Supplementary Materials

Functionality study of chalcone-hydroxypyridinone hybrids as tyrosinase inhibitors and influence on anti-tyrosinase activity

L. Ravithej Singh, ${ }^{\text {a }}$ Yu-Lin Chen, ${ }^{\text {b }}$ Yuan-Yuan Xie, ${ }^{\text {c }}$ Wei Xia, ${ }^{\text {a }}$ Xin-Wen Gong, ${ }^{\text {a }}$

Robert C. Hider, ${ }^{\text {b }}$ and Tao Zhou*, ${ }^{\text {a }}$
${ }^{a}$ School of Food Science and Biotechnology, Zhejiang Gongshang University, 18 Xuezheng Street, Xiasha, Hangzhou, Zhejiang 310018, P. R. China.
${ }^{b}$ Division of Pharmaceutical Science, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London, SE1 9NH, UK
${ }^{c}$ College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
*Correspondence.
Tao Zhou, School of Food Science and Biotechnology, Zhejiang Gongshang University, 18 Xuezheng Street, Xiasha, Hangzhou, Zhejiang 310018, China. E-mail address: taozhou@zjgsu.edu.cn.

General procedure for the synthesis of compounds $\mathbf{1 a - 1 0}$

Potassium tert-butoxide (0.79 mmol) was added to a stirred solution of the requisite phosphonate ($\mathbf{7 a - 7 d}, 0.79 \mathrm{mmol}$) in THF (10 mL) at room temperature and stirred for 15 min . Aldehyde ($\mathbf{4 a}-\mathbf{4 e}, 0.87 \mathrm{mmol}$) dissolved in THF (5 mL) was added dropwise via a syringe at $0-5{ }^{\circ} \mathrm{C}$ and the reaction mixture stirred for 2 h . The reaction was quenched with methanol (4 mL) and extracted with EtOAc $(3 \times 10 \mathrm{~mL})$. The combined organic layers were then washed with brine (15 mL), dried and concentrated in vacuo to give a solid residue, which was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$.

The resulting solution was cooled in an ice-bath to $0-5^{\circ} \mathrm{C}, \mathrm{BBr}_{3}\left(1.0 \mathrm{M}\right.$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 5$ mL) was added dropwise. After stirring at $0-5{ }^{\circ} \mathrm{C}$ for 50 min , the mixture was quenched with MeOH , diluted with water and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic extracts were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated. Column chromatography of the residue over silica gel, using $1: 30 \mathrm{MeOH}-\mathrm{CH}_{2} \mathrm{Cl}_{2}$, gave final compounds (1a-10) as a yellow solid.
(E)-2-(3-(4-fluorophenyl)-3-oxoprop-1-en-1-yl)-5-hydroxy-1-methylpyridin-4(1H)-on $e(\boldsymbol{1 a})$. Yield: $71 \%,{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$) $\delta 8.30(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.28$ (d, $J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.27(\mathrm{~s}, 1 \mathrm{H}), 8.08(\mathrm{~d}, J=15.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.75(\mathrm{~d}, J=15.4 \mathrm{~Hz}, 2 \mathrm{H})$, 7.45 (t, $J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.13(\mathrm{~s}, 3 \mathrm{H}){ }^{13} \mathrm{C}$ NMR (101 MHz , DMSO-d d_{6}) 187.15 , 166.91, 164.39, 159.58, 145.66, 143.22, 133.43, 132.22, 130.98, 116.38, 116.16, 112.54, 44.37; HRMS (ESI): calcd for $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{FNO}_{3}[\mathrm{M}+\mathrm{H}]^{+}$274.0874, found 274.0880.
(E)-5-hydroxy-2-(3-(2-hydroxy-4-methoxyphenyl)-3-oxoprop-1-en-1-yl)-1-methylpyri din-4(1H)-one (lb). Yield: $69 \%,{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}$) $\delta 8.48(\mathrm{~s}, 1 \mathrm{H}), 8.31$ (s, $1 \mathrm{H}), 8.15(\mathrm{~d}, \mathrm{~J}=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.80(\mathrm{~m}, 2 \mathrm{H}), 6.76(\mathrm{~s}, 1 \mathrm{H}), 4.15(\mathrm{~s}, 3 \mathrm{H}), 3.95(\mathrm{~s}, 3 \mathrm{H})$; ${ }^{13}$ C NMR (101 MHz, DMSO) $\delta 189.41,164.35,161.90,159.49,145.61,142.87$, $134.65,133.30,131.93,130.94,115.14,112.62,101.39,101.24,57.10,44.22$; HRMS (ESI): calcd for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{NO}_{5}[\mathrm{M}+\mathrm{H}]^{+}$302.1023, found 302.1026.
(E)-2-(3-(2,4-dimethoxyphenyl)-3-oxoprop-1-en-1-yl)-5-hydroxy-4H-pyran-4-one (1c). Yield: $65 \%,{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}$) $\delta 8.13$ (s, 1H), 8.07 (d, $J=9.0 \mathrm{~Hz}, 1 \mathrm{H}$), $7.95(\mathrm{~d}, J=13.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{~d}, J=15.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.97(\mathrm{~s}, 1 \mathrm{H}), 6.58(\mathrm{~d}, J=9.3 \mathrm{~Hz}$, $1 \mathrm{H}), 6.40(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H})$. HRMS (ESI): calcd for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{O}_{6}[\mathrm{M}+\mathrm{H}]^{+}$303.0863, found 303.0859.
(E)-2-(3-(4-fluorophenyl)-3-oxoprop-1-en-1-yl)-5-hydroxypyridin-4(1H)-one
(1d).
Yield: $66 \%,{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}$) $\delta 8.26$ (td, J = 8.8, $3.9 \mathrm{~Hz}, 3 \mathrm{H}$), 8.18 (s,
$1 \mathrm{H}), 7.80(\mathrm{~s}, 1 \mathrm{H}), 7.67(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{t}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO) $\delta 186.98,166.86,164.34,160.77,145.95,140.62,133.45,131.97$, 127.84, 116.36, 116.15, 112.48; HRMS (ESI) calcd for $\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{FNO}_{3}[\mathrm{M}+\mathrm{H}]^{+}$ 260.0717, found 260.0721 .
(E)-1-ethyl-5-hydroxy-2-(3-oxo-3-phenylprop-1-en-1-yl)pyridin-4(1H)-one Yield: $61 \%,{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{DMSO}$) $\delta 8.32(\mathrm{~s}, 1 \mathrm{H}), 8.20-8.18(\mathrm{~m}, 3 \mathrm{H}), 8.11$ $(\mathrm{d}, J=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.77(\mathrm{~m}, 2 \mathrm{H}), 7.62(\mathrm{~m}, 2 \mathrm{H}), 4.53(\mathrm{q}, 7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.38(\mathrm{t}, J=7.2$ $\mathrm{Hz}, 3 \mathrm{H}$) ; ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{DMSO}$) $\delta 188.38,159.85,145.91,142.40,136.43$, 134.07, 131.99, 131.68, 131.56, 129.03, 128.93, 113.04, 51.73, 15.81; HRMS (ESI): calcd for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{H}]^{+} 270.1125$, found 270.1129.
(E)-2-(3-(3,4-dihydroxyphenyl)-3-oxoprop-1-en-1-yl)-1-ethyl-5-hydroxypyridin-4(1H) -one (lf). Yield: $62 \%,{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}$) $\delta 8.32$ (s, 1H), 8.00 ($\mathrm{d}, J=15.3$ $\mathrm{Hz}, 1 \mathrm{H}), 7.73(\mathrm{~s}, 1 \mathrm{H}), 7.70-7.64(\mathrm{~m}, 2 \mathrm{H}), 7.53(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.89(\mathrm{~d}, J=8.2$ $\mathrm{Hz}, 1 \mathrm{H}), 4.51(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.37(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz , DMSO) $\delta 186.15,160.07,152.01,145.86,142.77,131.99,131.76,130.34,128.61$, 123.14, 115.50, 115.27, 112.79, 51.68, 15.81. HRMS (ESI): calcd for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{NO}_{5}$ [M $+\mathrm{H}]^{+}$302.1023, found 302.1028
(E)-1-ethyl-5-hydroxy-2-(3-(2-hydroxy-4-methoxyphenyl)-3-oxoprop-1-en-1-yl)pyridi $n-4(1 H)$-one ($\mathbf{l g}$). Yield: $58 \%,{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}$) $\delta 8.46(\mathrm{~s}, 1 \mathrm{H}), 8.36(\mathrm{~s}$, $1 \mathrm{H}), 8.16(\mathrm{~d}, J=15.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.82-7.79(\mathrm{~m}, 3 \mathrm{H}), 6.76(\mathrm{~s}, 1 \mathrm{H}), 4.54(\mathrm{q}, J=7.2 \mathrm{~Hz}$, 2H), $3.95(\mathrm{~s}, 3 \mathrm{H}), 1.38(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{DMSO}$) $\delta 189.48$, $164.35,161.98,159.68,146.02,142.22,134.75,132.23,131.81,131.47,115.26$, 113.20, 101.46, 101.31, 57.19, 51.90, 15.91. HRMS (ESI): calcd for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{NO}_{5}[\mathrm{M}+$ $\mathrm{H}]^{+} 316.1179$, found 316.1334.
(E)-1-ethyl-2-(3-(4-fluorophenyl)-3-oxoprop-1-en-1-yl)-5-hydroxypyridin-4(1H)-one (lh). Yield: 65%, ${ }^{1}$ H NMR ($400 \mathrm{MHz}, \mathrm{DMSO}$) $\delta 8.29(\mathrm{~m}, 3 \mathrm{H}), 8.10(\mathrm{~d}, J=15.3 \mathrm{~Hz}$,
$1 \mathrm{H}), 7.78(\mathrm{~d}, J=15.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.73(\mathrm{~s}, 1 \mathrm{H}), 7.45(\mathrm{t}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.51(\mathrm{q}, J=7.3$ $\mathrm{Hz}, 2 \mathrm{H}$), 1.37 ($\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{DMSO}$) δ 187.09, 166.91, $164.39,159.87$, $146.05,142.42,133.28,132.25,132.15,131.75,116.14,113.08$, 51.90, 15.92; HRMS (ESI): calcd for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{FNO}_{3}[\mathrm{M}+\mathrm{H}]^{+}$288.1030, found 288.1037.
(E)-5-hydroxy-1-methyl-2-(3-oxo-3-phenylprop-1-en-1-yl)pyridin-4(1H)-one
(1i).
Yield: $68 \%,{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}$) $\delta 8.31(\mathrm{~s}, 1 \mathrm{H}), 8.21-8.17(\mathrm{~m}, 2 \mathrm{H}), 8.08$ $(\mathrm{d}, J=15.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.81(\mathrm{~s}, 1 \mathrm{H}), 7.78-7.71(\mathrm{~m}, 2 \mathrm{H}), 7.62(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.15$ (s, 3H); ${ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO) δ 196.45, 160.12, 147.59, 145.57, 143.76, 136.50, 134.59, 134.09, 129.07, 128.93, 128.04, 112.77, 43.96. HRMS (ESI): calcd for $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{H}]^{+} 256.0968$, found 256.0964 .
(E)-1-butyl-2-(3-(3,4-dihydroxyphenyl)-3-oxoprop-1-en-1-yl)-5-hydroxypyridin-4(1H) -one ($\mathbf{1} \boldsymbol{j}$). Yield: $56 \%,{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}$) $\delta 8.35(\mathrm{~s}, 1 \mathrm{H}), 8.00(\mathrm{~d}, \mathrm{~J}=15.2$ $\mathrm{Hz}, 1 \mathrm{H}), 7.77(\mathrm{~s}, 1 \mathrm{H}), 7.69(\mathrm{~d}, \mathrm{~J}=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.66(\mathrm{dd}, \mathrm{J}=8.4,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.53$ (d, J = 2.1 Hz, 1H), $6.90(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.50(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.74-1.67(\mathrm{~m}$, $2 H), 1.33-1.26(\mathrm{~m}, 2 \mathrm{H}), 0.89(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 3 \mathrm{H})$. HRMS (ESI) calcd for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{NO}_{5}$ $[\mathrm{M}+\mathrm{H}]^{+} 330.1336$, found 330.1335 .
(E)-1-butyl-5-hydroxy-2-(3-(2-hydroxy-4-methoxyphenyl)-3-oxoprop-1-en-1-yl)pyridi $n-4(1 H)$-one ($\mathbf{1 k}$). Yield: $63 \%,{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}$) $\delta 8.47$ ($\mathrm{s}, 1 \mathrm{H}$), 8.31 (s, $1 \mathrm{H}), 8.15(\mathrm{~d}, \mathrm{~J}=15.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.86-7.74(\mathrm{~m}, 3 \mathrm{H}), 6.76(\mathrm{~s}, 1 \mathrm{H}), 4.52-4.49(\mathrm{~m}, 2 \mathrm{H})$, $3.95(\mathrm{~s}, 3 \mathrm{H}), 1.76-1.67(\mathrm{~m}, 2 \mathrm{H}), 1.30(\mathrm{dq}, J=14.5,7.2 \mathrm{~Hz}, 2 \mathrm{H}), 0.90(\mathrm{t}, J=7.3 \mathrm{~Hz}$, $3 \mathrm{H})$. HRMS (ESI): calcd for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{NO}_{5}[\mathrm{M}+\mathrm{H}]^{+}$344.1492, found 344.1500.
(E)-1-butyl-2-(3-(4-fluorophenyl)-3-oxoprop-1-en-1-yl)-5-hydroxypyridin-4(1H)-one (1l). Yield: $55 \%,{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}$) $\delta 8.29(\mathrm{dd}, J=9.5,6.2 \mathrm{~Hz}, 3 \mathrm{H}), 8.10$ $(\mathrm{d}, J=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.79(\mathrm{~d}, J=15.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.76(\mathrm{~s}, 1 \mathrm{H}), 7.45(\mathrm{t}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H})$, $4.49(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.74-1.68(\mathrm{~m}, 2 \mathrm{H}), 1.34-1.26(\mathrm{~m}, 2 \mathrm{H}), 0.89(\mathrm{t}, J=7.4 \mathrm{~Hz}$,

3H); ${ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO-d6) δ 187.12, 166.92, 164.40, 159.86, 145.87, $142.58,133.27,132.26,131.87,116.37,116.15,113.09,56.02,32.23,18.93,13.46$; HRMS (ESI): calcd for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{FNO}_{3}[\mathrm{M}+\mathrm{H}]^{+} 316.1343$, found 316.1343.
(E)-5-hydroxy-2-(3-oxo-3-phenylprop-1-en-1-yl)pyridin-4(1H)-one (1m). Yield: 72 \%, ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}$) $\delta 8.27$ (d, J = $15.8 \mathrm{~Hz}, 1 \mathrm{H}$), $8.20(\mathrm{~s}, 1 \mathrm{H}), 8.18-8.16$ $(\mathrm{m}, 2 \mathrm{H}), 7.84(\mathrm{~s}, 1 \mathrm{H}), 7.74(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.68(\mathrm{~d}, \mathrm{~J}=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.62(\mathrm{t}, \mathrm{J}=$ $7.7 \mathrm{~Hz}, 2 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR (101 MHz , DMSO) $\delta 188.40,160.76,145.87,140.55,136.65$, 134.10, 133.24, 131.60, 129.13, 128.91, 128.34, 112.67. HRMS (ESI): calcd for $\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{H}]^{+}$242.0812, found 242.0823 .
(E)-2-(3-(3,4-dimethoxyphenyl)-3-oxoprop-1-en-1-yl)-5-hydroxypyridin-4(1H)-one (1n). Yield: $63 \%,{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}$) $\delta 8.28(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}$), 8.16 (s, $1 \mathrm{H}), 7.93$ (dd, $J=8.5,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.80(\mathrm{~s}, 1 \mathrm{H}), 7.64(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.61(\mathrm{~d}, J$ $=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.17(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 $\mathrm{MHz}, \mathrm{DMSO}) \delta 186.29,160.82,154.00,149.03,145.73,140.77,132.61,129.65$, 128.64, 128.26, 127.54, 124.16, 112.62, 111.12, 56.00, 55.80. HRMS (ESI): calcd for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{NO}_{5}[\mathrm{M}+\mathrm{H}]^{+}$302.1023, found 302.1046.
(E)-5-hydroxy-2-(3-(2-hydroxy-4-methoxyphenyl)-3-oxoprop-1-en-1-yl)pyridin-4(1H) -one (lo). Yield: $60 \%,{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}$) $\delta 8.45$ ($\mathrm{s}, 1 \mathrm{H}$), 8.26 ($\mathrm{d}, J=15.6$ $\mathrm{Hz}, 1 \mathrm{H}), 8.22-8.17(\mathrm{~m}, 2 \mathrm{H}), 7.86(\mathrm{~s}, 1 \mathrm{H}), 7.72(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.76(\mathrm{~s}, 1 \mathrm{H})$, 3.95 (s, 3H); ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{DMSO}$) δ 189.66, 164.71, 162.04, 160.72, 145.99, 140.44, 134.48, 133.49, 128.09, 127.78, 115.03, 112.60, 101.42, 101.32, 57.19. HRMS (ESI): calcd for $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{NO}_{5}[\mathrm{M}+\mathrm{H}]^{+}$288.0866, found 288.1258.

