (d, *J* = 7.7 Hz, 1H), 5.27 (s, 1H), 4.29 (s, 2H), 3.69 (d, *J* = 2.2 Hz, 3H), 3.25 (d, *J* = 9.0 Hz, 1H), 2.65 (d, *J* = 8.5 Hz, 1H), 2.27 (d, *J* = 12.4 Hz, 2H), 2.19 (d, *J* = 6.9 Hz, 9H); HRMS (ESI): found 746.1817 (C₃₅H₃₅F₃N₃O₈S₂. [M+H]⁺ requires 746.1812); HPLC (85:15 methanol:water with 1‰ TFA): t_R = 5.02 min, 96.9%.

N-(mesitylsulfonyl)-*N*-(1-(1-(3-methoxyphenyl)-2-oxo-2-((2-(trifluoromethoxy) phenyl) sulfonamido) ethyl) indolin-4-yl) glycine (16u). 16u was synthesized according to the procedure of **15**, white solid, yield 68%; mp: 90-92 °C. ¹H NMR (300 MHz, DMSO-*d*₆) δ 12.94 (s, 2H), 8.06 (d, *J* = 8.0 Hz, 1H), 7.85 (t, *J* = 8.0 Hz, 1H), 7.58 (q, *J* = 8.5, 8.1 Hz, 2H), 7.30 (t, *J* = 7.9 Hz, 1H), 6.99 – 6.91 (m, 2H), 6.89 (s, 2H), 6.72 (t, *J* = 6.4 Hz, 2H), 6.57 (d, *J* = 8.0 Hz, 1H), 6.27 (d, *J* = 7.9 Hz, 1H), 5.26 (s, 1H), 4.29 (s, 2H), 3.72 (s, 3H), 3.69 (s, 2H), 3.24 (d, *J* = 8.6 Hz, 1H), 2.66 (d, *J* = 8.2 Hz, 1H), 2.19 (d, *J* = 5.1 Hz, 9H); HRMS (ESI): found 784.1574 (C₃₅H₃₄F₃N₃NaO₉S₂. [M+Na]⁺ requires 784.1580); HPLC (85:15 methanol:water with 1‰ TFA): t_R = 5.02 min, 97.8%.

N-(1-(2-((2,4-dimethylphenyl) sulfonamido)-1-(3-methoxyphenyl)-2-oxoethyl) indolin-4yl)-*N*-(mesitylsulfonyl) glycine (16v). 16v was synthesized according to the procedure of 15, white solid, yield 69%; mp: 113-115 °C. ¹H NMR (300 MHz, DMSO-*d*₆) δ 12.92 (s, 2H), 7.95 (d, *J* = 8.0 Hz, 1H), 7.42 (d, *J* = 6.8 Hz, 1H), 7.37 – 7.27 (m, 2H), 7.08 (d, *J* = 9.9 Hz, 2H), 7.02 (s, 2H), 6.81 (d, *J* = 7.6 Hz, 1H), 6.77 – 6.66 (m, 2H), 6.40 (d, *J* = 7.9 Hz, 1H), 5.35 (s, 1H), 4.42 (s, 2H), 3.81 (s, 3H), 3.37 (d, *J* = 8.8 Hz, 1H), 2.80 – 2.74 (m, 1H), 2.54 (s, 2H), 2.33 (s, 9H), 2.12 (s, 6H); HRMS (ESI): found 706.2247 (C₃₆H₄₀N₃O₈S₂. [M+H]⁺ requires 706.2251); HPLC (85:15 methanol:water with 1‰ TFA): t_R = 5.31 min, 97.2%.

N-(1-(2-((2,4-dimethoxyphenyl)sulfonamido)-1-(3-methoxyphenyl)-2-oxoethyl)indolin-4yl)-*N*-(mesitylsulfonyl)glycine (16x). 16x was synthesized according to the procedure of 15, white solid, yield 68%; mp: 101-103 °C. ¹H NMR (300 MHz, DMSO-*d*₆) δ 12.91 (s, 2H), 7.93 (d, *J* = 8.0 Hz, 1H), 7.46 (d, *J* = 6.8 Hz, 1H), 7.38 – 7.26 (m, 2H), 7.13 (d, *J* = 9.9 Hz, 2H), 7.04 (s, 2H), 6.80 (d, *J* = 7.6 Hz, 1H), 6.78 – 6.66 (m, 2H), 6.43 (d, *J* = 7.9 Hz, 1H), 5.34 (s, 1H), 4.41 (s, 2H), 3.95 (d, J = 3.3 Hz, 6H), 3.80 (s, 3H), 3.36 (d, *J* = 8.8 Hz, 1H), 2.81 – 2.73 (m, 1H), 2.53 (s, 2H), 2.35 (s, 9H); HRMS (ESI): found 760.1963 (C₃₆H₃₉N₃NaO₁₀S₂. [M+H]⁺ requires 760.1969); HPLC (85:15 methanol:water with 1‰ TFA): $t_R = 5.20 \text{ min}$, 98.3%.

N-(1-(2-((3,5-dimethylphenyl)sulfonamido)-1-(3-methoxyphenyl)-2-oxoethyl)indolin-4yl)-N-(mesitylsulfonyl)glycine (16y). 16y was synthesized according to the procedure of 15, white solid, yield 66%; mp: 102-104 °C. ¹H NMR (300 MHz, DMSO-*d*₆) δ 12.93 (s, 2H), 7.96 (d, J = 8.0 Hz, 1H), 7.40 (d, J = 6.4 Hz, 1H), 7.32 – 7.23 (m, 2H), 7.12 (d, J = 9.7 Hz, 2H), 7.06 (s, 2H), 6.80 (d, J = 7.6 Hz, 1H), 6.77 – 6.66 (m, 2H), 6.40 (d, J = 7.9 Hz, 1H), 5.35 (s, 1H), 4.41 (s, 2H), 3.82 (s, 3H), 3.36 (d, J = 8.6 Hz, 1H), 2.81 – 2.76 (m, 1H), 2.54 (s, 2H), 2.32 (s, 9H), 2.22 (s, 6H); HRMS (ESI): found 706.2247 (C₃₆H₄₀N₃O₈S₂. [M+H]⁺ requires 706.2251); HPLC (85:15 methanol:water with 1‰ TFA): t_R = 5.37 min, 98.4%.

N-(mesitylsulfonyl)-*N*-(1-(1-(3-methoxyphenyl)-2-(naphthalene-1-sulfonamido)-2oxoethyl)indolin-4-yl)glycine (16z). 16z was synthesized according to the procedure of 15, white solid, yield 71%; mp: 100-102 °C. ¹H NMR (300 MHz, DMSO-*d*₆) δ 12.86 (s, 2H), 8.32 (s, 2H), 7.96 (d, *J* = 16.7 Hz, 3H), 7.25 (t, *J* = 8.6 Hz, 2H), 6.99 (d, *J* = 8.5 Hz, 2H), 6.91 (d, *J* = 7.1 Hz, 3H), 6.72 - 6.62 (m, 2H), 6.58 (d, *J* = 8.0 Hz, 1H), 6.29 (d, *J* = 7.9 Hz, 1H), 5.26 (s, 1H), 4.28 (s, 2H), 3.79 (d, *J* = 2.2 Hz, 3H), 3.27 (s, 1H), 2.65 (s, 1H), 2.29 (d, *J* = 12.2 Hz, 2H), 2.18 (d, *J* = 6.9 Hz, 9H); HRMS (ESI): found 728.2095 (C₃₈H₃₈N₃O₈S₂. [M+H]⁺ requires 728.2094); HPLC (85:15 methanol:water with 1‰ TFA): t_R = 6.34 min, 99.2%.

N-((2-methoxy-4-methylphenyl)sulfonyl)-2-(3-methoxyphenyl)-2-(4-((4-methyl-*N*-(2oxo-2-(phenylsulfonamido)ethyl)phenyl)sulfonamido)indolin-1-yl)acetamide (17c). 17c was synthesized according to the procedure of **17a**, white solid, yield 52%; mp: 188-190 °C. ¹H NMR (300 MHz, DMSO-*d*₆) δ 12.84 (s, 2H), 7.79 (d, *J* = 8.9 Hz, 1H), 7.66 - 7.58 (m, 3H), 7.50 (d, *J* = 8.5 Hz, 2H), 7.38 (t, *J* = 7.4 Hz, 1H), 7.07 - 6.99 (m, 3H), 6.91 (t, *J* = 3.1 Hz, 3H), 6.83 (dd, *J* = 12.2, 7.3 Hz, 4H), 6.15 (d, *J* = 7.3 Hz, 1H), 6.00 (d, *J* = 8.1 Hz, 1H), 5.01 (s, 1H), 3.91 (d, *J* = 2.9 Hz, 2H), 3.84 (s, 3H), 3.72 (s, 3H), 3.64 (s, 2H), 2.82 - 2.72 (m, 1H), 2.37 (s, 6H); HRMS (ESI): found 833.1935 (C₄₀H₄₀N₄O₁₀S₃. [M+H]⁺ requires 833.1928); HPLC (85:15 methanol:water with 1‰ TFA): t_R = 5.43 min, 96.9%.

2-(4-((4-fluoro-*N*-(2-oxo-2-(phenylsulfonamido)ethyl)phenyl)sulfonamido)indolin-1-yl)-*N*-((2-methoxy-4-methylphenyl)sulfonyl)-2-(3-methoxyphenyl)acetamide (17d). 17d was synthesized according to the procedure of 17a, white solid, yield 48%; mp: 211-213 °C. ¹H NMR (300 MHz, DMSO-*d*₆) δ 12.58 (s, 2H), 7.78 (d, *J* = 7.1 Hz, 1H), 7.66 - 7.58 (m, 1H), 7.50 (d, *J* = 8.9 Hz, 2H), 7.35 (t, *J* = 7.9 Hz, 2H), 7.11 - 6.99 (m, 3H), 6.92 (dq, *J* = 10.4, 3.2, 3.1 Hz, 4H), 6.81 (dd, *J* = 15.2, 7.9Hz, 4H), 6.18 (d, *J* = 7.5 Hz, 1H), 6.08 (d, *J* = 8.3 Hz, 1H), 5.11 (s, 1H), 3.92 (d, *J* = 2.9 Hz, 2H), 3.81 (s, 3H), 3.79 (s, 3H), 3.65 (s, 2H), 2.82 - 2.72 (m, 2H); HRMS (ESI): found 859.1541 (C₃₉H₃₇FN₄NaO₁₀S₃. [M+Na]⁺ requires 859.1548); HPLC (85:15 methanol:water with 1‰ TFA): t_R = 5.56 min, 97.3%.

2-(4-((4-acetamido-*N*-(2-oxo-2-(phenylsulfonamido)ethyl)phenyl)sulfonamido)indolin-1yl)-*N*-((2-methoxy-4-methylphenyl)sulfonyl)-2-(3-methoxyphenyl)acetamide (17e). 17e was synthesized according to the procedure of 17a, white solid, yield 43%; mp: 193-195 °C. ¹H NMR (300 MHz, DMSO-*d*₆) δ 12.71 (s, 2H), 10.41 (s, 1H), 7.69 (d, *J* = 7.9 Hz, 2H), 7.63 - 7.59 (m, 2H), 7.52 (d, J = 8.9 Hz, 1H), 7.32 (t, J = 7.9 Hz, 1H), 7.14 - 7.05 (m, 2H), 6.91 (dd, J = 4.6, 3.3 Hz, 3H), 6.82 (dd, J = 12.3, 7.6 Hz, 4H), 6.15 (d, J = 7.9 Hz, 2H), 6.00 (d, J = 8.1 Hz, 1H), 5.01 (s, 1H), 3.92 (d, J = 2.1 Hz, 2H), 3.82 (s, 3H), 3.78 (s, 3H), 3.64 (s, 2H), 2.81 - 2.72 (m, 2H), 2.37 (s, 3H), 2.02 (s, 3H); HRMS (ESI): found 898.2048 (C₄₁H₄₁N₅NaO₁₁S₃. [M+Na]⁺ requires 898.2052); HPLC (85:15 methanol:water with 1‰ TFA): t_R = 5.21 min, 98.3%.

N-((2-methoxy-4-methylphenyl)sulfonyl)-2-(4-((2-methoxy-N-(2-oxo-2-

(phenylsulfonamido)ethyl)phenyl)sulfonamido)indolin-1-yl)-2-(3-methoxyphenyl)acetamide (17f). 17f was synthesized according to the procedure of 17a, white solid, yield 50%; mp: 223-225 °C. ¹H NMR (300 MHz, DMSO-*d*₆) δ 12.33 (s, 2H), 7.86 (t, *J* = 9.1 Hz, 2H), 7.75 - 7.65 (m, 2H), 7.53 (d, *J* = 32.6 Hz, 6H), 7.36 - 7.27 (m, 2H), 7.22 (d, *J* = 6.1 Hz, 2H), 6.97 (t, *J* = 8.6 Hz, 2H), 6.81 (dd, *J* = 18.6, 9.0 Hz, 2H), 6.24 (d, *J* = 7.7 Hz, 1H), 5.09 (d, *J* = 19.7 Hz, 1H), 4.41 (s, 1H), 4.13 (s, 1H), 4.02 (s, 2H), 3.92 (d, *J* = 3.0 Hz, 3H), 3.74 (d, *J* = 2.9 Hz, 3H), 3.66 (d, *J* = 12.1 Hz, 3H), 3.20 (s, 2H), 2.40 (s, 3H); HRMS (ESI): found 871.1754 (C40H40N4NaO11S3. [M+Na]⁺ requires 871.1747); HPLC (85:15 methanol:water with 1‰ TFA): t_R = 5.69 min, 97.5%.

N-((2-methoxy-4-methylphenyl)sulfonyl)-2-(4-((3-methoxy-N-(2-oxo-2-

(**phenylsulfonamido**)ethyl)phenyl)sulfonamido)indolin-1-yl)-2-(3-methoxyphenyl)acetamide (17g). 17g was synthesized according to the procedure of 17a, white solid, yield 54%; mp: 207-209 °C. ¹H NMR (300 MHz, DMSO-*d*₆) δ 12.76 (s, 2H), 7.98 (d, *J* = 7.9 Hz, 1H), 7.73 - 7.66 (m, 2H), 7.59 (d, *J* = 8.9 Hz, 2H), 7.27 (t, *J* = 5.9 Hz, 2H), 7.12 - 7.04 (m, 3H), 6.91 (dq, *J* = 10.2, 3.6, 3.1 Hz, 3H), 6.82 (dd, *J* = 15.0, 7.5 Hz, 4H), 6.14 (d, *J* = 7.9 Hz, 1H), 6.00 (d, *J* = 8.1 Hz, 1H), 5.06 (s, 1H), 3.95 (d, *J* = 2.9 Hz, 2H), 3.83 (s, 3H), 3.79 (s, 3H), 3.72 (s, 3H), 3.62 (s, 2H), 2.82 - 2.72 (m, 2H), 2.24 (s, 3H); HRMS (ESI): found 871.1754 (C₄₀H₄₀N₄NaO₁₁S₃. [M+Na]⁺ requires 871.1747); HPLC (85:15 methanol:water with 1‰ TFA): t_R = 5.48 min, 98.1%.

N-((2-methoxy-4-methylphenyl)sulfonyl)-2-(3-methoxyphenyl)-2-(4-(*N*-(2-oxo-2-(phenylsulfonamido)ethyl)phenylsulfonamido)indolin-1-yl)acetamide (17h). 17h was synthesized according to the procedure of 17a, white solid, yield 43%; mp: 231-233 °C. ¹H NMR (300 MHz, DMSO-*d*₆) δ 12.51 (s, 2H), 7.72 (d, *J* = 7.9 Hz, 1H), 7.69 (d, *J* = 7.9 Hz, 2H), 7.57 (d, *J* = 8.2 Hz, 2H), 7.27 (t, *J* = 5.3 Hz, 2H), 7.05 - 6.95 (m, 3H), 6.91 (m, 4H), 6.81 (dd, *J* = 12.2, 7.5 Hz, 4H), 6.17 (d, *J* = 7.7 Hz, 1H), 6.06 (d, *J* = 8.8 Hz, 1H), 5.12 (s, 1H), 3.99 (d, *J* = 2.5 Hz, 2H), 3.88 (s, 3H), 3.73 (s, 3H), 3.62 (s, 2H), 2.82 - 2.72 (m, 2H), 2.34 (s, 3H); HRMS (ESI): found 819.1829 (C₃₉H₃₉N₄O₁₀S₃. [M+H]⁺ requires 819.1824); HPLC (85:15 methanol:water with 1‰ TFA): t_R = 5.52 min, 97.5%.

2-(4-((N-(2-(cyclopropanesulfonamido)-2-oxoethyl)-4-

methoxyphenyl)sulfonamido)indolin-1-yl)-N-((2-methoxy-4-methylphenyl)sulfonyl)-2-(3methoxyphenyl)acetamide (18a). 18a was synthesized according to the procedure of 17a, white solid, yield 51%; mp: 215-217 °C. ¹H NMR (300 MHz, DMSO- d_6) δ 12.25 (s, 2H), 7.61 (dd, J =8.0, 5.3 Hz, 3H), 7.25 (t, J = 7.8 Hz, 1H), 7.07 (d, J = 8.6 Hz, 2H), 6.90 (dd, J = 15.8, 8.8 Hz, 4H), 6.76 (t, J = 8.3 Hz, 2H), 6.22 (d, J = 7.8 Hz, 1H), 6.00 (d, J = 8.0 Hz, 1H), 4.79 (s, 1H), 3.93 (d, J =3.5 Hz, 1H), 3.85 (s, 3H), 3.74 (s, 3H), 3.66 (s, 3H), 3.20 (s, 1H), 2.85 (d, J = 8.5 Hz, 2H), 2.66 - 2.57 (m, 1H), 2.34 (s, 3H), 0.73 (d, J = 4.5 Hz, 2H), 0.69 – 0.60 (m, 2H); HRMS (ESI): found 835.1746 (C₃₇H₄₀N₄NaO₁₁S₃. [M+Na]⁺ requires 835.1747); HPLC (85:15 methanol:water with 1‰ TFA): $t_R = 5.42 \text{ min}$, 98.9%.

N-((2-methoxy-4-methylphenyl)sulfonyl)-2-(4-((4-methoxy-*N*-(2-(methylsulfonamido)-2-oxoethyl)phenyl)sulfonamido)indolin-1-yl)-2-(3-methoxyphenyl)acetamide (18b). 18b was synthesized according to the procedure of 17a, white solid, yield 45%; mp: 188-190 °C. ¹H NMR (300 MHz, DMSO-*d*₆) δ 12.45 (s, 2H), 7.91 (d, *J* = 8.0 Hz, 3H), 7.65 (t, *J* = 7.6 Hz, 1H), 7.37 (d, *J* = 8.4 Hz, 2H), 7.10 (dd, *J* = 15.8, 8.8 Hz, 4H), 6.96 (t, *J* = 8.3 Hz, 2H), 6.21 (d, *J* = 7.8 Hz, 1H), 6.12 (d, *J* = 8.4 Hz, 1H), 4.88 (s, 1H), 3.95 (d, *J* = 3.7 Hz, 1H), 3.86 (s, 3H), 3.72 (s, 3H), 3.65 (s, 3H), 3.22 (s, 1H), 2.96 (s, 3H), 2.87 (d, *J* = 8.5 Hz, 2H), 2.66 - 2.56 (m, 1H), 2.32 (s, 3H); HRMS (ESI): found 787.1752 (C₃₅H₃₉N₄O₁₁S₃. [M+H]⁺ requires 787.1748); HPLC (85:15 methanol:water with 1‰ TFA): t_R = 5.28 min, 96.8%.

N-((2-methoxy-4-methylphenyl)sulfonyl)-2-(4-((4-methoxy-N-(2-oxo-2-

((trifluoromethyl)sulfonamido)ethyl)phenyl)sulfonamido)indolin-1-yl)-2-(3-

methoxyphenyl)acetamide (18c). 18c was synthesized according to the procedure of 17a, white solid, yield 46%; mp: 229-231 °C. ¹H NMR (300 MHz, DMSO-*d*₆) δ 12.71 (s, 1H), 12.21 (s, 1H), 7.61 (t, J = 10.7 Hz, 3H), 7.26 (d, J = 8.8 Hz, 2H), 7.07 (d, J = 8.6 Hz, 2H), 6.91 (s, 4H), 6.85 - 6.72 (m, 2H), 6.20 (d, J = 7.9 Hz, 1H), 6.04 (d, J = 7.9 Hz, 1H), 5.79 (s, 1H), 4.15 (s, 2H), 4.00 (s, 2H), 3.85 (s, 3H), 3.74 (s, 3H), 3.66 (s, 3H), 3.20 (s, 1H), 2.85 (d, J = 26.5 Hz, 1H), 2.36 (s, 3H); HRMS (ESI): found 863.1298 (C₃₅H₃₅F₃N₄NaO₁₁S₃. [M+Na]⁺ requires 863.1308); HPLC (85:15 methanol:water with 1‰ TFA): t_R = 5.16 min, 98.6%.

N-((2-methoxy-4-methylphenyl)sulfonyl)-2-(4-((4-methoxy-*N*-(2-oxo-2-(pyridine-3-sulfonamido)ethyl)phenyl)sulfonamido)indolin-1-yl)-2-(3-methoxyphenyl)acetamide (18d). 18d was synthesized according to the procedure of 17a, white solid, yield 44%; mp: 196-198 °C. ¹H NMR (300 MHz, DMSO-*d*₆) δ 12.57 (s, 2H), 7.78 (d, *J* = 7.1 Hz, 1H), 7.71 - 7.66 (m, 2H), 7.52 (d, *J* = 8.9 Hz, 2H), 7.29 (t, *J* = 7.9 Hz, 1H), 7.14 - 705 (m, 2H), 6.91 (s, 2H), 6.82 (dd, *J* = 15.0, 7.5 Hz, 4H), 6.14 (d, *J* = 7.9 Hz, 2H), 6.02 (d, *J* = 8.3 Hz, 2H), 5.01 (s, 1H), 3.91 (d, *J* = 2.9 Hz, 2H), 3.82 (s, 3H), 3.79 (s, 3H), 3.71 (s, 3H), 3.64 (s, 2H), 2.82 (s, 2H), 2.37 (s, 3H); HRMS (ESI): found 872.1821 (C₃₉H₃₉N₅NaO₁₁S₃. [M+Na]⁺ requires 872.1825); HPLC (85:15 methanol:water with 1‰ TFA): t_R = 5.28 min, 97.8%.

N-((2-methoxy-4-methylphenyl)sulfonyl)-2-(4-((4-methoxy-*N*-(2-oxo-2-(thiophene-2-sulfonamido)ethyl)phenyl)sulfonamido)indolin-1-yl)-2-(3-methoxyphenyl)acetamide (18e). 18e was synthesized according to the procedure of 17a, white solid, yield 43%; mp: 182-184 °C. ¹H NMR (300 MHz, DMSO-*d*₆) δ 12.49 (s, 2H), 7.93 (d, *J* = 8.2 Hz, 3H), 7.69 (t, *J* = 7.6 Hz, 2H), 7.38 (d, *J* = 8.4 Hz, 2H), 7.10 (dd, *J* = 15.8, 8.8 Hz, 4H), 6.99 (t, *J* = 8.3 Hz, 3H), 6.21 (d, *J* = 7.8 Hz, 1H), 6.14 (d, *J* = 8.6 Hz, 2H), 4.99 (s, 1H), 3.98 (d, *J* = 3.9 Hz, 1H), 3.87 (s, 3H), 3.73 (s, 3H), 3.69 (s, 3H), 3.22 (s, 1H), 2.87 (d, *J* = 8.5 Hz, 2H), 2.66 - 2.56 (m, 1H), 2.32 (s, 3H); HRMS (ESI): found 877.1453 (C₃₈H₃₈N₄NaO₁₁S₄. [M+Na]⁺ requires 877.1464); HPLC (85:15 methanol:water with 1‰ TFA): t_R = 5.21 min, 95.8%.

N-((2-methoxy-4-methylphenyl)sulfonyl)-2-(4-((4-methoxy-*N*-(2-((4-methylphenyl)sulfonamido)-2-oxoethyl)phenyl)sulfonamido)indolin-1-yl)-2-(3-

methoxyphenyl)acetamide (19b). 19b was synthesized according to the procedure of **17a**, white solid, yield 48%; mp: 224-226 °C. ¹H NMR (300 MHz, DMSO-*d*₆) δ 12.41 (s, 2H), 7.83 (d, *J* = 7.9 Hz, 1H), 7.66 (dd, *J* = 8.6, 4.1 Hz, 3H), 7.36 (s, 1H), 7.23 (d, *J* = 8.7 Hz, 2H), 7.06 – 6.93 (m, 5H), 6.79 (d, *J* = 9.9 Hz, 3H), 6.48 (d, *J* = 7.8 Hz, 3H), 5.94 (d, *J* = 8.2 Hz, 2H), 4.93 (s, 1H), 4.46 (s, 1H), 3.96 (s, 1H), 3.85 (s, 3H), 3.79 (d, *J* = 2.1 Hz, 3H), 3.73 (s, 3H), 3.19 (d, *J* = 3.9 Hz, 1H), 2.88 (s, 2H), 2.35 (s, 6H); HRMS (ESI): found 885.1894 (C₄₁H₄₂N₄NaO₁₁S₃. [M+Na]⁺ requires 885.1904); HPLC (85:15 methanol:water with 1‰ TFA): t_R = 5.38 min, 96.8%.

2-(4-((N-(2-((4-fluorophenyl)sulfonamido)-2-oxoethyl)-4-

methoxyphenyl)sulfonamido)indolin-1-yl)-*N*-((2-methoxy-4-methylphenyl)sulfonyl)-2-(3methoxyphenyl)acetamide (19c). 19c was synthesized according to the procedure of 17a, white solid, yield 43%; mp: 213-215 °C. ¹H NMR (300 MHz, DMSO-*d*₆) δ 12.41 (s, 1H), 9.41 (s, 1H), 7.63 (t, *J* = 7.1 Hz, 3H), 7.56 (d, *J* = 8.5 Hz, 2H), 7.26 (d, *J* = 8.0 Hz, 1H), 7.15 (t, *J* = 8.9 Hz, 2H), 7.03 (d, *J* = 8.5 Hz, 2H), 6.91 (s, 4H), 6.82 - 6.67 (m, 2H), 6.19 (d, *J* = 8.7 Hz, 1H), 5.93 (d, *J* = 8.1 Hz, 1H), 4.83 (s, 1H), 3.91 (s, 1H), 3.85 (d, *J* = 2.4 Hz, 3H), 3.80 (d, *J* = 11.4 Hz, 1H), 3.74 (s, 3H), 3.67 (s, 3H), 2.82 (s, 2H), 2.35 (d, *J* = 6.4 Hz, 3H); HRMS (ESI): found 889.1651 (C₄₀H₃₉N₄NaO₁₁S₃. [M+Na]⁺ requires 889.1653); HPLC (85:15 methanol:water with 1‰ TFA): t_R = 5.45 min, 98.1%.

N-((2-methoxy-4-methylphenyl)sulfonyl)-2-(4-((4-methoxy-*N*-(2-oxo-2-((4-(trifluoromethyl)phenyl)sulfonamido)ethyl)phenyl)sulfonamido)indolin-1-yl)-2-(3methoxyphenyl)acetamide (19d). 19d was synthesized according to the procedure of 17a, white solid, yield 44%; mp: 223-225 °C. ¹H NMR (300 MHz, DMSO-*d*₆) δ 12.41 (s, 2H), 7.68 (d, *J* = 7.8 Hz, 1H), 7.54 (dd, *J* = 8.6, 3.1 Hz, 3H), 7.23 (s, 1H), 7.13 (d, *J* = 8.5 Hz, 3H), 6.95 - 6.82 (m, 6H), 6.72 (d, *J* = 9.5 Hz, 2H), 6.28 (d, *J* = 7.8 Hz, 2H), 5.95 (d, *J* = 8.2 Hz, 1H), 4.83 (s, 1H), 4.42 (s, 1H), 3.88 (s, 1H), 3.84 (s, 3H), 3.72 (s, 3H), 3.66 (s, 3H), 3.16 (d, *J* = 3.9 Hz, 1H), 2.82 (s, 2H), 2.36 (s, 3H); HRMS (ESI): found 939.1741 (C₄₁H₃₉N₄NaO₁₁S₃. [M+Na]⁺ requires 939.1743); HPLC (85:15 methanol:water with 1‰ TFA): t_R = 5.56 min, 98.8%.

2-(4-((N-(2-((4-ethylphenyl)sulfonamido)-2-oxoethyl)-4-

methoxyphenyl)sulfonamido)indolin-1-yl)-*N*-((2-methoxy-4-methylphenyl)sulfonyl)-2-(3methoxyphenyl)acetamide (19e). 19e was synthesized according to the procedure of 17a, white solid, yield 45%; mp: 217-219 °C. ¹H NMR (300 MHz, DMSO-*d*₆) δ 12.51 (s, 2H), 8.23 (d, *J* = 7.3 Hz, 2H), 8.16 (dd, *J* = 8.6, 4.1 Hz, 2H), 7.86 (s, 1H), 7.73 (d, *J* = 8.7 Hz, 2H), 7.56 - 7.47 (m, 5H), 7.19 (d, *J* = 9.7 Hz, 3H), 6.88 (d, *J* = 7.8 Hz, 2H), 6.34 (d, *J* = 8.2 Hz, 2H), 4.99 (s, 1H), 4.56 (s, 1H), 4.02 - 4.09 (m, 2H), 3.96 (s, 1H), 3.85 (s, 3H), 3.77 (d, *J* = 2.1 Hz, 3H), 3.72 (s, 3H), 3.19 (d, *J* = 3.9 Hz, 1H), 2.88 (s, 2H), 2.35 (s, 3H), 1.34 - 1.25 (m, 3H); HRMS (ESI): found 899.2054 (C₄₂H₄₄N₄NaO₁₁S₃. [M+Na]⁺ requires 899.2060); HPLC (85:15 methanol:water with 1‰ TFA): t_R = 5.46 min, 98.3%.

2-(4-((N-(2-((4-hydroxyphenyl)sulfonamido)-2-oxoethyl)-4-

methoxyphenyl)sulfonamido)indolin-1-yl)-*N*-((2-methoxy-4-methylphenyl)sulfonyl)-2-(3methoxyphenyl)acetamide (19f). 19f was synthesized according to the procedure of 17a, white solid, yield 45%; mp: 167-169 °C. ¹H NMR (300 MHz, DMSO-*d*₆) δ 12.62 (s, 2H), 10.02 (s, 1H), 8.11 (d, J = 7.6 Hz, 2H), 8.15 (dd, J = 8.6, 4.1 Hz, 2H), 7.76 (s, 1H), 7.70 (d, J = 8.7 Hz, 2H), 7.59
7.48 (m, 5H), 7.18 (d, J = 7.7 Hz, 3H), 6.99 (d, J = 7.8 Hz, 2H), 6.64 (d, J = 8.2 Hz, 2H), 4.95 (s, 1H), 4.58 (s, 1H), 3.90 (s, 1H), 3.85 (s, 3H), 3.79 (d, J = 2.1 Hz, 3H), 3.74 (s, 3H), 3.19 (d, J = 3.9 Hz, 1H), 2.86 (s, 2H), 2.34 (s, 3H); HRMS (ESI): found 887.1862 (C₄₂H₄₄N₄NaO₁₁S₃. [M+Na]⁺ requires 887.1864); HPLC (85:15 methanol:water with 1‰ TFA): t_R = 5.02 min, 97.1%.

2-(4-((N-(2-((4-ethoxyphenyl)sulfonamido)-2-oxoethyl)-4-

methoxyphenyl)sulfonamido)indolin-1-yl)-*N*-((2-methoxy-4-methylphenyl)sulfonyl)-2-(3methoxyphenyl)acetamide (19g). 19g was synthesized according to the procedure of 17a, white solid, yield 42%; mp: 199-201 °C. ¹H NMR (300 MHz, DMSO-*d*₆) δ 12.51 (s, 2H), 8.13 (d, *J* = 8.6 Hz, 2H), 8.05 (dd, *J* = 8.4, 4.3 Hz, 2H), 7.86 (s, 1H), 7.78 (d, *J* = 8.5 Hz, 2H), 7.58 - 7.48 (m, 4H), 7.18 (d, *J* = 7.7 Hz, 3H), 6.99 (d, *J* = 7.8 Hz, 3H), 6.65 (d, *J* = 8.2 Hz, 2H), 4.97 (s, 1H), 4.57 (s, 1H), 4.04 - 4.08 (m, 2H), 3.91 (s, 1H), 3.88 (s, 3H), 3.76 (s, 3H), 3.74 (s, 3H), 3.23 (d, *J* = 3.9 Hz, 1H), 2.86 (s, 2H), 2.34 (s, 3H), 1.40 - 1.46 (m, 3H); HRMS (ESI): found 915.2131 (C₄₂H₄₄N₄NaO₁₂S₃. [M+Na]⁺ requires 915.2134); HPLC (85:15 methanol:water with 1‰ TFA): t_R = 5.43 min, 96.2%.

N-((2-methoxy-4-methylphenyl)sulfonyl)-2-(4-((4-methoxy-N-(2-((2-

methoxyphenyl)sulfonamido)-2-oxoethyl)phenyl)sulfonamido)indolin-1-yl)-2-(3-

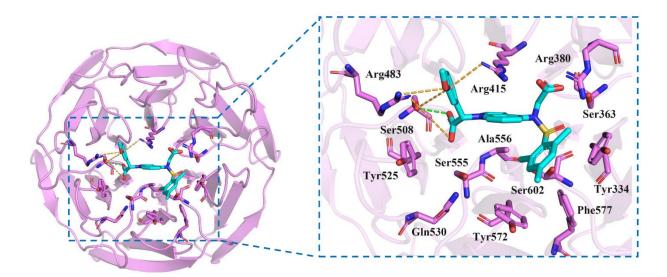
methoxyphenyl)acetamide (19h). 19h was synthesized according to the procedure of **17a**, white solid, yield 43%; mp: 201-203 °C. ¹H NMR (300 MHz, DMSO-*d*₆) δ 12.27 (s, 1H), 9.10 (s, 1H), 7.71 - 7.49 (m, 3H), 7.36 (dd, *J* = 17.6, 8.5 Hz, 3H), 7.06 (dd, *J* = 17.8, 8.3 Hz, 5H), 6.89 (d, *J* =

18.4 Hz, 6H), 6.27 - 5.89 (m, 2H), 4.02 (d, J = 12.9 Hz, 1H), 3.88 - 3.82 (m, 3H), 3.79 - 3.71 (m, 3H), 3.68 (t, J = 5.8 Hz, 3H), 3.64 - 3.52 (m, 3H), 2.34 (d, J = 14.0 Hz, 3H); HRMS (ESI): found 879.2031 (C₄H₄₃N₄O₁₂S₃. [M+H]⁺ requires 879.2034); HPLC (85:15 methanol:water with 1‰ TFA): t_R = 5.53 min, 96.4%.

N-((2-methoxy-4-methylphenyl)sulfonyl)-2-(4-((4-methoxy-N-(2-((3-

methoxyphenyl)sulfonamido)-2-oxoethyl)phenyl)sulfonamido)indolin-1-yl)-2-(3-

methoxyphenyl)acetamide (19i). 19i was synthesized according to the procedure of 17a, white solid, yield 42%; mp: 184-186 °C. ¹H NMR (300 MHz, DMSO-*d*₆) δ 12.65 (s, 1H), 12.21 (s, 1H), 7.84 (dd, J = 8.8, 3.1 Hz, 4H), 7.66 (d, J = 8.8 Hz, 4H), 7.46 (s, 1H), 7.23 (d, J = 8.7 Hz, 2H), 6.90 - 6.80 (m, 6H), 6.77 (d, J = 9.5 Hz, 2H), 6.19 (d, J = 3.8 Hz, 2H), 5.97 (d, J = 8.2 Hz, 1H), 4.83 (s, 1H), 4.47 (s, 1H), 3.88 (s, 1H), 3.82 (s, 3H), 3.79 (s, 3H), 3.73 (s, 3H), 3.66 (s, 3H), 3.23 (d, J = 3.9 Hz, 1H), 2.88 (s, 2H), 2.34 (s, 3H); HRMS (ESI): found 879.2031 (C₄H₄₃N₄O₁₂S₃. [M+H]⁺ requires 879.2034); HPLC (85:15 methanol:water with 1‰ TFA): t_R = 5.74 min, 96.8%.


S3. Keap1 Kelch Domain Expression and Purification.

Keap1 Kelch domain was expressed and purified as previously described.¹ Briefly, the human Keap1 Kelch-DC (residues 321-609) was cloned into a pET-28a vector (Zoonbio Biotechnology) between a NcoI site and a XhoI site. The construct was expressed in *Escherichia coli* ArcticExpressTM (DE3), and the cells were then shaken until the optical density at 595 nm reached 0.4 to 0.6. The cells were next induced with a final concentration of 0.2 mM isopropyl-β-D-1thiogalactopyranoside (IPTG) for another 4 h. Then the protein was purified on an ÄKTATM pure 25 system (GE Healthcare, Life Sciences) employing a Ni-NTA column (Novagen). Lastly, 10% SDS-PAGE was used for confirming the molecular weight of the purified protein.

S4. Fluoresce Polarization (FP) Competition Assay.

In vitro inhibitory activity of compounds on Keap1-Nrf2 PPI was carried out in the black nonbinding surface Corning 3676 384-well plates by FP assay. The experimental procedure was detailedly described previously.¹ In brief, each well was added 40 μ L of assay solution, comprised of 10 μ L of 4 nM FITC-9mer Nrf2 peptide amide, 10 μ L of 12 nM Keap1 Kelch domain protein, 10 μ L of HEPES buffer and 10 μ L of diluted compounds in different concentrations. After 0.5 h incubation with slow shaking at room temperature, the fluorescence intensity was measured at λ ex 485 nm and λ em 530 nm using a SpectraMax Multi-Mode Microplate Reader (Molecular Devices). The data were analyzed by GraphPad Prism 6.0 software.

S5. The Binding Mode of Compound 15 with Keap1.

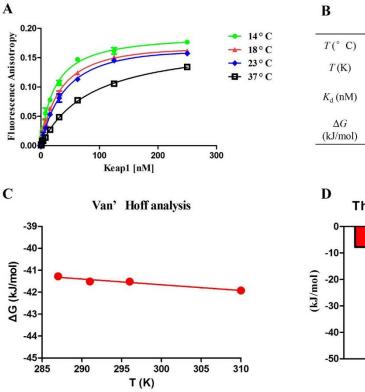
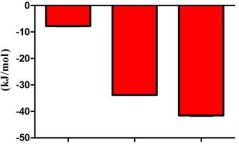


Figure S1. The binding mode of **15** with Keap1 using a docking method. The docking site was derived from the position of the small molecular ligand cocrystallized in the binding site of Keap1 (PDB 4XMB). The ligand is represented as sticks. Hydrogen bonds are represented by green dashed lines, and electrostatic interactions are represented by orange dashed lines. The π - π interactions are represented by pink dashed lines. The carbon atoms of small molecules and Keap1 residues are colored cyan and purple, respectively.

S6. Determination of Thermodynamics Data Based on a Tracer Displacement Assay.


The thermodynamic data of test compounds were determined by a tracer displacement assay described in the literature.² The dissociation constants (K_d) of the Nrf2-derived peptide labeled with FITC (probe) against Keap1 were determined at different temperatures. The Keap1 concentration was increased in the presence of a fixed concentration of probe, resulting in the formation of Keap1: probe complex with an increase in observed fluorescence anisotropy readout (Figure S2A). By fitting the data to a one site total fit model, the K_d values were determined and $\frac{849}{849}$

listed in Figure S2B. According to the equation $\Delta G = -RTln(1/Kd)$, the free binding energies (ΔG) were also determined and listed in Figure S2B. By plotting the free binding energies against the corresponding temperatures (Van't Hoff analysis; Figure S2C) the changes in enthalpy (ΔH , given by the y-intercept) and changes in entropy (ΔS , given by the slope) were determined (Figure S2D). The thermodynamics of binding of test compounds to Keap1 were determined as following procedure: First, the IC₅₀ values of compounds were measured at different temperature and fitted using a variable slope four parameters fit. Determined IC₅₀ values were converted to the corresponding dissociation constants according to Cheng-Prusoff-equation: K_i (compound) = IC₅₀ (compound)/[1 + [probe]/ K_d (probe)]^{3, 4}. Subsequently the ΔG is calculated and plotted against the associated temperatures.

-				
<i>T</i> (° C)	14	18	23	37
$T(\mathbf{K})$	287	291	296	310
$K_{\rm d}$ (nM)	30.73±3.32	35.33±2.51	47.16±3.67	86.24±6.50
ΔG (kJ/mol)	-41.27	-41.51	-41.52	-41.92

Figure S2. (A) Determination of K_d values for the interaction between Nrf2-derived FITC labeled peptide (probe) and Keap1 at various temperatures. Increasing Keap1 concentrations were incubated with the probe at different temperatures. (B) K_d and ΔG values of probe-Keap1 interactions at various temperatures. (C) Van' Hoff analysis of probe-Keap1 interactions. (D) Thermodynamic profiling of probe-Keap1 interactions.

S7. Isothermal Titration Calorimetry (ITC) Assay.

According to the previous method,¹ ITC assay was carried out at 25 °C with the ITC200 system (MicroCal). Both the protein sample and the compound were dissolved in 10 mM HEPES buffer (pH 7.4). 2 μ L aliquots of indicated concentrations of compounds dissolved in 10 mM HEPES buffer (pH 7.4) were injected 19 times at 2.5 min intervals from a stirring syringe (750 rpm) into the sample cell containing 220 μ l of corresponding concentrations of Keap1 Kelch domain (dissolved in the same HEPES buffer). The data were analyzed using the Origin 7.0 software (MicroCal).

S8. Biolayer Interferometry (BLI) Assay.

The BLI assay was performed as previously described.¹ The Keap1 Kelch domain protein was biotinylated in 20 mM HEPES buffer (pH 7.0). Octet Red 96 instrument (FortéBio Inc.) was used to evaluated the interaction between the ligand and the protein at 30 °C. First, the sensor SSA

(Super Streptavidin Biosensors tips, FortéBio, Inc., Menlo Park, CA) were prewetted with buffer (FortéBio) to construct a baseline. Then the biotinylated Keap1 protein was immobilized onto sensors. After that, this detection contained five steps: (a) baseline acquisition; (b) protein loading onto the sensor; (c) second baseline acquisition; (d) association of the ligand for the measurement of k_{on} ; (e) dissociation of the ligands for the measurement of k_{dis} . Four concentrations of compound **19a** were used for test. The association and dissociation plot and kinetic constants were obtained with FortéBio data analysis software. Equilibrium dissociation constant (K_d) was calculated by the ratio of k_{dis} to k_{on} .

S9. ARE-Luciferase Activity Assay.

This assay was performed according to previous procedure reported previously.⁵ HepG2-ARE-C8 cells were plated in 96-well plates (4×10^4 cells/well) and incubated overnight. The cells were exposed to different concentrations of **19a**, with the luciferase cell culture lysis reagent as a blank, SFN serving as a positive control and DMSO as a negative control. After 12 h of treatment, the medium was removed, and 100 µL of cold PBS was added to each well. Then, the cells were harvested using the luciferase cell culture lysis reagent. After centrifugation, 20 µL of the supernatant from the lysate was used to measure luciferase activity according to the manufacturer's protocol (Promega, Madison, WI). The luciferase activity was determined by a Luminoskan Ascent (Thermo Scientific, USA). The data were obtained in triplicate and shown as a fold induction over the control.

S10. Cell Viability Assay.

3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was performed to evaluate the cytotoxicity of **19a** in the H9c2 cells. In brief, cells were seeded into 96-well plates for overnight, treated with test compound **19a** at various concentrations (0-100 μ M) for 24 h. Subsequently, 20 μ L of MTT (5 mg/mL) was added to each well. After incubation at 37°C for 4 h, MTT solution was removed and DMSO (150 μ L) was added to each well. The absorbance values were determined by Multiskan Spectrum Microplate Reader (Thermo, USA) at 570 nm and 630 nm. Each concentration was tested in triplicate wells and data were analyzed as described previously. The data in Figure S3 showed that the survival rate remained higher than approximately 90% under 100 μ M, indicating no apparent cytotoxicity for the treatment of **19a**.

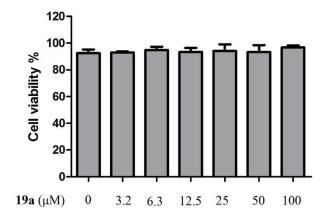


Figure S3. The cytotoxicity of 19a against the H9c2 cells using the MTT assay.

S11. RNA Extraction and qRT-PCR Analysis.

The quantitative real-time (qRT)-PCR was performed as reported previously.⁶ Total RNA of H9c2 cells was extracted from the treated cells using TRIzol reagent (Invitrogen). Then the RNA was converted to cDNA by reverse transcriptase (PrimeScript RT reagent kit) according to the manufacturer's instructions. qRT-PCR analysis of Nrf2, HO-1, NQO1, and GCLM were carried out using the StepOne System Fast real-time PCR system (Applied Biosystems). The values are shown as the fold of the control. All genes' mRNA expression was normalized against GAPDH expression. Primers used for qRT-PCR are listed as follows: Nrf2 (Sense primer: AACCACCCTGAAAGCACGC, Antisense primer: TGAAATGCCGGAGTCAGAATC); HO-1 (Sense primer: ATGGCCTCCCTGTACCACATC, Antisense primer: TGTTGCGCTCAATCTCCTCCT); NQO1 (Sense primer: CGCAGACCTTGTGATATTCCAG Antisense primer: CGTTTCTTCCATCCTTCCAGG); GCLM (Sense primer: TTGGAGTTGCACAGCTGGATTC, Antisense primer: TGGTTTTACCTGTGCCCACTG).

S12. Western Blot Analysis.

Anti-Nrf2 (16396-1-AP), Anti-HO-1 (10701-1-AP), Anti-NQO1 (11451-1-AP), and anti-GCLM (14241-1-AP) antibodies were purchased from Proteintech Group, Inc. Anti-β-actin (AP0060) was purchased from Bioworld (Bioworld, USA). The detailed procedure was described previously.¹ Generally, the protein extracts were separated by SDS-PAGE and then blotted onto PVDF

membranes (PerkinElmer, Northwalk, CT, USA). After being blocked with 1% BSA for 2 h, the membranes were incubated with the primary antibodies at 4 °C overnight. Then they were washed and treated with a DyLight 800 labeled secondary antibody at room temperature for 2 h. The membranes were screened through the odyssey infrared imaging System (LI-COR, Lincoln, Nebraska, USA).

S13. IL-1β, IL-6, and TNF-α Production.

Inflammatory cytokines consisting of IL-1 β (IL-1 β (Rat) ELISA kit, EK0393, Boster), IL-6 (IL-6 (Rat) ELISA kit, EK0412, Boster), and TNF- α (TNF- α (Rat) ELISA kit, EK0526, Boster) were assessed using sandwich ELISA method according to the manufacturer's instructions.

S14. Evaluation of GSH/GSSG Ratio.

The ratio of GSH/GSSG (GSH and GSSG Assay Kit, S0053, Beyotime, China) was measured evaluated in H9c2 cells using commercially available kit according to the manufacturer manual.

S15. Detection of ROS Level.

H9c2 cells were seeded in 6-well plates at the density of 70-80% confluence per well for overnight incubation. Then the cells were treated with test compounds for indicated time. After treatment, cells were washed once with 2 mL of 10% PBS and stained with 10 mM cH2DCF-DA

(S0033, Reactive Oxygen Species Assay Kit, Beyotime, China) in the dark at 37 °C for 20 min in DMEM medium free with FBS. Analysis was done with a fluorescence microscope (OLYMPUS DP72, Japan) equipped with a U-RFL-T power supply.

S16. Animal Experiments.

Histopathological Examination. The heart samples fixed with 10% buffered formalin were embedded in paraffin. Each section (4 μ m) was stained with H&E. The fixed sections were examined by light microscopy for the presence of lesions. Histological evaluation of the severity of inflammation was performed using a scoring system, by a pathologist who was blinded to the treatment. The histologic inflammatory score was shown in Figure S4.

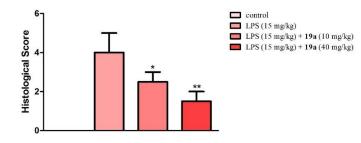


Figure S4. Histologic inflammatory score. The results are expressed as the means \pm SEM (n = 8 mice/group). *p < 0.05, **p < 0.01 and ***p < 0.001, one-way ANOVA with Tukey-Kramer posttest.

Immunohistochemical Analysis. The dissected cardiac tissues were prepared for immunohistochemical (IHC) analysis of the expression patterns of Nrf2, HO-1, NQO1 and GCLM. This analysis was performed as reported previously.¹ Briefly, the slides were deparaffinized and

heated by using microwave and boiled twice for 6 min in 10 mM citrate buffer (pH 6.0) for antigen retrieval. Each section was treated with 5% hydrogen peroxide and 4% peptone casein blocking solution for 15 min to diminish nonspecific staining. The slides were incubated with primary antibodies (Proteintech Group, Inc) at room temperature for 40 min in Tris-buffered saline containing 0.05% Tween 20, and then developed using respective horseradish peroxidase (HRP)-conjugated secondary antibodies (rabbit or mouse) EnVisionTM System (Dako). The peroxidasebinding sites were detected by staining with 3,3'-diaminobenzidine tetrahydrochloride (Dako). Finally, counterstaining was performed using Mayer's hematoxylin.

IL-1β, IL-6 and TNF-α Production. Freshly collected blood samples were kept at room temperature for 20 min and centrifuged at $3000 \times \text{g}$ for 10 min at 4 °C, and the supernatant was used for detection and analysis. The secretion of IL-1β, IL-6 and TNF-α in mouse serum samples was measured by double-antibody sandwich ELISA according to the manufacturer's instructions of these commercially available kits ((IL-1β (m) ELISA kit, EK0394, Boster), IL-6 (IL-6 (m) ELISA kit, EK0411, Boster), and TNF-α (TNF-α (m) ELISA kit, EK0527, Boster).

Evaluation of ROS and GSH/GSSG ratio. The ratio of GSH/GSSG (GSH and GSSG Assay Kit, S0053, Beyotime, China) and ROS level (S0033, Reactive Oxygen Species Assay Kit, Beyotime, China) were measured in the heart homogenate using commercially available kits according to the manufacturer's instructions.

S17. Statistical Analysis.

Results are expressed as the means \pm SEM. Statistical tests were performed using GraphPad Prism 6.0 software. For multiple comparisons between groups, a one-way ANOVA was performed to detect statistical differences. Differences within the ANOVA were determined using a Tukey'sposthoc test.

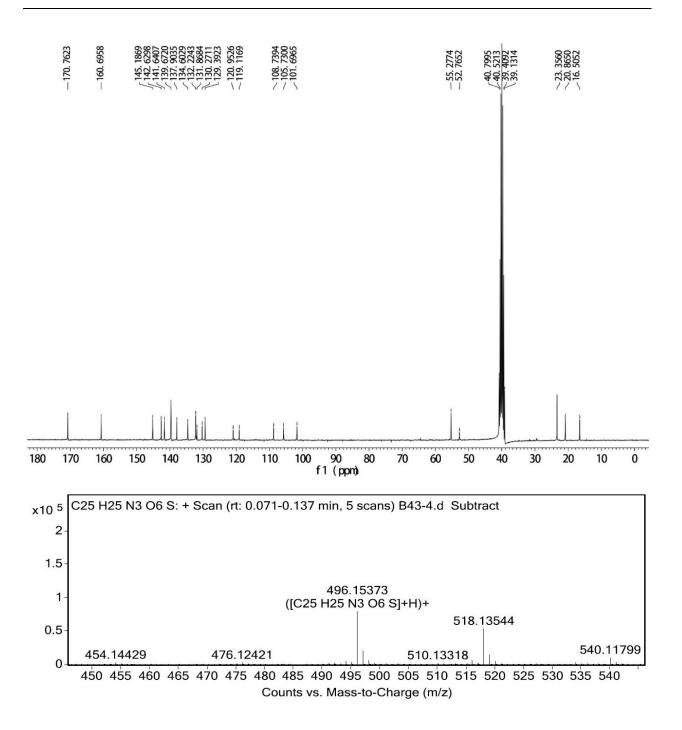
S18. References.

(1) Lu, M. C.; Zhang, X.; Wu, F.; Tan, S. J.; Zhao, J.; You, Q. D.; Jiang, Z. Y. Discovery of a Potent Kelch-Like ECH-Associated Protein 1-Nuclear Factor Erythroid 2-Related Factor 2 (Keap1-Nrf2) Protein-Protein Interaction Inhibitor with Natural Proline Structure as a Cytoprotective Agent against Acetaminophen-Induced Hepatotoxicity. *J. Med. Chem.* **2019**, 62, 6796-6813.

(2) Nasiri, H. R.; Linge, S.; Ullmann, D. Thermodynamic profiling of inhibitors of Nrf2:Keap1 interactions. *Bioorg. Med. Chem. Lett.* **2016**, 26, 526-529.

(3) Cheng, Y.Prusoff, W. H. Relationship between the inhibition constant (K1) and the concentration of inhibitor which causes 50 per cent inhibition (I50) of an enzymatic reaction. *Biochem Pharmacol.* **1973**, 22, 3099-3108.

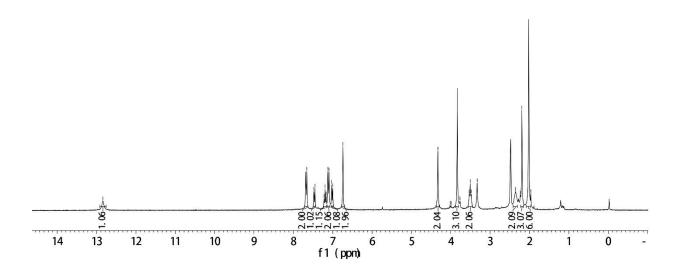

(4) Munson, P. J.Rodbard, D. An exact correction to the "Cheng-Prusoff" correction. *J Recept Res.* **1988**, 8, 533-546.

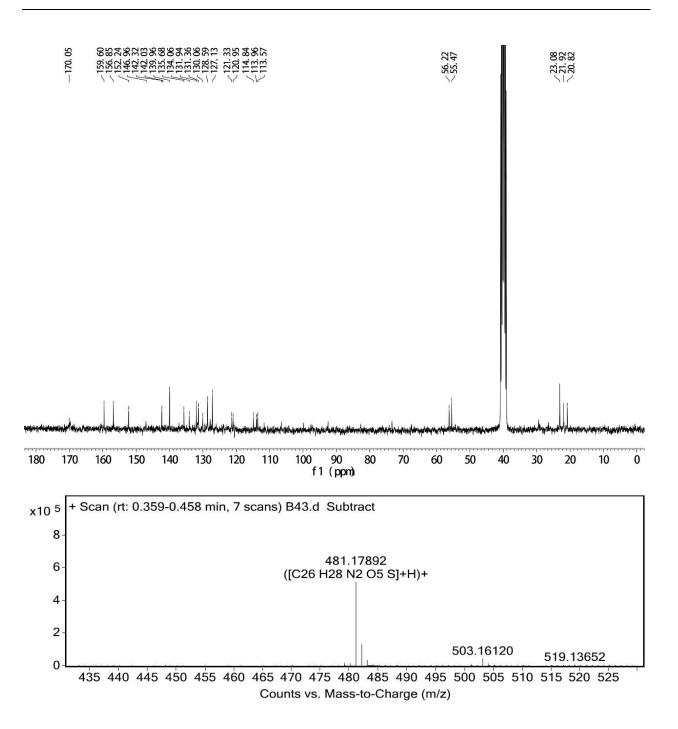

(5) Jiang, Z. Y.; Lu, M. C.; Xu, L. L.; Yang, T. T.; Xi, M. Y.; Xu, X. L.; Guo, X. K.; Zhang, X. J.;
You, Q. D.; Sun, H. P. Discovery of potent Keap1-Nrf2 protein-protein interaction inhibitor based
on molecular binding determinants analysis. *J. Med. Chem.* 2014, 57, 2736-2745.

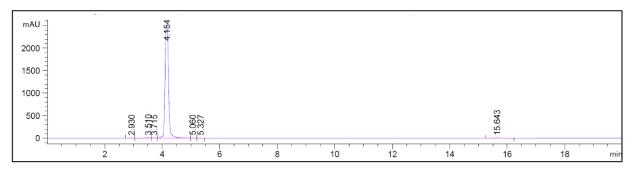
(6) Lu, M.-C.; Ji, J.-A.; Jiang, Y.-L.; Chen, Z.-Y.; Yuan, Z.-W.; You, Q.-D.; Jiang, Z.-Y. An inhibitor of the Keap1-Nrf2 protein-protein interaction protects NCM460 colonic cells and alleviates experimental colitis. *Sci Rep.* **2016**, 6, 26585.

S19. ¹H-NMR, ¹³C-NMR, HRMS and HPLC Spectra for Representative Target Compounds.

1. ¹H-NMR, ¹³C-NMR, HRMS and HPLC Spectra for 10a

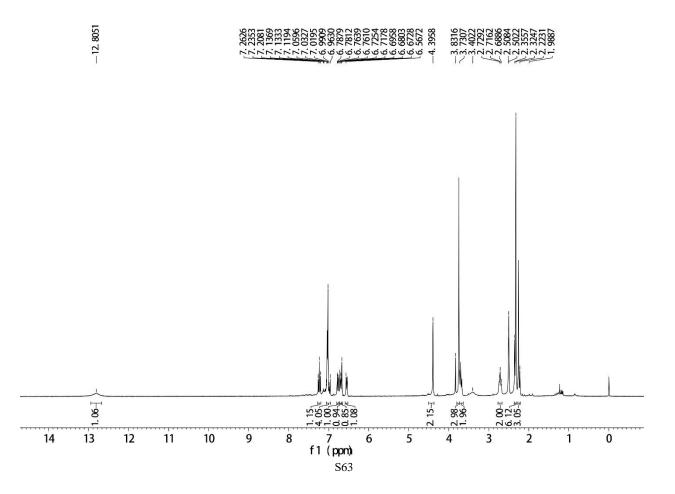


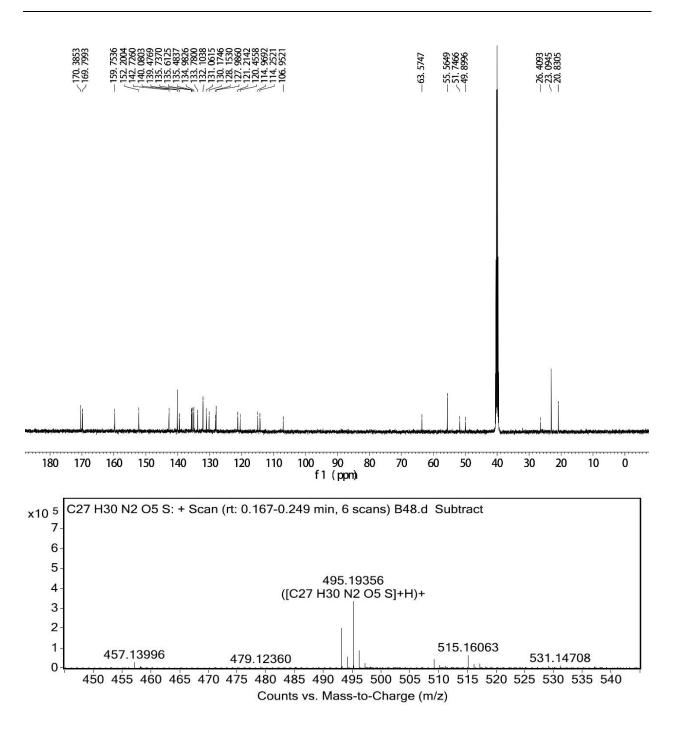

mAU = 3000 =	6.106		
2500			
2000			
1500			
1000			
500	.128		
0			

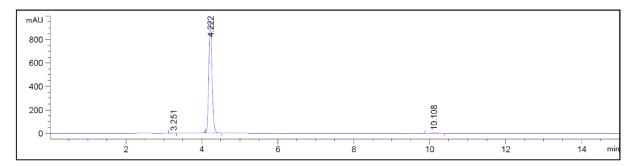

Peak	Retention Time	Туре	Width	Area	Height	Relative Area
	min		min	mAU*s	mAU	%
1	5.533	BV	0.2317	622.49640	40.87919	1.4414
2	6.106	VB	0.2038	4.25499e4	3270.56055	98.5270
3	7.128	BB	0.1338	13.64049	1.69734	0.0316

2. ¹H-NMR, ¹³C-NMR, HRMS and HPLC Spectra for 11a

		4, 3278 4, 0166 4, 0066 4, 00666 4, 00666 4, 0066666666666666666666666666666666666
--	--	---

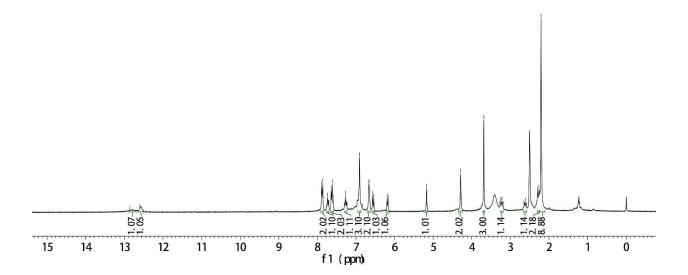


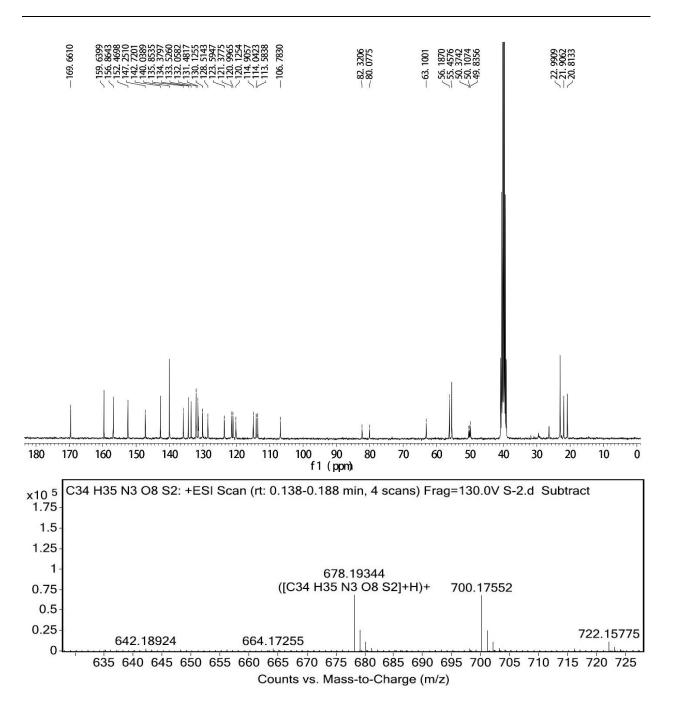


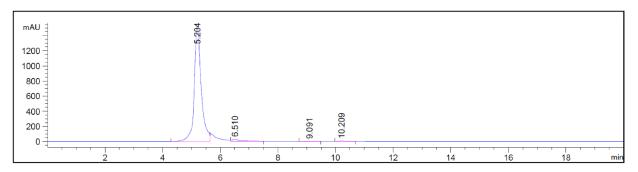


Peak	Retention Time min	Туре	Width min	Area mAU*s	Height mAU	Relative Area %
1	3.715	VV	0.1536	33.42636	3.26164	0.1573
2	4.154	VV	0.1317	2.10018e4	2506.84570	98.8172
3	5.060	VV	0.1297	20.64192	2.36692	0.0971
4	5.327	VB	0.1330	14.30538	1.68589	0.0673
5	15.643	BB	0.2865	70.92972	3.85815	0.3337

3. ¹H-NMR, ¹³C-NMR, HRMS and HPLC Spectra for 14c

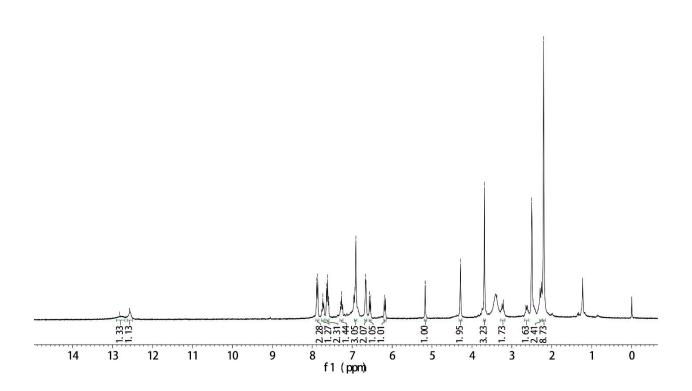


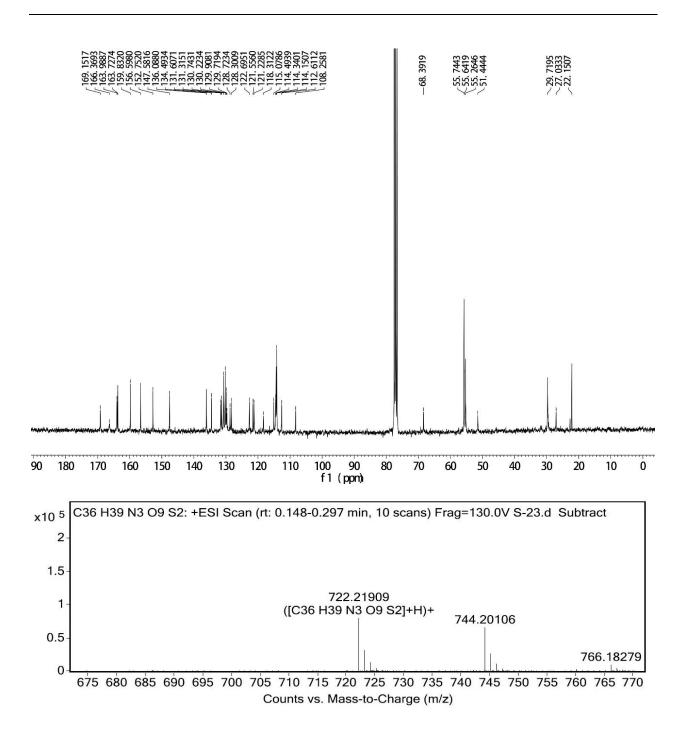


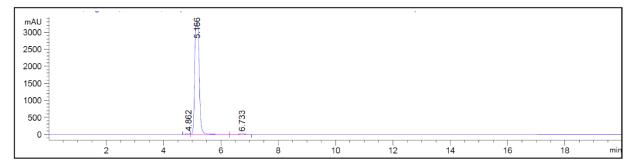

Peak	Retention Time	Туре	Width	Area	Height	Relative Area
	min		min	mAU*s	mAU	%
1	3.251	VB	0.0899	10.97695	1.73233	0.1966
2	4.222	VB	0.0896	5536.50293	955.38245	99.1850
3	10.108	BB	0.1668	34.51756	3.27991	0.6184

4. ¹H-NMR, ¹³C-NMR, HRMS and HPLC Spectra for 16a

-12. 8570 -12. 5968	- 2015 -	20225919 20225919 20225919 2024 2024 2024 2024 2024 2024 2024 202

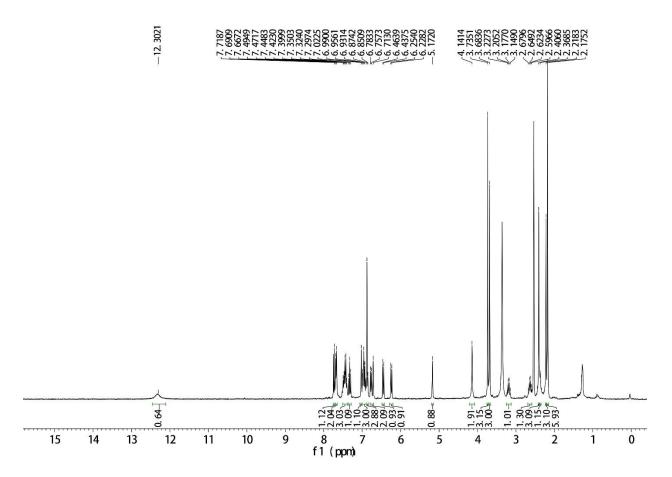


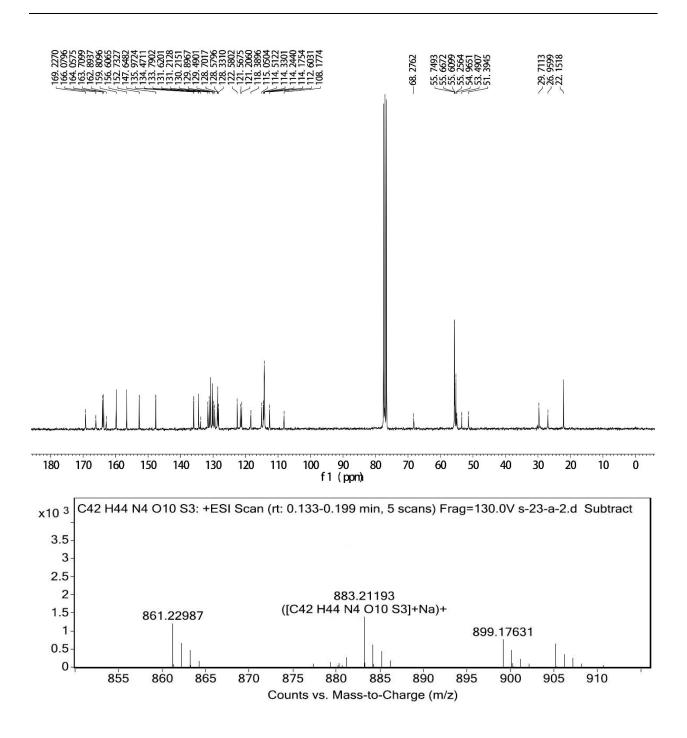


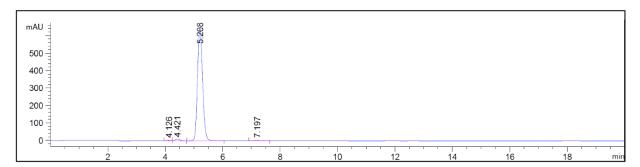

Peak	Retention Time min	Туре	Width min	Area mAU*s	Height mAU	Relative Area %
1	5.204	$_{\rm BV}$	0.2498	2.56136e4	1495.27893	97.5315
2	6.510	VB	0.2616	571.93182	29.57635	2.1778
3	9.091	BB	0.1723	22.71348	1.97347	0.0865
4	10.209	BB	0.1935	53.63646	4.07553	0.2042

5. ¹H-NMR, ¹³C-NMR, HRMS and HPLC Spectra for 16w

5792	8879 8879 8879 8632 86571 955896 9528 9528 9528 9528 9528 9528 9528 11956 11956 11956	2887	6893 3751 2138 5025 5025 2614 2064	
112		4.	www.dddd	

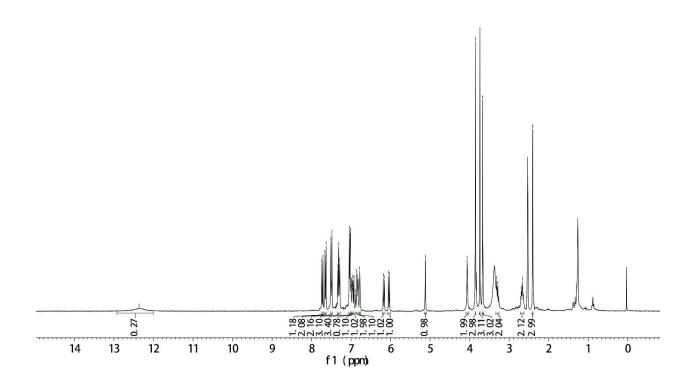


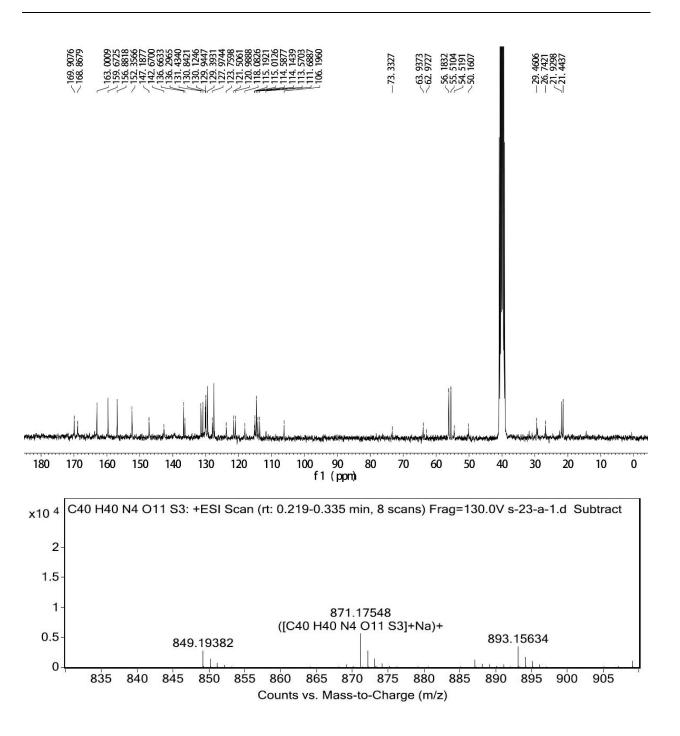


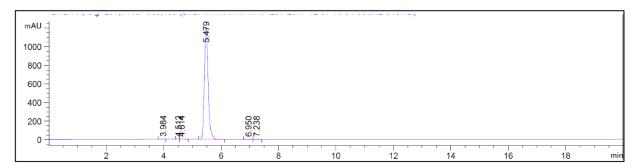


Peak	Retention Time	Туре	Width	Area	Height	Relative Area
	min		min	mAU*s	mAU	%
1	4.862	BV	0.1219	242.13307	30.74068	0.6710
2	5.166	VB	0.1727	3.55795e4	3276.26611	98.5927
3	6.733	BB	0.1598	265.72113	25.86738	0.7363

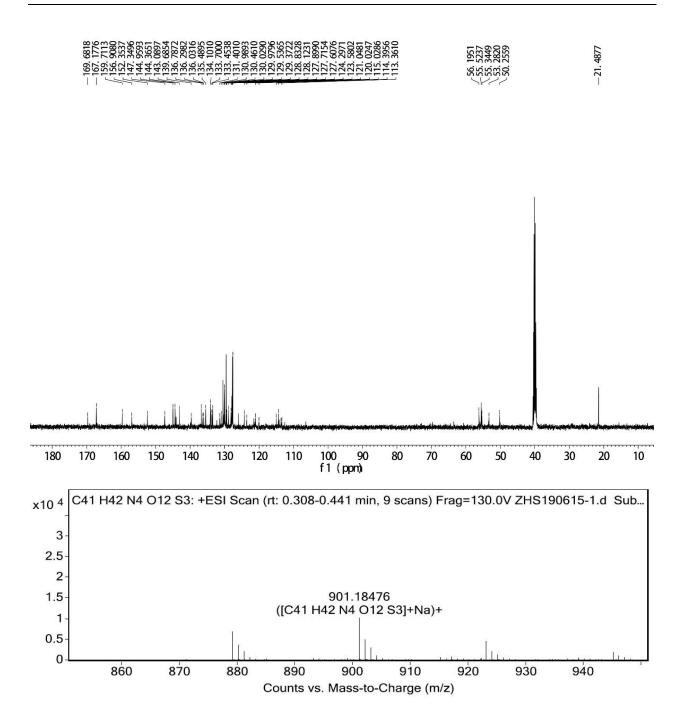
6. ¹H-NMR, ¹³C-NMR, HRMS and HPLC Spectra for 17a






Peak	Retention Time min	Туре	Width min	Area mAU*s	Height mAU	Relative Area %
1	4.126	BV	0.1553	28.81402	2.86510	0.3556
2	4.421	VB	0.1862	105.06260	8.74292	1.2968
3	5.208	BB	0.1911	7926.56494	646.05945	97.8361
4	7.197	BB	0.2167	41.44003	2.93472	0.5115

7. ¹H-NMR, ¹³C-NMR, HRMS and HPLC Spectra for 17b



Peak		Туре	Width	Area	0	Relative Area
	min		min	mAU*s	mAU	%
1	4.614	VB	0.1207	29.64063	3.65058	0.2660
2	5.479	BB	0.1408	1.10545e4	1207.91138	99.1993
3	6.950	BV	0.1585	23.67913	2.37081	0.2125
4	7.238	VB	0.1483	15.80267	1.67212	0.1418

8. ¹H-NMR, ¹³C-NMR, HRMS and HPLC Spectra for 19a

mAU = 500 -			5.473							
400										
300										
200										
100						11.772				
0 -	2	4	6	8	10	12	14	16	18	min

Peak	Retention Time min	Туре	Width min	Area mAU*s	Height mAU	Relative Area %
1 2	5.473 11.772	BB BB	00	8399.07617 137.16754	• .=.•.•=•	98.3931 1.6069