Time-dynamic food web modelling to explore environmental drivers of ecosystem change on the Kerguelen Plateau

Roshni C. Subramaniam, Jessica Melbourne-Thomas, Stuart P. Corney, Karen Alexander, Clara Péron, Philippe Ziegler and Kerrie M. Swadling

Correspondence to Roshni.Subramaniam@utas.edu.au

Frontiers in Marine Science, doi 10.3389/fmars.2020.00641

Appendix

Ecopath model

The section presents the balanced parameters of the Ecopath model (from Subramaniam et al. 2020) used to initialise the Ecosim model presented in this study (Table A1 and Table A2).

Table A1: Balanced model parameters. B = Biomass in t km⁻², P/B = production/biomass in y⁻¹, Q/B = consumption/biomass in y⁻¹, EE = ecotrophic efficiency, BA = biomass accumulation.

Group name	Trophic level	В	P/B	Q/B	P/Q	EE	BA (t km ⁻²)	BA rate (y ⁻¹)
Baleen whales	3.8	0.027	0.02	6.53	0.0037	0	0	0
Killer whales	5.3	9.3E-06	0.047	10.73	0.0044	0	0	0
Toothed whales and dolphins	5.3	0.0011	0.074	12.79	0.0058	0	0	0
Sperm whale	5.7	0.0017	0.038	5.12	0.0074	0	0	0
Antarctic fur seal	4.8	0.00034	0.26	55.9	0.0047	0.02	0	0
Southern elephant seal	5.4	0.011	0.22	34.02	0.0065	0.00	0	0
Penguins	4.5	0.017	0.159	43.80	0.0036	0.01	0	0
Albatrosses	5.1	3.4E-05	0.07	56.79	0.0012	0.42	0	0
Other seabirds	4.2	0.00085	0.138	314.36	0.0004	0.01	0	0
Cephalopods	4.8	0.28	6.7	17.18	0.39	0.95	0	0
Juvenile Patagonian toothfish	5.0	0.61	0.2	2	0.1	0.79	0.21	0.34
Adult Patagonian toothfish	5.1	0.195	0.105	1.02	0.1	0.45	0.066	0.34
Mackerel icefish	4.1	1.15	0.42	2	0.21	0.93	0	0
Myctophids	3.8	4.4	1	8	0.125	0.95	0	0
Small mesopelagic fish	3.9	2.9	0.5	6.1	0.11	0.94	0	0
Large mesopelagic fish	4.1	1.5	0.22	2.39	0.15	0.91	0	0
Other demersal fish	3.6	1.298	0.502	7.33	0.08	0.93	0	0
Large deep-sea demersal fish	4.3	0.29	0.22	1.5	0.16	0.91	0	0
Krill	3.1	14	1.8	12.86	0.14	0.90	0	0
Other macrozooplankton	2.4	11	4.87	34.79	0.14	0.93	0	0
Mesozooplankton	2.9	22	10.13	33.77	0.3	0.83	0	0
Microzooplankton	2.8	26	52	148.57	0.35	0.86	0	0
Zoobenthos	3.1	32	1	2.85	0.35	0.70	0	0
Bacteria	2.0	19	87	290	0.3	0.95	0	0
Phytoplankton	1.0	33	140	0		0.48	0	0
Macroalgae	1.0	0.7	5.22	0		0.56	0	0
Carcass	1.0					0.82	0	0
Detritus	1.0	197.61				0.89	0	0

Data sources

This section details the trends used to calibrate the model (Table A3) and climate data used to perform correlations (Table A4).

Model fits

This section presents all model version and scenarios fitted during the calibration of the model (Table A5), fits from the best-fit model with original vulnerabilities (Fig A1) and original vulnerabilities used to fit model 3 (Fig A6).

Table A2: Diet from the balanced Ecopath model.

Fun	ctional group	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
1	Baleen whales	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2	Killer whales	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3	Toothed whales and dolphins	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4	Sperm whale	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5	Antarctic fur seal	0	0.015	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
6	Southern elephant seal	0	0.015	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7	Penguins	0	0.25	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8	Albatrosses	0	0.01	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
9	Other seabirds	0	0.01	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
10	Cephalopods	0	0.1	0.55	0.75	0.025	0.547	0.08	0.48	0.13	0.130	0.3	0.3	0	0	0	0.1	0	0.19	0	0	0	0	0	0
11	Juvenile patagonian toothfish	0	0.01	0.01	0.05	0.001	0.02	0	0.09	0	0.018	0	0	0	0	0	0	0	0	0	0	0	0	0	0
12	Adult patagonian toothfish	0	0.01	0.01	0.05	0.001	0.01	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
13	Mackerel icefish	0	0.02	0.02	0.02	0.001	0.005	0.08	0.02	0	0.068	0.04	0.04	0	0	0	0	0	0	0	0	0	0	0	0
14	Myctophids	0	0.03	0.05	0.01	0.92	0.179	0.24	0.04	0.01	0.379	0.06	0.1	0	0	0.05	0.27	0	0.22	0	0	0	0	0	0
15	Small mesopelagic fish	0	0.07	0.05	0.01	0.02	0.04	0.03	0.06	0.04	0.047	0.37	0.09	0.12	0	0	0.09	0	0.04	0	0	0	0	0	0
16	Large mesopelagic fish	0	0.16	0.1	0.01	0.007	0.02	0.042	0.11	0.02	0.042	0	0.02	0.02	0	0	0	0	0	0	0	0	0	0	0
17	Other demersal fish	0	0.07	0.1	0.05	0.02	0.09	0.01	0.02	0.06	0.095	0.03	0.23	0	0	0	0	0	0	0	0	0	0	0	0
18	Large deep-sea demersal fish	0	0.23	0.01	0.05	0.005	0.09	0	0.04	0	0	0	0.12	0	0	0	0	0	0	0	0	0	0	0	0
19	Krill	0.3	0	0.05	0	0	0	0.47	0.02	0.4	0.150	0.08	0	0.7	0.35	0.24	0.1	0.1	0.15	0	0	0	0	0.02	0
20	Other macrozooplankton	0.2	0	0.05	0	0	0	0.06	0.0018	0.33	0.031	0.02	0	0.1	0.3	0.07	0.1	0.25	0.04	0	0.072	0	0	0.08	0
21	Mesozooplankton	0.5	0	0	0	0	0	0	0.00022	0	0.042	0	0	0.06	0.35	0.54	0.05	0.3	0.07	0.45	0.144	0.02	0	0.1	0
22	Microzooplankton	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.15	0	0.48	0.2	0.1	0
23	Zoobenthos	0	0	0	0	0	0	0	0	0	0	0.1	0.1	0	0	0.07	0.14	0.24	0.15	0	0	0	0	0.2	0
24	Bacteria	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.4	0.2	0
25	Phytoplankton	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.4	0.592	0.5	0.4	0.25	0
26	Macroalgae	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.03	0.15	0.1	0.13	0	0	0	0	0	0
27	Carcass	0	0	0	0	0	0	0	0.12	0.01	0	0	0	0	0	0	0	0.01	0.01	0	0	0	0	0.01	0
28	Detritus	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.192	0	0	0.04	1

Table A3: Sources of time-series data used to calibrate Ecosim. MNHN = Muséum national d'Histoire naturelle, AFMA = Australian Fisheries Management Authority.

Species	Years	Biomass (source)	Catch
Southern right whale	1993–2015	Counts during aerial survey	
-		(Bannister et al., 2015)	
Southern elephant seal	1956–2009	Number of breeding females on	
		Kerguelen Island (Authier et al.,	
		2011)	
Black-browed albatross	1978–2017	Population of one colony on	
		Kerguelen Island (Weimerskirch	
		et al., 2018)	
Patagonian toothfish:			
French EEZ Longline	2005–2018	CPUE provided by MNHN	MNHN
Australian EEZ Longline	2003–2018	CPUE provided by AFMA	AFMA
Australian EEZ Trawl	1997–2018	CPUE provided by AFMA	AFMA
Mackerel icefish	1997–2018	Estimated biomass (CCAMLR,	CCAMLR (2018)
		2018)	
French EEZ model	1979–2019	MNHN	
estimated biomass			
Australian EEZ model	1982–2016	AFMA	
estimated biomass			

Table A4: Climate data sources

Variable	Years	Description	Units
SST ¹	1986-2018	NCEP Reanalysis (Kalnay et al., 1996)	°C
SAM^2	1986-2012	Difference of zonal mean sea level pressure between 40°S and 65°S	NA
Chl a ³	2002-2018	MODIS-Aqua	mg m ⁻³
Zonal wind ⁴	1986-2018	NCEP Reanalysis (Kalnay et al., 1996)	Surface μ wind ms ⁻¹

¹https://www.esrl.noaa.gov/psd/data/20thCean/timeseries/monthly/SAM/

²https://www.esrl.noaa.gov/psd/data/20thCean/timeseries/monthly/SAM/ ³https://giovanni.gsfc.nasa.gov/ ⁴https://www.esrl.noaa.gov/psd/data/timeseries/

Table A5: All model configurations and scenario fits used to find the best-fitting model. V refers to vulnerabilities, pp refers to anomaly spline points. K = total number of parameters estimated in the scenario, NV = number of vulnerabilities estimated, NSpline = number of spline points estimated. Best-fitting scenario is highlighted in bold.

Name	K	NVs	NSpline	SS	AIC	AICc
			Model 3			
Baseline and 5v + 7pp	12	5	7	23.31684	-317.749	-316.088
Baseline and $5v + 2pp$	7	5	2	25.30	-315.02	-314.51
Baseline and $10v + 2pp$	12	10	2	23.63	-315.48	-313.82
Baseline and 2pp	2	0	2	27.19	-313.21	-313.18
Baseline and $5v + 12pp$	17	5	12	21.95	-316.15	-312.62
Baseline and 17pp	17	0	17	21.96	-316.06	-312.53
Baseline and $5v + 17pp$	22	5	17	20.41	-315.78	-309.58
Baseline and 7pp	7	0	7	26.33	-308.13	-307.61
Baseline and 12pp	12	0	12	24.76	-307.44	-305.78
Baseline	0	0	0	29.09	-305.63	-305.63
Baseline and $15v + 2pp$	17	15	2	22.90	-308.85	-305.31
Baseline and $10v + 7pp$	17	10	7	23.47	-304.60	-301.07
Baseline and 5v	5	5	0	28.15	-300.97	-300.73
Baseline and $10v + 12pp$	22	10	12	21.94	-303.36	-297.16
Baseline and 22pp	22	0	22	22.00	-302.90	-296.69
Baseline and $5v + 22pp$	27	5	22	20.37	-302.42	-292.67
Baseline and $10v + 17pp$	27	10	17	20.40	-302.19	-292.44
Baseline and 10v	10	10	0	28.19	-289.72	-288.61
Baseline and $15v + 12pp$	27	15	12	21.54	-292.86	-283.11
Baseline and $15v + 7pp$	22	15	7	23.84	-289.07	-282.87
Baseline and $20v + 12pp$	32	20	12	19.74	-293.17	-278.90
Baseline and $5v + 27pp$	32	5	27	19.80	-292.64	-278.37
Baseline and $10v + 22pp$	32	10	22	19.94	-291.39	-277.11
Baseline and $15v + 17pp$	32	15	17	20.30	-288.33	-274.05
Baseline and 15v	15	15	0	28.56	-275.73	-273.04
Baseline and $25v + 2pp$	27	25	2	23.46	-278.18	-268.43
Baseline and 30v	30	30	0	22.89	-273.70	-261.36
Baseline and $5v + 32pp$	37	5	32	19.37	-280.61	-260.73
Baseline and 20v	20	20	0	28.22	-265.34	-260.31
Baseline and $15v + 22pp$	37	15	22	19.49	-279.60	-259.72
Baseline and 32pp	32	0	32	22.10	-273.75	-259.48
Baseline and $30v + 2pp$	32	30	2	22.65	-269.49	-255.22
Baseline and $20v + 17pp$	37	20	17	20.02	-274.94	-255.06
Baseline and 25v	25	25	0	26.64	-261.91	-253.69
Baseline and $10v + 27pp$	37	10	27	20.21	-273.35	-253.47
Baseline and $30v + 7pp$	37	30	7	21.34	-264.00	-244.12
Baseline and $25v + 7pp$	32	25	7	24.31	-257.32	-243.04
Baseline and $25v + 12pp$	37	25	12	22.16	-257.49	-237.61
Baseline and $10v + 32pp$	42	10	32	19.43	-263.07	-236.37
Baseline and $15v + 27pp$	42	15	27	19.71	-260.60	-233.90
Baseline and $30v + 12pp$	42	30	12	19.74	-260.35	-233.65
Baseline and $25v + 17pp$	42	25	17	19.93	-258.67	-231.97
Baseline and $20v + 22pp$	42	20	22	20.04	-257.79	-231.10
Baseline and $25v + 22pp$	47	25	22	19.12	-247.48	-212.61
Baseline and $30v + 17pp$	47	30	17	19.37	-24522	-210.35
Baseline and $15v + 32pp$	47	15	32	19 73	-242.07	-20720
Baseline and 27pp	27	0	27	34 03	-21419	-20444
Baseline and $20v + 27nn$	_, 47	20	27	20 13	-238.64	-20377
Baseline and $30v + 22nn$	52	30	22	18.69	-231.43	-186.86
Baseline and $20v + 32pp$	52	20	32	19.32	-225.73	-181.16

Baseline and $25v + 27pp$	52	25	27	19.56	-223.65	-179.08
Baseline and $30v + 27pp$	57	30	27	19.23	-204.85	-148.85
Baseline and 25v + 32pp	57	25	32	20.09	-197.32	-141.32
Baseline and 30v + 32pp	62	30	32	17.94	-193.09	-123.70
			Model 4	÷		
Baseline and 2pp	2	0	2	25.75	-206.40	-206.37
Baseline and $10v + 2pp$	12	10	2	21.52	-207.14	-204.89
Baseline and 17pp	17	0	17	19.48	-207.27	-202.42
Baseline	0	0	0	27.57	-201.59	-201.59
Baseline and 5v + 7pp	12	5	7	22.16	-203.34	-201.08
Baseline and $5v + 2pp$	7	5	2	24.77	-200.59	-199.91
Baseline and 7pp	7	0	7	25.28	-197.98	-197.30
Baseline and 12pp	12	0	12	22.82	-199.54	-197.28
Baseline and 5v	5	5	0	26.37	-196.93	-196.61
Baseline and 5v + 17pp	22	5	17	18.12	-202.74	-194.11
Baseline and 5v + 12pp	17	5	12	20.88	-198.27	-193.41
Baseline and 10v + 7pp	17	10	7	21.25	-196.02	-191.16
Baseline and 10v	10	10	0	26.11	-186.85	-185.33
Baseline and $10v + 12pp$	22	10	12	19.48	-193.27	-184.64
Baseline and $5v + 22pp$	27	5	22	16.85	-196.77	-183.00
Baseline and 22pp	22	0	22	20.34	-187.70	-179.07
Baseline and $15v + 7pp$	22	15	7	21.01	-183.46	-174.82
Baseline and 15v + 2pp	17	15	2	24.55	-177.21	-172.35
Baseline and 15v	15	15	0	25.89	-175.55	-171.87
Baseline and $10v + 17pp$	27	10	17	18.66	-183.54	-169.77
Baseline and 27pp	27	0	27	19.69	-176.53	-162.76
Baseline and $20v + 2pp$	22	20	2	23.37	-169.63	-161.00
Baseline and $15v + 12pp$	27	15	12	20.02	-174.36	-160.59
Baseline and $20v + 7pp$	27	20	7	20.73	-169.84	-156.07
Baseline and 20v	20	20	0	26.03	-161.39	-154.42
Baseline and $10v + 22pp$	32	10	22	17.69	-173.51	-153.06
Baseline and $15v + 17pp$	32	15	17	18.20	-169.85	-149.40
Baseline and $25v + 2pp$	27	25	2	22.08	-161.65	-147.88
Baseline and $25v + 7pp$	32	25	7	18.73	-166.10	-145.64
Baseline and 32pp	32	0	32	19.72	-159.40	-138.94
Baseline and 25v	25	25	0	25.28	-150.37	-138.84
Baseline and 30v	30	30	0	21.62	-154.43	-136.86
Baseline and $20v + 12pp$	32	20	12	20.66	-153.33	-132.87
Baseline and $5v + 32pp$	37	5	32	17.13	-158.87	-129.91
Baseline and $10v + 27pp$	37	10	27	17.82	-153.75	-124.79
Baseline and $30v + 2pp$	32	30	2	22.03	-145.00	-124.55
Baseline and $15v + 22pp$	37	15	22	18.21	-150.99	-122.03
Baseline and $25v + 12pp$	37	25	12	19.07	-144.95	-115.99
Baseline and $20v + 22pp$	42	20	22	16.48	-142.99	-103.40
Baseline and $30v + 7pp$	37	30	7	21.26	-130.81	-101.85
Baseline and $25v + 17pp$	42	25	17	16.76	-140.82	-101.24
Baseline and $15v + 27pp$	42	15	27	17.86	-132.54	-92.96
Baseline and $10v + 32pp$	42	10	32	18.10	-130.81	-91.23
Baseline and $30v + 12pp$	42	30	12	19.07	-124.00	-84.41
Baseline and $25v + 22pp$	47	25	22	15.63	-126.39	-73.66
Baseline and $20v + 27pp$	47	20	27	16.42	-119.94	-67.20
Baseline and $30v + 17pp$	47	30	17	16.85	-116.60	-63.87
Baseline and $5v + 27pp$	32	5	27	36.45	-79.54	-59.08
Baseline and $15v + 32pp$	47	15	32	17.95	-108.38	-55.65
Baseline and $20v + 17pp$	37	20	17	37.02	-58.74	-29.78
Baseline and $30v + 22pp$	52	30	22	16.41	-93.44	-24.56
Baseline and $20v + 32pp$	52	20	32	16.44	-93.26	-24.38
Baseline and $25v + 27pp$	52	25	27	17.13	-87.88	-19.00

Baseline and $25v + 32pp$	57	25	32	15.54	-70.34	18.33
Baseline and $30v + 27pp$	57	30	27	22.85	-20.16	68.51
Baseline and $30v + 32pp$	62	30	32	24.18	21.91	134.81
			Model 1			
Baseline and 5v	5	5	0	17.26	-176.18	-175.77
Baseline	0	0	0	19.91	-171.95	-171.95
Baseline and $5v + 2nn$	7	5	2	17.07	-172.76	-171.88
Baseline and 10v	10	10	0	15.96	-172.57	-170.64
Baseline and 2pp	2	10	2	10.20	-168.09	-168.05
Baseline and $5y \pm 6pp$	11	5	6	16.26	_168 11	-165.03
Baseline and 6pp	6	0	6	18.64	_165.04	-165 32
Baseline and $10y \pm 2pp$	12	10	0	15.04	-103.94 -167.61	-103.32 -164.71
Baseline and $10pp$	12	10	10	10.24	-107.01	-104.71
Paseline and Ex 10pp	10	U F	10	10.20	160.06	-130.30
Baseline and 15-	15	5 1 F	10	15./3	-160.96	-150.19
Baseline and 15v	15	15	0	15.90	-159.46	-154.08
Baseline and $10v + 6pp$	16	10	6	15.68	-158.55	-153.03
Baseline and $15v + 2pp$	17	15	2	15.86	-154.48	-148.16
Baseline and $10v + 10pp$	20	10	10	15.15	-150.20	-141.05
Baseline and 20v	20	20	0	15.40	-148.50	-139.34
Baseline and $15v + 6pp$	21	15	6	15.26	-146.34	-136.10
Baseline and $20v + 2pp$	22	20	2	15.40	-142.13	-130.72
Baseline and $15v + 10pp$	25	15	10	14.86	-135.68	-120.29
Baseline and 25v	25	25	0	15.27	-132.88	-117.49
Baseline and $20v + 6pp$	26	20	6	14.55	-134.33	-117.45
Baseline and 25v + 2pp	27	25	2	15.72	-122.61	-104.14
Baseline and $20v + 10pp$	30	20	10	13.63	-125.88	-102.04
Baseline and 30v	30	30	0	15.11	-115.16	-91.33
Baseline and $25v + 6pp$	31	25	6	14.44	-115.79	-89.96
Baseline and $30v + 2pp$	32	30	2	15.21	-106.22	-78.28
Baseline and $25v + 10pp$	35	25	10	13.73	-103.56	-68.56
Baseline and 30v + 6pp	36	30	6	14.45	-93.52	-55.91
Baseline and $30v + 10pp$	40	30	10	13.67	-78.95	-29.43
			Model 2			
Baseline	0	0	0	18.12	-96.96	-96.96
Baseline and 5v	5	5	0	16.33	-93.42	-92.81
Baseline and 2pp	2	0	2	18.12	-92.78	-92.72
Baseline and $5v + 2pp$	7	5	2	16.26	-88.86	-87.53
Baseline and 7pp	7	0	7	16.67	-87.12	-85.78
Baseline and 10v	10	10	0	15.17	-85.93	-82.93
Baseline and $5v + 7pp$	12	5	7	14.47	-83.55	-79.00
Baseline and $10v + 2pp$	12	10	2	15.16	-80.23	-75.68
Baseline and 12pp	12	0	12	16.57	-73.92	-69.37
Baseline and 15v	15	15	0	14.76	-72.81	-65.17
Baseline and $10v + 7pp$	17	10	7	13.88	-70.36	-60.10
Baseline and $15v + 2pp$	17	15	2	14.67	-66.39	-56.12
Baseline and $5v + 12pp$	17	5	12	14.69	-66.30	-56.04
Baseline and 20v	20	20	0	12.73	-65.23	-50.03
Baseline and $20v + 2pp$	22	20	2	12.71	-57.08	-37.83
Baseline and $15v + 7pp$	22	15	7	12.92	-55.90	-36.65
Baseline and $10v + 12pp$	22	10	12	13.99	-50.23	-30.98
Baseline and 25v	25	25	0	12 57	-44.05	-17.38
Baseline and $20v + 7nn$	27	20	7	11.27	-41.88	-9.23
Baseline and $25v + 2pp$	$\frac{2}{27}$	25	/ 2	12.21	-35.09	-2 44
Baseline and $15v \pm 10$ pp	⊿/ 27	25 15	∠ 10	12.34	-33.08	-2. 14 -0.64
Baseline and $20v$	∠/ 20	20 13	12	12.03	-33.29	-0.04 05 71
Baseline and 2011 + 12mm	30 20	30 20	U 10	12.33	-1/./9	23./l 20.11
Daseline and 20v + 12pp	ა∠ ეე	∠U 25	12	10.80	-14.10	30.11
Daseline and $20v + /pp$	ა∠ ეე	25	/	11.19	-11.60	40.01
Dasenne and $30V + 2pp$	32	30	2	12.55	-3.48	48./3

Baseline and $25v + 12pp$	37	25	12	10.64	24.45	105.18
Baseline and $30v + 7pp$	37	30	7	11.13	27.63	108.36
Baseline and $30v + 12pp$	42	30	12	10.67	78.43	201.43
Г	Model	3 with fis	hing (moi	rtality and cate	h)	
Fishing and 15v + 7pp	22	15	7	309.39	83.10	86.81
Fishing and $10v + 12pp$	22	10	12	318.81	91.25	94.97
Fishing and $15v + 12pp$	27	15	12	323.25	107.15	112.90
Fishing and $10v + 17pp$	27	10	17	323.53	107.38	113.14
Fishing and 30v + 7pp	37	30	7	292.34	105.63	117.02
Fishing and 5v + 17pp	22	5	17	347.13	114.40	118.12
Fishing and $5v + 12pp$	17	5	12	366.91	117.82	119.96
Fishing and 7pp	7	0	7	413.47	128.33	128.65
Fishing and 25v + 7pp	32	25	7	341.46	134.70	143.00
Fishing and $5v + 22pp$	27	5	22	369.98	143.88	149.63
Fishing and $20v + 17pp$	37	20	17	330.56	139.06	150.44
Fishing and $15v + 17pp$	32	15	17	351.73	142.76	151.06
Fishing and $20v + 7pp$	27	20	7	379.97	151.12	156.88
Fishing and $20v + 12pp$	32	20	12	359.45	148.67	156.97
Fishing and $5v + 7pp$	12	5	7	441.95	157.23	158.25
Fishing and $25v + 12pp$	37	25	12	344.41	150.22	161.60
Fishing and $25v + 17pp$	42	25	17	324.29	147.60	162.64
Fishing and $15v + 22pp$	37	15	22	361.27	163.22	174.60
Fishing and $20v + 22pp$	42	20	22	345.83	165.09	180.13
Fishing and $10v + 22pp$	32	10	22	397.04	175.72	184.02
Fishing and $10v + 27pp$	37	10	27	382.66	178.86	190.25
Fishing and $10v + 7pp$	17	10	7	484.80	193.61	195.75
Fishing and $25v + 22pp$	47	25	22	342.27	176.65	195.95
Fishing and $30v + 22pp$	52	30	22	320.25	173.59	197.81
Fishing and $20v + 27pp$	47	20	27	355.28	186.79	206.10
Fishing and 17pp	17	0	17	512.35	208.64	210.78
Fishing and $15v + 27pp$	42	15	27	388.80	196.95	211.99
Fishing and $30v + 17pp$	47	30	17	364.06	193.44	212.74
Fishing and $25v + 27pp$	52	25	27	338.82	188.92	213.14
Fishing and $15v + 2pp$	17	15	2	516.90	211.05	213.19
Fishing and $30v + 12pp$	42	30	12	400.80	205.21	220.25
Fishing and $10v + 2pp$	12	10	2	571.83	227.31	228.33
Fishing and 15v	15	15	0	556.91	226.79	228.43
Fishing and $20v + 32pp$	52	20	32	367.05	210.68	234.90
Fishing and $25v + 32pp$	57	25	32	341.85	207.07	236.90
Fishing and 25v	25	25	0	522.67	232.94	237.82
Fishing and $10v + 32pp$	42	10	32	427.88	223.00	238.04
Fishing and $15v + 32pp$	47	15	32	409.90	225.69	244.99
Fishing and $30v + 27pp$	57	30	27	363.43	223.72	253.55
Fishing and $25v + 2pp$	27	25	2	547.61	250.53	256.29
Fishing and 32pp	32	0	32	517.95	248.03	256.33
Fishing and $20v + 2pp$	22	20	2	579.58	253.83	257.54
Fishing and $30v + 32pp$	62	30	32	341.95	223.63	259.82
Fishing and 10v	10	10	0	654.66	259.74	260.43
Fishing and 20v	20	20	0	617.35	266.29	269.32
Fishing and $5v + 32pp$	37	5	32	516.37	260.37	271.76
Fishing and $30v + 2pp$	32	30	2	556.00	267.31	275.61
Fishing and 30v	30	30	0	589.12	277.93	285.15
Fishing and 27pp	27	0	27	643.15	294.27	300.03
Fishing and $5v + 2.7nn$	32	5	27	628.35	300.58	308.88
Fishing and 5v	5	5	0	1063.98	381.22	381.38
Fishing and $5v + 2nn$	7	5	2	1064.37	385.52	385.84
Fishing	, 0	0	0	1267.05	418.51	418 51
	U	М 1	1 1	1207.00	110.01	110.01

Model 1 with fishing

Fishing and $15v + 7pp$	22	15	7	510.46	238.07	243.99
Fishing and 7pp	7	0	7	658.97	247.95	248.44
Fishing and $5v + 7pp$	12	5	7	622.38	248.94	250.53
Fishing and $10v + 7pp$	17	10	7	583.68	249.37	252.75
Fishing and 20v + 7pp	27	20	7	514.80	253.11	262.40
Fishing and 12pp	12	0	12	673.36	263.04	264.63
Fishing and $15v + 2pp$	17	15	2	634.36	264.28	267.66
Fishing and $15v + 12pp$	27	15	12	534.70	259.90	269.19
Fishing and $25v + 7pp$	32	25	7	503.97	263.75	277.34
Fishing and $5v + 12pp$	17	5	12	675.17	275.44	278.82
Fishing and $5v + 2pp$	7	5	2	784.86	279.24	279.73
Fishing and $10v + 2pp$	12	10	2	735.59	278.86	280.45
Fishing and $20v + 2pp$	22	20	2	631.19	276.07	281.99
Fishing and $10v + 12pp$	22	10	12	633.86	276.82	282.74
Fishing and $20v + 12pp$	32	20	12	533.91	274.08	287.67
Fishing and 5v	5	5	0	846.04	288.37	288.60
Fishing and 10v	10	10	0	793.33	287.82	288.89
Fishing and 2pp	2	0	2	892.81	291.72	291.74
Fishing	0	Õ	0	931 90	295.32	295.32
Fishing and $25y + 2pp$	27	25	2	619 75	286.32	295.62
Fishing and $30v + 7nn$	37	30	7	503 53	279.08	293.02
Fishing and 15v	15	15	0	786.07	277.00	300 38
Fishing and $25v \pm 12nn$	37	25	12	527 54	227.00	306.31
Fishing and $30v + 2nn$	37	30	2	611.04	207.41	311.83
Fishing and $20v + 2pp$	20	20	0	784 77	290.24	314.60
Fishing and $20v \pm 12pp$	20 40	20	12	70 4 .77	202 55	200 07
Fishing and $30v + 12pp$	42 25	30 25	12	520.12 779.06	303.33 201 72	320.07 220 E7
Fishing and 20v	20	20	0	770.90	321./3	349.37
Fishing and SOV	30	30 Mode	U 14 with f	704.00	332.40	344.24
Fishing and 10rr + 12nn	22	10	1 4 WILLI II	170.22	21 50	27 10
Fishing and 10v + 12pp	22	10	12	1/0.33	31.58	37.18
Fishing and $25v + 7pp$	3∠ 27	25 10	/	149.52	34.57	47.37
Fishing and $100 + 1/pp$	2/ 17	10	1/	1/3.53	48.39	57.17
Fishing and $5V + 12pp$	1/	5	12	200.01	54.80	58.00
Fishing and $15v + 12pp$	27	15	12	1/7.48	52.63	61.40
Fishing and $20v + /pp$	2/	20	/	181.48	56.81	65.59
Fishing and $5v + /pp$	12	5	/	232.08	65.39	66.90
Fishing and $15v + 1/pp$	32	15	17	166.61	54.91	67.71
Fishing and $5v + 1/pp$	22	5	17	205.78	67.12	72.72
Fishing and 15v + 7pp	22	15	7	207.45	68.64	74.24
Fishing and $10v + 7pp$	17	10	7	227.40	73.37	76.57
Fishing and $30v + 7pp$	37	30	7	157.09	58.98	76.74
Fishing and $20v + 12pp$	32	20	12	177.50	66.82	79.62
Fishing and $20v + 17pp$	37	20	17	160.76	63.32	81.08
Fishing and $10v + 22pp$	32	10	22	182.98	72.53	85.33
Fishing and 20v + 2pp	22	20	2	223.12	82.33	87.93
Fishing and 15v + 2pp	17	15	2	245.43	87.72	90.92
Fishing and 25v + 12pp	37	25	12	170.71	74.61	92.37
Fishing and $5v + 22pp$	27	5	22	209.80	84.08	92.85
Fishing and 7pp	7	0	7	284.34	92.40	92.87
Fishing and $25v + 2pp$	27	25	2	218.15	91.41	100.19
Fishing and 15v + 22pp	37	15	22	178.36	82.85	100.61
Fishing and 30v + 2pp	32	30	2	200.98	90.18	102.98
Fishing and 10v + 27pp	37	10	27	181.13	85.75	103.51
Fishing and 25v + 17pp	42	25	17	162.31	81.29	105.04
Fishing and $30v + 12pp$	42	30	12	162.68	81.71	105.46
Fishing and 30v	30	30	0	213.52	95.77	106.86
Fishing and 15v	15	15	0	275.26	104.47	106.91
Fishing and 20v	20	20	0	255.67	102.83	107.38

Fishing and 10v	10	10	0	298.22	107.98	109.00
Fishing and $5v + 27pp$	32	5	27	209.35	97.85	110.65
Fishing and $10v + 2pp$	12	10	2	298.04	112.41	113.92
Fishing and $20v + 22pp$	42	20	22	171.69	91.85	115.60
Fishing and $30v + 17pp$	47	30	17	152.09	86.37	117.26
Fishing and $10v + 32pp$	42	10	32	195.91	116.65	140.41
Fishing and 17pp	17	0	17	329.15	142.90	146.10
Fishing and $5v + 32pp$	37	5	32	227 27	128 41	146 17
Fishing and $15v + 32pp$	47	15	32	180 74	118.82	149 71
Fishing and $25v + 22pp$	47	25	22	181 36	119.62	150 35
Fishing and $20v + 22pp$	47	20	22	186.64	124.86	155.55
Fishing and $15v + 27pp$	42	15	27	215.67	134 72	158.48
Fishing and $30v + 22pp$	52	30	27	165.85	121 27	160.10
Fishing and 12pp	12	0	12	282.21	150 17	160.55
Fishing and $5x \pm 2pp$	12	5	12	410.20	161 24	161.00
Fishing and $5v + 2pp$	/ E	5	2 0	410.28	161.54	161.00
Fishing and 2Ev. 27nn	5	5 25	0	420.39	101./1	101.93
Fishing and $20v + 27pp$	52	25	27	170.44	135.01	174.30
Fishing and $20v + 32pp$	52	20	32	1/8.91	135.52	1/4.80
Fishing and $30v + 2/pp$	57	30	2/	163.87	139.03	188.14
Fishing and $25v + 32pp$	57	25	32	186.68	163.54	212.65
Fishing and 27pp	27	0	27	423.29	216.03	224.81
Fishing and 22pp	22	0	22	534.00	246.40	252.00
Fishing and 2pp	2	0	2	/39./9	261.61	261.63
Fishing and 32pp	32	0	32	469.13	249.54	262.34
Fishing	0	0	0	770.89	265.29	265.29
		Mode	el 2 with f	ishing		
Fishing and $10v + 7pp$	17	10	7	282.55	144.15	149.94
Fishing and 5v + 7pp	12	5	7	344.13	152.87	155.54
Fishing and 7pp	7	0	7	419.66	163.02	163.83
Fishing and 15v + 7pp	22	15	7	293.19	163.15	173.53
Fishing and 10v + 12pp	22	10	12	301.68	166.35	176.73
Fishing and 5v + 12pp	17	5	12	360.20	171.35	177.13
Fishing and 10v + 2pp	12	10	2	423.97	176.24	178.91
Fishing and $5v + 2pp$	7	5	2	499.10	182.44	183.25
Fishing and 5v	5	5	0	532.83	185.25	185.63
Fishing and 15v + 2pp	17	15	2	390.39	180.36	186.15
Fishing and 12pp	12	0	12	457.76	184.83	187.50
Fishing	0	0	0	641.56	195.48	195.48
Fishing and 10v	10	10	0	524.32	195.06	196.85
Fishing and $20v + 7pp$	27	20	7	297.40	181.38	198.09
Fishing and $15v + 12pp$	27	15	12	303.38	183.61	200.32
Fishing and $20v + 2pp$	22	20	2	388.44	194.66	205.04
Fishing and 15v	15	15	0	506.72	204.06	208.43
Fishing and $25v + 7pp$	32	25	7	286.53	195.94	221.05
Fishing and 20v	20	20	0	485.35	213.46	221.82
Fishing and $25v + 2pp$	27	25	2	368.62	205.42	222.14
Fishing and $20v + 12pp$	32	20	12	310.49	204.93	230.05
Fishing and 25v	25	25	0	479.11	227.90	241.85
Fishing and $30v + 2pp$	32	30	2	353 78	219 55	244 67
Fishing and $30v + 7pp$	37	30	7	292.69	219.59	255 59
Fishing and $25v + 12nn$	37	25	12	318 20	228 95	264 95
Fishing and 30v	30	30	0	477 00	245.25	266.73
Fishing and $30v \pm 12nn$	42	30	12	310 04	210.20	301.00
This and $300 \pm 12pp$	44	30	12	312.24	231.10	301.09

Table A6: Vulnerabilities used in fitting model 3. Estimated vulnerabilities for predatory-prey interactions between juvenile Patagonian toothfish and small mesopelagic fish and small mesopelagic fish and mesozoo-plankton were outside the realistic range used to calibrate Ecosim models. PT = Patagonian toothfish, SMF = small mesopelagic fish

Figure A1: Fit of model to observations with original vulnerabilities (Table A6). Red line shows model fit, black points show observations.

Comparison of model fits to fishery-observer data

Plots of individuals counted per day per year from Gasco et al. (2019) were digitised and plotted for comparison with modelled biomass trends. Table A7 references comparisons of trends for each of the models

Figure A2: Estimated PP anomaly trend for best-fitting scenario with original vulnerabilities (solid line) and replaced vulnerabilities (dashed line).

described in this study. As can be seen in Table A7, the preferred model reproduced fishery-observer trends better than the model with the original vulnerabilities. Note that the observer trend for killer whales (Figs A6 and A11) is reflective of the trend presented in Gasco et al. (2019) however, the values are not. The data presented in Gasco et al. (2019) did not have clear counts that could be digitised. Therefore, the trend was reproduced by assuming that the lowest count was zero and the highest count was 1.

Model 3 with original vulnerabilities	Preferred model with replacement vulnerabilities
A3	A8
A4	A9
A5	A10
A6	A11

A12

Table A7: Comparison of model fits to fishery-observer data

Correlation with anomaly data

A7

This section presents results from correlations not discussed in the manuscript. Results from correlations with monthly anomalies for SST, zonal wind and SAM, smoothed using a running mean (see Methods) are shown in Table A8. Correlation between model output and annual and seasonal anomalies that did not have significant p-values are presented in Table A9.

Table A8: Output from Spearman rank correlations, with monthly anomaly data for environmental variables and biomass trends for selected functional groups. P values have been adjusted as described in methods. PT = Patagonian toothfish, OM = Other macrozooplankton. Significant correlations highlighted in bold (p value < 0.05).

Model trend	SST	SAM	Chl a	Zonal wind
PP anomaly	r=-0.27, p=8.63e08	r=-0.14, p=0.03	r=0.16, p=0.14	r=0.28, p=4.51e-08
Phytoplankton	r=-0.27, p=8.63e-08	r=-0.13, p=0.03	r=0.16, p=0.14	r=0.28, p=4.15e-08
Juvenile PT	r=-0.1, p=0.053	r=-0.016, p=0.78	r=-0.13, p=0.18	r=0.26, p=1.65e-07
Adult PT	r=0.04, p=0.44	r=0.12, p=0.05	r=-0.1, p=0.27	r=0.39, p=1.04e-14
OM	r=-0.29, p=3.15e-08	r=-0.13, p=0.03	r=0.16, p=0.14	r=0.27, p=6.37e-08
Krill	r=-0.28, p=3.15e-08	r=-0.13, p=0.03	r=0.18, p=0.14	r=0.27, p=7.44e-08

Figure A3: Comparison of modelled sperm whale biomass with fishery-observer data from Gasco et al. (2019). The estimated biomass trend for the model period (1986–2018) is shown on the left, a subsection of the trend equivalent to the fishery-observer data (2003–2017) is shown on the top right and fishery-observer data (individuals per day per year) with LOESS smoothing (blue) is presented on bottom left.

Biomass trend	Chl a
PP anomaly	r=0.63, p=0.066
Phytoplankton	r=0.57 p=0.066
Juvenile PT	r=0.02, p=0.94
Adult PT	r=0.33, p=0.27
Macrozooplankton	r=0.63, p=0.066
Krill	r=0.57 p=0.066
Lagged time	Juvenile PT with winter SST
2 season lag	r=-0.32, p=0.09
3 season lag	r=-0.39, p=0.09
4 season lag	r=-0.32, p=0.1

Table A9: Output from Spearman rank correlations, with annual chlorophyll (chl a) and winter sea surface temperature (SST). P values have been adjusted as described in methods. PT = Patagonian toothfish.

Figure A4: Comparison of modelled toothed whale biomass with fishery-observer data from Gasco et al. (2019). The estimated biomass trend for the model period (1986–2018) is shown on the left, a subsection of the trend equivalent to the fishery-observer data (2003–2017) is shown on the top right and fishery-observer data (individuals per day per year) with LOESS smoothing (blue) is presented on bottom left.

Figure A5: Comparison of modelled other seabird biomass with fishery-observer data from Gasco et al. (2019). The estimated biomass trend for the model period (1986–2018) is shown on the left, a subsection of the trend equivalent to the fishery-observer data (2001–2016) is shown on the top right and fishery-observer data (individuals per day per year) with LOESS smoothing (blue) is presented on bottom left.

Figure A6: Comparison of modelled killer whale biomass with fishery-observer data from Gasco et al. (2019). The estimated biomass trend for the model period (1986–2018) is shown on the left, a subsection of the trend equivalent to the fishery-observer data (2003–2017) is shown on the top right and fishery-observer data (individuals per day per year) with LOESS smoothing (blue) is presented on bottom left.

Figure A7: Comparison of modelled fur seal biomass with fishery-observer data from Gasco et al. (2019). The estimated biomass trend for the model period (1986–2018) is shown on the left, a subsection of the trend equivalent to the fishery-observer data (2003–2017) is shown on the top right and fishery-observer data (individuals per day per year) with LOESS smoothing (blue) is presented on bottom left.

Figure A8: Comparison of modelled sperm whale biomass with fishery-observer data from Gasco et al. (2019). The estimated biomass trend for the model period (1986–2018) is shown on the left, a subsection of the trend equivalent to the fishery-observer data (2003–2017) is shown on the top right and fishery-observer data (individuals per day per year) with LOESS smoothing (blue) is presented on bottom left.

Figure A9: Comparison of modelled toothed whale biomass with fishery-observer data from Gasco et al. (2019). The estimated biomass trend for the model period (1986–2018) is shown on the left, a subsection of the trend equivalent to the fishery-observer data (2003–2017) is shown on the top right and fishery-observer data (individuals per day per year) with LOESS smoothing (blue) is presented on bottom left.

Figure A10: Comparison of modelled other seabird biomass with fishery-observer data from Gasco et al. (2019). The estimated biomass trend for the model period (1986–2018) is shown on the left, a subsection of the trend equivalent to the fishery-observer data (2001–2016) is shown on the top right and fishery-observer data (individuals per day per year) with LOESS smoothing (blue) is presented on bottom left.

Figure A11: Comparison of modelled killer whale biomass with fishery-observer data from Gasco et al. (2019). The estimated biomass trend for the model period (1986–2018) is shown on the left, a subsection of the trend equivalent to the fishery-observer data (2003–2017) is shown on the top right and fishery-observer data (individuals per day per year) with LOESS smoothing (blue) is presented on bottom left.

Figure A12: Comparison of modelled fur seal biomass with fishery-observer data from Gasco et al. (2019). The estimated biomass trend for the model period (1986–2018) is shown on the left, a subsection of the trend equivalent to the fishery-observer data (2003–2017) is shown on the top right and fishery-observer data (individuals per day per year) with LOESS smoothing (blue) is presented on bottom left.

References

- Authier, M., Delord, K., and Guinet, C. 2011. Population trends of female Elephant Seals breeding on the Courbet Peninsula, îles Kerguelen. Polar Biology **34**(3): 319–328. doi:10.1007/s00300-010-0881-1.
- Bannister, J.L., Hammond, P.S., and Double, M.C. 2015. Population trend in right whales off southern Australia 1993-2015. International Whaling Commission SC/66b/BRG/09.
- CCAMLR 2018. Fishery Report 2018: *Champsocephalus gunnari* Heard Island, Australian EEZ (Division 58.5.2). Report, Commission for the Conservation of Antarctic Marine Living Resources.
- Gasco, N., Tixier, P., Delord, K., Guinet, C., and Duhamel, G. 2019. Scientific Observation program around Kerguelen Island, a ship-of-opportunity for bird and mammal data collection. In Welsford, D., J. Dell and G. Duhamel (Eds). The Kerguelen Plateau: marine ecosystem and fisheries. Proceedings of the Second Symposium. Proceedings of the Second Symposium, pp. 365–379.
- Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L., Iredell, M., Saha, S., White, G., Woollen, J., Zhu, Y., Chelliah, M., Ebisuzaki, W., Higgins, W., Janowiak, J., Mo, K.C., Ropelewski, C., Wang, J., Leetmaa, A., Reynolds, R., Jenne, R., and Joseph, D. 1996. The NCEP/NCAR 40-Year Reanalysis Project. Bulletin of the American Meteorological Society 77(3): 437–472. doi:10.1175/1520-0477(1996) 077<0437:Tnyrp>2.0.Co;2.
- Subramaniam, R.C., Corney, S.P., Swadling, K.M., and Melbourne-Thomas, J. 2020. Exploring ecosystem structure and function of the northern Kerguelen Plateau using a mass-balanced food web model. Deep Sea Research Part II: Topical Studies in Oceanography **174**: 104787. doi:10.1016/j.dsr2.2020.10478.
- Weimerskirch, H., Delord, K., Barbraud, C., Le Bouard, F., Ryan, P.G., Fretwell, P., and Marteau, C. 2018. Status and trends of albatrosses in the French Southern Territories, Western Indian Ocean. Polar Biology 174: 1963–1972. doi:10.1007/s00300-018-2335-0.