Soot Formation Benefits of Sustainable Aviation Fuels Characterized with a Yield-Based Approach to Sooting Tendency

Charles S. McEnally¹, Hyunguk Kwon², Suheyla Tozan¹, Yuan Xuan², Junqing Zhu¹, Lisa D. Pfefferle¹

¹Yale University

²Penn State University

No proprietary or confidential content; <u>charles.mcenally@yale.edu</u>; <u>lisa.pfefferle@yale.edu</u>; <u>yux19@engr.psu.edu</u> ACS Fall 2020 Meeting, Paper 3432902 1

Photos: Charles McEnally, Yuan Xuan, Hyunguk Kwon

ACS Fall 2020 Meeting, Paper 3432902

Acknowledgements

- Funding Department of Energy, Energy Efficiency and Renewable Energy
- Nabila Huq and Derek Vardon (National Renewable Energy Laboratory) – synthesis of alkanes representative of SAF
- Harrison Yang and Joshua Heyne (University of Dayton) characterization of jet fuel composition

Sustainable Aviation Fuels

- Sustainable aviation fuels (SAF) are jet fuels derived from renewable sources such as biomass and wastes instead of petroleum
- Their purpose is to reduce the impact of aviation on climate change
- They are also likely to reduce emissions of soot particles given that they typically contain fewer aromatics than petroleum– derived jet fuels

Aviation Causes of Climate Change

Climate Agent	Mechanism	Radiative Forcing (mW/m²)	Ref.
CO ₂	 Absorption of IR radiation from earth 	+35	[1]
Soot	Absorption of sunlight	+9.5	[2]
Aircraft- Induced Clouds (AIC)	 Absorption of IR radiation from earth Nucleate from soot particles 	+50	[1]

Particulate reductions present greater opportunity than CO₂ reductions

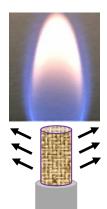
[1] B. Kärcher, Nature Comm., 2018, 9, 1824; [2] M.E.J. Stettler, Environ. Sci. Technol., 2013, 47, 10397

Fuel Composition Affects Soot

Sooting tendency is a fuel property that quantifies the effects of fuel composition on soot

Photo: Charles McEnally

Engine Emissions Measurements


- 1. Large fuel volumes required
- The local optimum for specific hardware may not be the global optimum
- A bench-scale sooting tendency metric is needed during fuel development

Smoke Point Sooting Tendency

- Smoke point = height of the flame at the threshold of smoking
- \circ Sooting tendency ~ 1/(SP)
- \circ Larger SP = less sooty fuel
- Jet Fuel specifications (ASTM D1655) require SP > 18

Issues with Smoke Point

The measurement is subjective: the tester has to determine when the flame is at the smoke point

More Issues with Smoke Point

• Requires a large sample volume

- 10 mL to satisfy ASTM D1322
- Large volume required to saturate the wick

• Narrow dynamic range

Isocetane: maximum fuel flow is insufficient to reach SP

Benzene: SP = 8 mm; naphthalene: SP = 6 mm

 $_{\odot}\,$ Difficult to simulate from first principles

Yield-Based Sooting Tendency

- Smoke point was created because soot was impossible to measure in the 1920's
- Soot measurement is easy today (e.g., laser extinction, color-ratio pyrometry, etc.)
- 1. Generate a fuel-doped methane/air flame
- 2. Measure maximum soot concentration $F_{v,max}$
- 3. Sooting tendency ~ $F_{v,max}$

Fuel

Methane

Nitrogen Test fuel, (usually) 1000 ppm

Photo: Charles McEnally

Air

Yield Sooting Index (YSI)

- $F_{v,max}$ depends on uninteresting experimental details (dopant concentration, burner dimensions, soot diagnostic, etc.)
- Rescale $F_{v,max}$ to an index (analogous to an octane rating)

• Yield Sooting Index (YSI) = $A * F_{v,max} + B$

- ✤ A, B are constants for a given experimental set
- They are chosen so that YSI(n-heptane) = 36.0 and YSI(toluene) = 170.9
- * Scale constructed so that YSI(benzene) \approx 100 and the YSI of a fuel that produces no soot \approx 0

YSI Overcomes the Issues with SP

Small sample volume: [dopant] = 1000 ppm
 ✤ Typically less than 100 µL

- $_{\odot}\,$ Wide dynamic range: can change [dopant] as needed
 - Minimum YSI = -3.1 (formamide) $H_2N^{\frown}O$
 - Maximum YSI = +1340 (1,2-diphenylbenzene)
- Results can be simulated from first principles
 - One flame with well-defined boundary conditions
 - Simplified computations with perturbation methods

First Principles Prediction of YSI

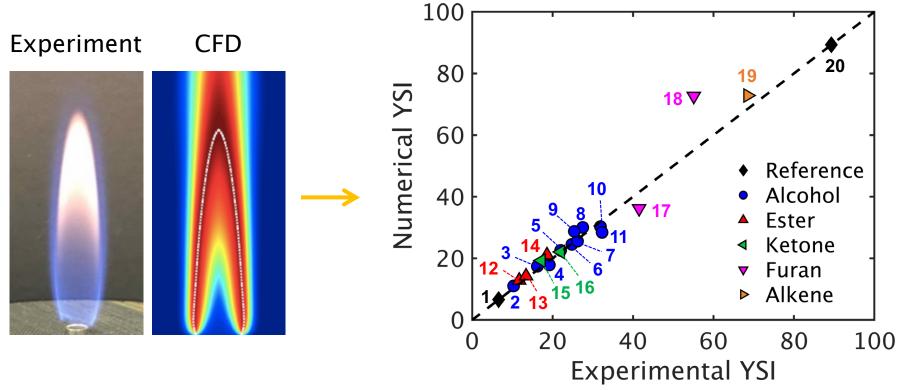
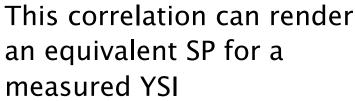
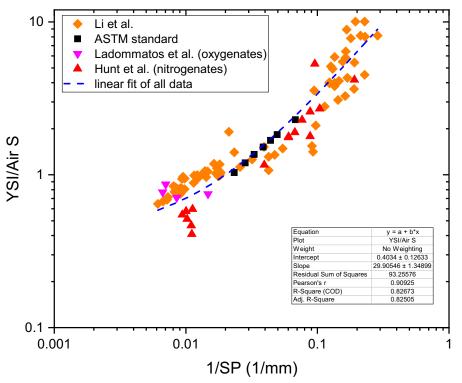
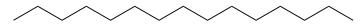
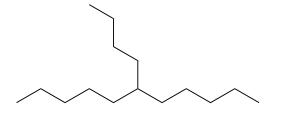




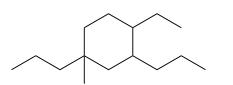
Photo: Charles McEnally; image: Yuan Xuan; figure: Kwon, Fuel, 2020, 276, 118059

ACS Fall 2020 Meeting, Paper 3432902

YSI Correlates with Smoke Point


Li, Combust. Sci. Technol., 2012, 184, 829; ASTM D1322-18, 2018; Ladommatos, Fuel, 1996, 75, 114; Hunt, Ind. Eng. Chem., 1953, 45, 602 ACS Fall 2020 Meeting, Paper 3432902


Demonstration – Jet Fuel Alkanes


A. Linear C15 alkane

B. Branched C15 alkane

C. Cyclic C15 alkane

B and C synthesized by Nabila Huq and Derek Vardon, National Renewable Energy Laboratory

ACS Fall 2020 Meeting, Paper 3432902

Results - Jet Fuel Alkanes

Fuel	YSI (smaller is better)	Equivalent SP (larger is better)
Linear C15 alkane; C ₁₅ H ₃₂	82.3	86.4
Branched C15 alkane; C ₁₅ H ₃₂	87.9	75.3
Cyclic C15 alkane; C ₁₅ H ₃₂	145.7	32.4
POSF 10325 (typical Jet A); C _{11.4} H _{22.0}	150.0	20.5

POSF 10325 characterized by Harrison Yang and Joshua Heyne, University of Dayton

Conclusions and Future Work

- The sooting tendencies of sub-mL quantities of sustainable aviation fuels can be characterized with a yield-based approach
- We are building an inventory of current and future SAF in collaboration with the DOE Biojet Consortium, and will evaluate the sooting benefits of these fuels