Supplementary Materials

Supplementary materials Table 1: Lophelia pertusa occurrence locations with associated water chemistry in the Southern California Bight.
Distinct occurrences were classified by 1) a minimum survey time of 3 minutes since last occurrence or 2) by an occurrence separated by
distinctly different substrate. Occurrence column includes characterization of reef-building (RB), patchy aggregations (PA), sparse live patches
(SL), or rubble only (RO). Depth is noted as maximum and minimum for occurrences at each site. Temperature (C), salinity (psu), and oxygen
(umol/kg) are mean values (2007-2015) from deepest and shallowest occurrence respectively. These values were extracted from the nearest
California Cooperative Oceanic Fisheries Investigations station. Mean aragonite saturation, dissolved inorganic carbon (umol/kg), pH(r), and
total alkalinity (umol/kg), (deepest then shallowest), were derived from empirical algorithms (see Methods), which were validated with con-
ductivity-temperature-depth cast bottle samples in 2015 (Supplementary Materials Figure 1). All coral locations are available
at https://deepseacoraldata.noaa.gov/. Water chemistry data is available at http:/calcofi.org/. ‘Sampling sites’ represent values at time of L.

pertusa collection.
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Supplementary materials Figure 1: Bathymetric map of Lophelia pertusa occurrences in the Southern
California Bight. Red and black circles represent sites where L. pertusa was present and absent, respec-
tively. The inset shows two sites of particularly high abundance, Piggy Bank and Footprint in the Channel
Islands National Marine Sanctuary.
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Supplementary materials Figure 2: Aragonite saturation profile in the Channel Islands National Marine
Sanctuary. Box plots represent aragonite saturation values derived from an algorithm (see Methods) us-
ing California Cooperative Oceanic Fisheries Investigation data from 2007-2015. The boxplots show
median values, first and third quartiles, minimum and maximum values and outliers. Red points are from
conductivity-temperature-depth (CTD) cast bottle samples collected in June 2010, March 2015 and Au-
gust 2015. Blue dots represent depths of Lophelia pertusa occurrences at their respective median arago-
nite saturation values.
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Supplementary materials Figure 3: Hierarchical levels of Lophelia pertusa cold-water corals. The
multiscale material setup of cold-water corals (CWC) ranges from reef framework to aragonite crystals
(based on Mass et al. 2014; Mouchi et al. 2017) and illustrates the order of length scales investigated
here. Skeletal density was measured on ball-milled dust with particle sizes ~1 um. EBSD measurements
provide results on the aragonite needle length scale. Nanoindentation and Raman was performed on the
RAD level while SRuCT imaging was performed at a voxel size of 2.6 um.
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Supplementary materials Figure 4: Density, mechanics and material chemistry of CINMS L. per-
tusa. The Figure shows a) Raman crystallinity as 1/Full Width Half Maximum (1/FWHM); b) Hardness
of the skeletal material measured at microscopic length scales; ¢) Electron Backscatter Diffraction of live
coral above and below the ASH (see also Supplementary Materials Figure 9); d) Ductility (the ratio
between plastic and total work) of the skeletal material measured at microscopic length scales; data rep-
resented as medians with min/max error bars at respective median (large diamond). Significant differ-
ences between live and dead samples are indicated by *.
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Supplementary materials Figure 5: Image analyses of synchrotron radiation pCT data. a) and b) show
cross sections of a dead sample as shown in Figure 4 after converting the data to 16 bit. Images were
thresholded and the actual sample volume, white, in c) and d) was determined. To calculate the total,
non-porous volume, a binary closing operation was performed to the non-porous volume, white plus blue
areas, in ¢) and d). Volume fraction for the whole polyp was determined by dividing actual volume
(white) by total non-porous volume (white + blue). Larger pores, e.g. grey area in (d) due to borers or
grown features were not considered by our algorithm. The red arrows in a-d) point to regions were skel-
etal material was dissolved rather than represented as internal porosity, presumably a later stage in the
process. Image processing did not artificially close those spots so that porosity determined is considered
internal only and represents a conservative measure.
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Supplementary materials Figure 6: a) Lophelia pertusa skeleton from above the ASH with (dark) and
without soft-tissue (light); b) L. pertusa skeleton from below ASH. Line in image (red arrow) indicates
where protective soft-tissue was present (right of line) and where there was no protective tissue (left of
line), with loss of surface features from dissolution; ¢) high resolution SEM image of dissolution showing
aragonite needles.




Supplementary materials Figure 7: Skeletal mass density of live and dead Lophelia pertusa collected
from the Southern California Bight. Image shows median, minimum, and maximum as well as the meas-

ured points.
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Supplementary materials Figure 8: Scaling up from branch to habitat. Schematic of how the structural
integrity model of a hollow cylinder is reproducible and can be expanded through mathematical and
computational modelling to create much larger, complex framework. The structural integrity of the
framework can then be assessed by integrating information of the exposure to, and severity of the stressor
to quantify timescales of habitat crumbling. The shaded area with coral fragments below the coral frame-
work represents coral rubble infilled with sediment, and (...(n)) indicates how the framework can be
extended to much larger sizes in a reproducible way. Coral imagery adapted from illustrations by Thomp-
son (1873).
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Supplementary materials Figure 9: Electron Backscatter Diffraction (EBSD) of live Lophelia pertusa
from above and below the aragonite saturation horizon in the Southern California Bight. a) Progression
of EBSD processing as scanning electron microscope image (top), aragonite crystal identification (mid-

dle) and noise-processed image (bottom). b) EBSD images with pole orientation map of individual arag-

onite crystals from four different CWC reef sites with different aragonite saturation states (Qarag).
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Supplementary materials Figure 10: Two example images of Lophelia pertusa in laboratory conditions
exhibiting soft-tissue retraction from main skeleton, with full tissue retained in and around corallites.
Red arrows indicate line of tissue remaining on skeleton.
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