

EVALUATION OF THE TOXIC EFFECTS OF EIGHT ENVIRONMENTAL CHEMICALS IN ADULT JAPANESE QUAIL (COTURNIX JAPONICA)

1-Faculty of Agriculture and Environmental Sciences, McGill University, Montreal, Quebec, Canada; 3- Toxicology Centre, University Saskatchewan, Saskatchewan, Canada ottawa, Ontario, Canada; 3- Toxicology Centre, University Saskatchewan, Saskatchewan, Canada

Introduction

Background:															
Ecological a taxonomic	-	tory risk	assessm	ents dep	end on t	oxicity d	ata for a v	wide range of	Three studies were ca and HBCD (October 2	carried out at Eurofins EAG Agroscience, LLC: study 1: EE 2017)	2, CPF and TB (Dec				
	erence valu	ues (TRV	's) for bir	ds are ty	pically p	rovided l	by standa	rdized, adult		ly, chemicals were tested at 3 doses plus a shared solven obtained at one or two days of age from Loudounberry F	•				
 Key standa and the U.S Guidelines 	6. Environn	nental Pi	rotectior			-		Toxicity Test) ects Test	 Prior to chemical exposure, birds were acclimated to the facility for 7 – 12 weeks (w Birds were fasted for 16.5 – 18 h prior to dosing On the first day of the experiment, a single dose (4 mL/kg of body weight) of the tes 						
• For the pre research te	-		-	-	-			-	12 weeks old	d when exposed) roup included a total of 20 Japanese quail (10 males + 10					
Objectives:			0	,		0			 During the ex 	experiment, birds were maintained at ambient room ter	nperature (study 1:				
nitrate (Pb	commonly); seleno-L- adiol (EE2) Ver concen data to th on and env	detected methior ; fluoxet trations e EcoTox ironmer	d in Cana nine (SeN ine hydro of admir (Chip pro ntal mana	adian ecc Me); hexa ochloride nistered o oject: a to agement	osystems abromoc e (FLX); t chemical oxicogen (<u>www.e</u>	: benzo[a yclodode renbolor ls at 2 dis omics to <u>cotoxchi</u>	a]pyrene ecane (HB ne (TB) an stinct time ol for che <u>p.ca</u>)	(BaP); lead (II) SCD); d chlorpyrifos epoints mical	 A light/dark of approximate From test initive recorded) Body weight Average daily Throughout a On Day 4, 6 k future analys On Day 14 (to and stored for an and stored for a stor	rage temperature was 22.5°C; and study 3: average tem cycle of 8 h/16 h was maintained during acclimation and ed to the color spectrum of noonday sunlight) itiation (Day 0) until termination (Day 14), all birds were t of each bird was measured on Day 0, 4, 7, and 14 of the ly feed consumption was evaluated by pen over three di acclimation and testing, birds were fed a game ration ac birds per dose group (3 per sex) were euthanized with C rsis (i.e. omics and chemical residue analysis) termination), up to 14 birds per dose (7 per sex) were eutor for future analysis (i.e. omics, chemical residue analysis a psies were performed on all dead birds and those that s d abdominal cavities, including cardiovascular and respira	d the experiment (f observed at least f e experiment stinct time periods d libitum (except du CO_2 and liver (studie uthanized with CO_2 and histology) urvived to Day 4 ar				
Liver Concentration Day 4 (ppm)	<mlod <mlod <mlod <mlod< td=""><td><mlod <mlod <mlod< td=""><td><mlod <mlod <mlod< td=""><td><mlod <mlod <mlod< td=""><td>0.76 1.1 6.64</td><td>0.34 6.54</td><td><mlod <mlod <mlod 0.04</mlod </mlod </mlod </td><td>0.006 γ^{\diamond} 0.02 α; 0.04 γ 0.09 α; 0.02 γ</td><td></td><td>Apical Outcomes</td><td></td></mlod<></mlod </mlod </td></mlod<></mlod </mlod </td></mlod<></mlod </mlod </td></mlod<></mlod </mlod </mlod 	<mlod <mlod <mlod< td=""><td><mlod <mlod <mlod< td=""><td><mlod <mlod <mlod< td=""><td>0.76 1.1 6.64</td><td>0.34 6.54</td><td><mlod <mlod <mlod 0.04</mlod </mlod </mlod </td><td>0.006 γ^{\diamond} 0.02 α; 0.04 γ 0.09 α; 0.02 γ</td><td></td><td>Apical Outcomes</td><td></td></mlod<></mlod </mlod </td></mlod<></mlod </mlod </td></mlod<></mlod </mlod 	<mlod <mlod <mlod< td=""><td><mlod <mlod <mlod< td=""><td>0.76 1.1 6.64</td><td>0.34 6.54</td><td><mlod <mlod <mlod 0.04</mlod </mlod </mlod </td><td>0.006 γ^{\diamond} 0.02 α; 0.04 γ 0.09 α; 0.02 γ</td><td></td><td>Apical Outcomes</td><td></td></mlod<></mlod </mlod </td></mlod<></mlod </mlod 	<mlod <mlod <mlod< td=""><td>0.76 1.1 6.64</td><td>0.34 6.54</td><td><mlod <mlod <mlod 0.04</mlod </mlod </mlod </td><td>0.006 γ^{\diamond} 0.02 α; 0.04 γ 0.09 α; 0.02 γ</td><td></td><td>Apical Outcomes</td><td></td></mlod<></mlod </mlod 	0.76 1.1 6.64	0.34 6.54	<mlod <mlod <mlod 0.04</mlod </mlod </mlod 	0.006 γ^{\diamond} 0.02 α; 0.04 γ 0.09 α; 0.02 γ		Apical Outcomes					
Liver Concentration Day 14 (ppm)	<mlod <mlod <mlod <mlod< td=""><td><mlod <mlod <mlod< td=""><td><mlod <mlod <mlod< td=""><td><mlod <mlod <mlod <mlod< td=""><td>0.82 0.60 1.2 2.15</td><td>0.04 0.17 0.86 -</td><td><mlod <mlod <mlod <mlod< td=""><td><mlod <mlod 0.01 α; 0.01 γ 0.04 α; 0.02 γ</mlod </mlod </td><td>ENDPOINTS (Day 4) :</td><td> (mortality, body weight, abnormalities, liver and gonad weigh Omics (transcriptomics, metabolomics, and proteomics) </td><td>ENDPOI</td></mlod<></mlod </mlod </mlod </td></mlod<></mlod </mlod </mlod </td></mlod<></mlod </mlod </td></mlod<></mlod </mlod </td></mlod<></mlod </mlod </mlod 	<mlod <mlod <mlod< td=""><td><mlod <mlod <mlod< td=""><td><mlod <mlod <mlod <mlod< td=""><td>0.82 0.60 1.2 2.15</td><td>0.04 0.17 0.86 -</td><td><mlod <mlod <mlod <mlod< td=""><td><mlod <mlod 0.01 α; 0.01 γ 0.04 α; 0.02 γ</mlod </mlod </td><td>ENDPOINTS (Day 4) :</td><td> (mortality, body weight, abnormalities, liver and gonad weigh Omics (transcriptomics, metabolomics, and proteomics) </td><td>ENDPOI</td></mlod<></mlod </mlod </mlod </td></mlod<></mlod </mlod </mlod </td></mlod<></mlod </mlod </td></mlod<></mlod </mlod 	<mlod <mlod <mlod< td=""><td><mlod <mlod <mlod <mlod< td=""><td>0.82 0.60 1.2 2.15</td><td>0.04 0.17 0.86 -</td><td><mlod <mlod <mlod <mlod< td=""><td><mlod <mlod 0.01 α; 0.01 γ 0.04 α; 0.02 γ</mlod </mlod </td><td>ENDPOINTS (Day 4) :</td><td> (mortality, body weight, abnormalities, liver and gonad weigh Omics (transcriptomics, metabolomics, and proteomics) </td><td>ENDPOI</td></mlod<></mlod </mlod </mlod </td></mlod<></mlod </mlod </mlod </td></mlod<></mlod </mlod 	<mlod <mlod <mlod <mlod< td=""><td>0.82 0.60 1.2 2.15</td><td>0.04 0.17 0.86 -</td><td><mlod <mlod <mlod <mlod< td=""><td><mlod <mlod 0.01 α; 0.01 γ 0.04 α; 0.02 γ</mlod </mlod </td><td>ENDPOINTS (Day 4) :</td><td> (mortality, body weight, abnormalities, liver and gonad weigh Omics (transcriptomics, metabolomics, and proteomics) </td><td>ENDPOI</td></mlod<></mlod </mlod </mlod </td></mlod<></mlod </mlod </mlod 	0.82 0.60 1.2 2.15	0.04 0.17 0.86 -	<mlod <mlod <mlod <mlod< td=""><td><mlod <mlod 0.01 α; 0.01 γ 0.04 α; 0.02 γ</mlod </mlod </td><td>ENDPOINTS (Day 4) :</td><td> (mortality, body weight, abnormalities, liver and gonad weigh Omics (transcriptomics, metabolomics, and proteomics) </td><td>ENDPOI</td></mlod<></mlod </mlod </mlod 	<mlod <mlod 0.01 α; 0.01 γ 0.04 α; 0.02 γ</mlod </mlod 	ENDPOINTS (Day 4) :	 (mortality, body weight, abnormalities, liver and gonad weigh Omics (transcriptomics, metabolomics, and proteomics) 	ENDPOI				
S = solvent, LD = low dose, [◇] Two different stereoisome present study.			-				the technical		N=6	Chemical Residue	N=14				

		EE2			CPF			ТВ			BaP			SeMe		Pb				FLX		HBCD						
Category	Exposure Day	0 mg/kg	0.05 mg/kg	0.5 mg/kg	5 mg/kg	0.1 mg/kg	1 mg/kg	10 mg/kg	0.1 mg/kg	1 mg/kg	10 mg/kg	0 mg/kg	0.5 mg/kg	5 mg/kg	50 mg/kg	0.1 mg/kg	1 mg/kg	10 mg/kg	0 mg/kg	35 mg/kg 3	350 mg/kg	3500 mg/kg	1 mg/kg	10 mg/kg	100 mg/kg	10 mg/kg	100 mg/kg	1000 mg/k
	Day 4 [n=20]	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	4	0	0	0	20	0	0	0	0	0	0
Mortality	Day 14 [n=14]	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	—	0	0	0	0	0	0
	Day 0 [n=20]	305 (±38)	297 (±22)	299 (±32)	302 (±26)	299 (±26)	299 (±26)	309 (±26)	322 (±40)	303 (±27)	306 (±28)	300 (±23)	290 (±29)	288 (±30)	286 (±25)	304 (±26)	300 (±26)	301 (±22)	275 (±22)	259 (±24)	266 (±25)	256 (±18)	256 (±15)	266 (±18)	264 (±20)	271 (±18)	261 (±16)	254 (±17)
* Mean Body	Day 4 [n=20]	312 (±38)	305 (±20)	307 (±32)	308 (±30)	303 (±28)	304 (±27)	313 (±25)	329 (±44)		315 (±28)												275 (±16)	282 (±18)	274 (±20)	293 (±17)	278 (±17)	273 (±17)
Weight (g)	Day 7 [n=14]	315 (±32)	320 (±19)	317 (±36)	326 (±32)	321 (±31)	319 (±29)	320 (±25)	337 (±50)																		285 (±16)	
	Day 14 [n=14]	315 (±37)	323 (±21)	314 (±37)	327 (±34)	322 (±27)	322 (±31)	324 (±25)	343 (±51)		328 (±27)																296 (±17)	
[*] Mean Feed	Day 0 - 4 [n=20]	36	38	43	35	36	38.5	39.5	46.5	37.5	38.5	35.5	44.5	65	61	52	50.5	49	34.5	35	33.5	—	38.5	36	36.5	37	42.5	38
Consumption	Day 4 - 7 [n=14]	47	42	49	45	54.5	66	66	62	60	47.5	53	37	81	75	86	66	71.5	44	39	47	_	48	44.5	43.5	39	42	43.5
(g/bird/day)	Day 7 - 14 [n=14]	40	35	42	41	44.5	51.5	50.5	51.5	50.5	43.5	54.5	34.5	56	54.5	59.5	48	56	39.5	34.5	41	_	42.5	37	30	37	36	33.5
* Mean Liver	Day 4 [n=6]	5.6 (±1.3)	4.8 (±0.9)	5.4 (±0.4)	5.9 (±0.9)	5.0 (±1.5)	4.6 (±1.2)	4.9 (±0.5)	5.8 (±0.5)	6.0 (±0.7)	6.1 (±1.0)	5.0 (±0.5)	5.8 (±1.3)	6.2 (±0.4)	6.4 (±1.1)	6.4 (±0.5)	6.2 (±0.3)	7.0 (±0.6)	7.0 (±0.8)	6.7 (±1.1)	6.8 (±0.9)	_	6.6 (±1.4)	6.0 (±0.2)	6.7 (±0.5)	6.9 (±0.4)	5.9 (±0.9)	5.8 (±1.2)
Weight (g)	Day 14 [n=14]	5.7 (±1.0)	5.8 (±1.4)	5.3 (±0.8)	6.1 (±1.2)	6.0 (±0.6)	6.8 (±0.9)	6.2 (±0.9)	6.7 (±0.9)	6.3 (±1.2)	6.6 (±1.2)	5.9 (±0.8)	6.1 (±1.3)	6.2 (±1.3)	6.2 (±1.2)	5.9 (±1.3)	6.4 (±1.4)	5.9 (±0.8)	6.5 (±0.6)	6.5 (±0.7)	7.0 (±1.2)	_	5.9 (±0.5)	6.7 (±0.8)	6.7 (±0.8)	6.9 (±1.0)	6.9 (±0.9)	6.4 (±0.6)

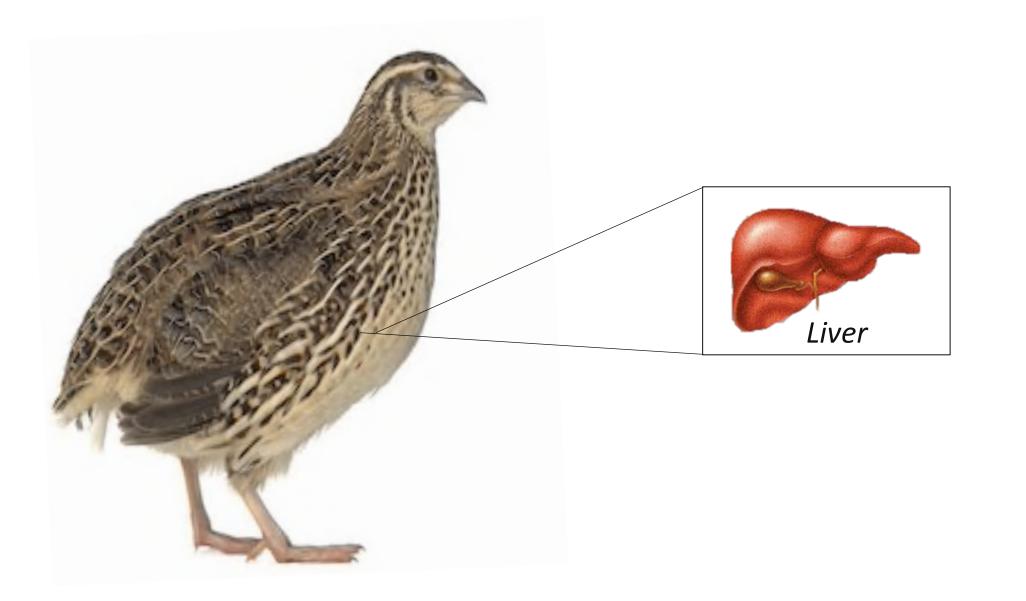
*The data presented in the body weight and liver weight categories represent the mean value followed by the standard deviation in parentheses (±). "n=" represents the sample size per dose; ; "-" = No morphometric data available for Pb high dose due to mortality

Table 2b. Morphometrics separated by sex. Data are only shown for chemicals where separation by sex led to significant effects.

Category	Category Exposure Day				CPF			Ва	ιP	SeMe						
category	Exposure Bay	Sex	0 mg/kg	0.05 mg/kg	0.5 mg/kg	5 mg/kg	0.1 mg/kg	1 mg/kg	10 mg/kg	0 mg/kg	0.5 mg/kg	5 mg/kg	50 mg/kg	0.1 mg/kg	1 mg/kg	10 mg/kg
	Day 0 [n=10]	Μ	285 (±33)	293 (±20)	291 (±26)	301 (±24)	293 (±31)	290 (±26)	301 (±24)	NE	NE	NE	NE	302 (±28)	296 (±25)	303 (±28)
		F	325 (±34)	302 (±23)	306 (±37)	304 (±29)	305 (±20)	308 (±24)	318 (±28)	NE	NE	NE	NE	306 (±26)	304 (±27)	298 (±14)
* Mean	· · · ·	Μ	293 (±32)	301 (±19)	300 (±25)	299 (±27)	295 (±34)	293 (±28)	307 (±22)	NE	NE	NE	NE	322 (±32)	310 (±29)	302 (±41)
Body Weight		F	332 (±35)	308 (±20)	313 (±38)	318 (±31)	311 (±19)	315 (±22)	318 (±27)	NE	NE	NE	NE	317 (±24)	319 (±23)	291 (±32)
(g)		Μ	301 (±31)	321 (±17)	310 (±25)	321 (±31)	314 (±34)	305 (±29)	315 (±22)	NE	NE	NE	NE	323 (±37)	319 (±31)	330 (±32)
(6/		F	329 (±28)	319 (±22)	325 (±45)	330 (±34)	327 (±28)	333 (±24)	325 (±29)	NE	NE	NE	NE	317 (±25)	336 (±27)	308 (±26)
	Day 14 [n=7]	Μ	296 (±34)	319 (±17)	304 (±28)	322 (±35)	318 (±33)	309 (±30)	319 (±25)	NE	NE	NE	NE	310 (±56)	331 (±26)	346 (±30)
	Day 14 [11-7]	F	334 (±30)	328 (±25)	324 (±44)	331 (±35)	326 (±25)	335 (±27)	329 (±25)	NE	NE	NE	NE	332 (±29)	352 (±32)	325 (±20)
* Moon Livor	$D_{2} \sqrt{4 \left[n - 2 \right]}$	Μ	NE	NE	NE	NE	NE	NE	NE	1.6 (±0.2)	1.7 (±0.1)	2.0 (±0.4)	2.0 (±0.2)	2.0 (±0.2)	2.1 (±0.2)	2.5 (±0.5)
Somatic	er Day 4 [n=3]	F	NE	NE	NE	NE	NE	NE	NE	1.6 (±0.2)	2.1 (±0.4)	1.9 (±0.2)	2.3 (±0.4)	1.9 (±0.2)	2.0 (±0.1)	2.5 (±0.3)
Index (%)	Day 14 [n=7]	Μ	NE	NE	NE	NE	NE	NE	NE	1.8 (±0.2)	2.0 (±0.4)	1.9 (±0.3)	1.9 (±0.2)	1.6 (±0.3)	1.7 (±0.2)	1.7 (±0.1)
	Day 14 [11-7]	F	NE	NE	NE	NE	NE	NE	NE	1.8 (±0.2)	1.9 (±0.4)	2.1 (±0.2)	2.0 (±0.5)	2.0 (±0.3)	2.0 (±0.4)	1.8 (±0.2)

Values in **bold/blue** font were significantly different from the control

"n=" represents the sample size per dose per sex ; NE = no significant effect observed ; M = male and F = female


www. ecotoxchip.ca

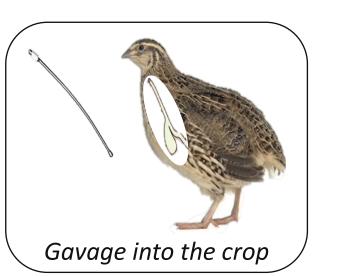
Emily Boulanger¹, Amani Farhat², YeonSeon Jeon¹, Niladri Basu¹, Markus Hecker³, Doug Crump², Jessica Head¹

Experimental Design

Results

^{*}Mean daily feed consumption was determined by pen

December 2017); study 2: BaP and SeMe (July 2018); and study 3: Pb, FLX


rn oil); the high dose was designed to cause ≤20% mortality eesburg, VA (in each study, all birds were from the same hatch) nich included a test pen acclimation for the last 4 – 9 weeks)

t substance in corn oil was orally administered by gavage (the birds were 7 –

vere randomly assigned to test pens **1:** average temperature was 17.6°C; .9°C)

Histology

t (fluorescent lighting which was

st twice a day (mortalities, signs of toxicity, and abnormal behaviors were

ods: Day 0-4, Day 4-7, and Day 7-14 during fasting prior to and following (1-2 h) dosing) dies 1-3) and gonads (study 1 only) were collected, weighed and stored for

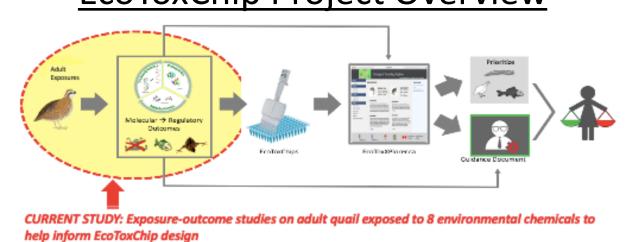
O₂ and liver (studies 1-3) and gonads (study 1 only) were collected, weighed

and Day 14. This included examination of the exterior of the bird and ver, spleen, gastro-intestinal tract, and urogenital system

Apical Outcomes (mortality, body weight, abnormalities, liver and gonad weights) **Transcriptomics L — →** Chemical Residue

hemical	Dose	Signs of Toxicity	[@] Gross Necropsy Observations (on Day 4 and 14)				
	5 mg/kg	_	<u>On Day 4:</u> one pale spleen				
BaP	50 mg/kg	_	On Day 4: one pale kidneys, one pale liver and one retaine yolk sac. On Day 14: one thin with a prominent keel, enlarged splee and pasty cecal contents				
	0.1 mg/kg	-	On Day 14: three head lesions and one foot lesion				
	1 mg/kg	(slight) ruffled appearance (50% of birds)	—				
SeMe	10 mg/kg	ruffled appearance, lethargy, wing droop, and shallow and rapid respiration (80% of birds)	<u>Dead Birds (n=4):</u> all 4 had a cooked appearance of the breamuscle. 3/4 with gelatinous material around crop, pale live and empty gastro-intestinal tract. 2/4 with a mottled liver a one bird looked thin, had a beige fluid in crop and dark fluid gastro-intestinal tract. <u>On Day 4:</u> two pale livers, one thin with a loss of muscle mand slightly prominent keel, and a small heart and spleen				
	0 mg/kg	_	<u>On Day 3</u> : one severe head lesion and was euthaniz <u>On Day 4:</u> one with bruising and a lesion on the hea				
	35 mg/kg	_	On Day 14: one with foot lesions				
Pb	3500 mg/kg	ruffled appearance, wing droop, lethargy, lower limb weakness, prostrate posture, loss of coordination, loss of righting reflex, and depression (100% of birds)	Dead Birds (n=20): 11/20 had whitish material in the crop 11/20 had tissue surrounding the crop whitish in color, 6/2 had empty gastrointestinal tract (GI), 4/20 had GI tract containing whitish material or greenish/brownish fluid, 1/2 had loss of muscle mass, 5/20 had a pale pancreas, 1/20 ha pale spleen and 2/20 had pale kidneys.				
FLX	100 mg/kg	ruffled appearance, wing droop, lethargy, lower limb weakness, prostrate posture, loss of coordination, loss of righting reflex, depression and convulsions (100% of birds)	On Day 4: one with foot lesions				
	100 mg/kg	_	On Day 14: one with foot lesions				
HBCD	1000 mg/kg	ruffled appearance and wing droop (15% of birds)	_				

Chemical	NOEL (mg/kg)	LOEL (mg/kg)	Source of LOEL
EE2	0.5	5	Table 2b
CPF	1	10	Table 2b
ТВ	>10	_	No effects at any dose
BaP	0.5	5	Table 2b
SeMe	<0.1	0.1	Table 2b
Pb	350	3500	Table 3
FLX	10	100	Table 3
HBCD	100	1000	Table 3


Summary:

- by sex (Table 2b)

Acknowledgments

Funders: Genome Canada; Génome Québec; Genome Prairie; the Government of Canada; Environment and Climate Change Canada; Ministère de l'Économie, de la Science et de l'Innovation du Québec; the University of Saskatchewan; and McGill University. **People:** Patrick M Hubbard, B.S. and Diana L. Temple, M.S (from Eurofins EAG Agroscience, LLC), Lisa Bidonosti, and Jenny Eng. **Partners:** Environment & Climate Change Canada, US Army Corps of Engineers, US EPA, SGS AXYS, Qiagen, and Shell USA.

EcoToxChip Project Overview

Results

Table 4 NOFL (no observed effect level) and LOFL (lowest observed effect level)

Pb caused 100% mortality at a dose of 3500 mg/kg (Table 2a)

SeMe caused 20% mortality at a dose of 10 mg/kg (Table 2a)

• Significant effects of chemicals on morphometric endpoints were only observed when individuals were separated

• Signs of toxicity were observed in SeMe, Pb, FLX, and HBCD exposure studies (Table 3) • Gross effects during necropsy were observed in BaP, SeMe, Pb, and FLX exposure studies (Table 3) • LOELs were established for seven of the eight chemicals (Table 4) • Pending/future analyses include omics, histology and comparison of the adult JQ data to the early-life stage exposures (<u>https://doi.org/10.1002/etc.4582</u>)

