

Enabling PointsDC
A capability of the Australian Scaleable Drone Cloud (ASDC)

Dr Adam Steer, Spatialised
Dr Timothy Brown, Australian Plant Phenomics Facility, ANU Node,

13 August 2020

ABN 69 632 365 687 :: https://spatialised.net :: adam@spatialised.net

https://spatialised.net/
mailto:adam@spatialised.net

Contents

Contents 2
Executive summary 3
Recommendations 4
Key drivers for PointsDC recommendations 5
Data visualisation examples 7

USGS lidar as Entwine Point Tiles 7
Combining discovery and visualisation using TerriaJS 9
Co-visualisation of georeferenced numeric data 12

Suggested roadmap for implementation 13
Suggested work packages 13

Exploring point clouds in XR 14
Suggested roadmap for implementation 14
Suggested work packages 14

On demand analysis for ASDC outputs 14
Suggested roadmap for implementation 16
Suggested work packages 16

Metadata considerations 16
Using metadata to power most data queries 16
Metadata for incoming datasets 17
Metadata for processed datasets 17

Key data formats 18
Cloud Optimised GeoTIFF 18
Entwine Point Tiles 18
GeoJSON 19

Key software tools 19
Visualisation 19

CesiumJS / TerriaJS 19
ept-tools 20
Potree 20

Processing 20
PDAL 20
GDAL 21

Organisation 21
DroneDB 21
Entwine 23
PostGIS 23

Delivery 23
PyWPS 23
rio-tiler 24

Glossary 24
References 25

Software and tools 25
Related organisations 25
Related proposals 25
Related presentations and papers 25
Examples of related commercial products 25

 2

Executive summary
The Australian Scaleable Drone Cloud (ASDC) is a collaborative effort between multiple institutions at

different stages in their implementations and usage of remotely piloted aircraft (RPA) platforms and data.

It seeks to exploit strengths of its partner institutions and deploy a range of tools aimed at helping

researchers manage and process data from sensors aboard RPA, or drones. Inevitably, overlapping

capability exists because of fairly common data workflows and end user cases.

This document aims to provide a view from the PointsDC capability within the ASDC - tasked with providing

visualisation and data services on 3D point cloud products from RPA data collection. A processing and

visualisation capability cannot cover all possible data outcomes - effective data usage and visualisation

requires consistent input from upstream workflows, and consistent methods for acquiring data products.

With this in mind, this document looks at the entire workflow from aircraft to end user, in order to provide

guidance about tooling which can be applied to building ASDC components. The document is structured as

a walk through:

● Data visualisation examples

● Engines for processing data

● Managing processed data

● Tools for data exploitation and visualisation

Using a generalised workflow as a guide, this report outlines technologies which fit into various workflow

components and provides a ‘state of readiness’ for each. The design principles for this task are:

● Try to converge on common standards which work and have existing communities

● What are drone pilots and data analysts used to using?

● What are some tools we can introduce to make work easier?

● How can we make sure all this still runs easily a decade from now?

Where new or untested tooling is introduced, it is because it fills a gap and appears to be (at the time of

writing) a ‘fast win’ in an agile sense - get something imperfect happening now and fill out the details as

the system becomes stable.

Most importantly, the entire approach is based on open principles: use open software, use open

algorithms, use what communities already adopt, use design patterns which are well established. With this

in mind a critical consideration in the development of ASDC / PointsDC tooling is giving back to open source

communities. This simply means ‘where we have a criticism or see an improvement, fix it and commit it

back to the main repository’. In this way, we ensure that whatever ASDC creates is long-term sustainable,

taking advantage of the largest possible community of contributors.

A glossary of acronyms is given at the end of the report, with links to software resources and relevant prior

work.

Recommendations

 3

To enable PointsDC outcomes, data from ASDC pipelines must arrive in a set of standardised products for

consumption by PointsDC services (see references at end of report for links):

● Point clouds should arrive as Entwine Point Tile (EPT) datasets

● Raster data should arrive as Cloud Optimised Geotiff (COG)

● Point cloud and raster bounds should arrive as GeoJSON geometries

● Camera centre locations should arrive as time-labelled GeoJSON geometries, with camera

metadata in geometry properties.

● Image footprints should arrive, or be derivable from camera centres as, timestamped GeoJSON

geometries with camera metadata in geometry properties

● Flight paths should arrive as timestamped GeoJSON geometries

● Other metadata should arrive in a standardised JSON format

These enable PointsDC to assemble capabilities from open, standards driven components. PointsDC sees

the following software components as ‘ready to use’, ‘close to ready’ or ‘ready with work’ in order to build

the system it requires:

● DroneDB as an initial effort to standardise flight metadata. DroneDB is the least ready component -

it needs substantial work, however it provides functionality now - allowing ASDC to get started on

metadata farming from drone missions.

● TerriaJS/Leaflet/Cesium Javascript libraries for web based data discovery and display

● Entwine to generate EPT point datasets

● Potree and CesiumJS as 3D point cloud viewers

● ept-tools to deliver EPT data to CesiumJS

● Potree / webXR to deliver immersive point cloud exploration

● PDAL as a point data manipulation engine

● PyWPS to provide a standards-driven data processing endpoint

 4

A functional diagram is given below:

Wherever open source tooling is adopted for PointsDC / ASDC purposes, it is critical that improvements

funded by ASDC flow back to the community, and the ASDC works with existing communities rather than

creating bespoke copies of open source tools. Aside from recognising the fundamental uplift that the

project gains from using open software, working in the community provides additional eyes on the project

to help fix components, and also provides a means for transparent accountability.

Key drivers for PointsDC recommendations

In order to provide the PointsDC capability, data workflows and products in the ASDC system need to be

relatively standardised. Because ASDC requires working examples as a base for iterative improvement, the

following body of work is suggested as a general pattern which will help PointsDC (and the ASDC as a

whole) achieve its aims:

1. Use DroneDB as a field data catalogue and to drive storage catalogues

a. Work with the DroneDB community to build on this foundation

b. While DroneDB is imperfect, it is available now and works.

2. Use the SpatialTemporal Asset Catalogue specification (STAC-spec, or STAC) as a cataloguing

template

a. Determine metadata required to meet ISO19115, DCAT, and spatiotemporal query

requirements

b. Investigate adopting / extending STAC to act as a base ‘feature rich’ catalogue

c. Work with droneDB team on STAC-like metadata creation

 5

d. Extract droneDB data and reformat to STAC spec with TERN ontology additions

3. Use PostGIS as a dynamic data catalogue, ingesting STAC-spec metadata for spatial queries

4. Use OpenDroneMap (ODM) as the initial processing engine, since it is open source and provides

processed data in formats pointsDC requires already - especially its web application wrapper, Web

OpenDroneMap (WebODM)

a. Work with the ODM community on post-processed data cataloguing.

b. Work on methods for ASDC users to provide their own licensing information for other

processing engines

5. Store points as Entwine Point Tiles (EPT) (already provided by ODM)

a. Work on a simple tool for EPT building from metashape/pix4D output - which could be

implemented as a Web Processing Service (WPS) or programmatic tool.

6. Store rasters as Cloud Optimised Geotiff (COG)

a. Work with ODM community to render out orthophotos as COG instead of plain geotiff

7. Work on methods for ingesting ‘preprocessed’ or ‘externally processed’ data into the ASDC

catalogue

a. Many researchers have preprocessed data already, and need a data organisation service

rather than a processing service

8. Use TerriaJS as a common ‘raw data’ and ‘data products’ discovery interface.

a. Investigate dynamic data catalogue generation in TerriaJS

b. Work on method for visualising flight data and metadata

c. Work on tools to drive DroneDB

d. Work on tools to drive WebODM

e. Work on UI tools to drive WPS

9. Deliver EPT points as on-the-fly rendered 3D tiles to TerriaJS/Cesium

a. Collaborate on building improvements to EPT tools

10. Use PyWPS as a data request API, driven by TerriaJS as a user interface

a. Work with EcoCommons (formerly EcoCloud), the birdhouse community and TerriaJS on

ASDC-relevant processing services with a user-friendly front end.

11. Develop point clipping and processing tasks, using PyWPS as a wrapper around:

a. PDAL to read and process EPT

b. CloudCompare command line tooling where PDAL does not fit

c. GDAL to read and process rasters

d. Other tooling as required for aircraft trajectory analysis

12. Use EPT resources in Virtual Reality (VR) viewers

a. Improve EPT rendering in the Potree viewer

b. Exploration into relative feasibility of web-based VR visualization using potree or other

web-based VR viewers vs Unity or Unreal implementations

 6

Data visualisation examples

USGS lidar as Entwine Point Tiles
The United States Geological Survey (USGS), in collaboration with the Amazon Web Services public data

programme, hosts 19 trillion points of lidar data over the continental United States of America using EPT

and a simple leafletJS + static GeoJSON user interface at https://usgs.entwine.io. On arrival the user is

presented with lidar ‘coverages’ as well as a list of available datasets.

USGS lidar data bounds displayed in a simple web map

Hovering over a polygon raises a window with a link to a 3D viewer:

Clicking polygons to expose viewing options

 7

https://usgs.entwine.io/

Clicking the link takes the user to an interactive web-based visualisation using the Potree viewer:

Selected lidar point cloud data visualised in 3D using the Potree web viewer

This website is open source, with the code available at https://github.com/hobu/usgs-lidar/. It operates in

a very similar fashion to WebODM’s user interface for post-processed data - offering discrete 2D and 3D

viewers for point data. It does not offer processing tooling, although it guides users to PDAL’s EPT reader -

which is able to query and process data from any of the listed public point clouds directly.

It shows an example of deploying EPT as a standardised point cloud management format, in a lightweight

cataloguing and discovery platform. Static GeoJSON is used as both a discovery tool and a catalogue for

data extents.

Taking this approach is very lightweight. The primary work package to implement a data exploration

interface is to reorganise output products (EPT point clouds and GeoJSON polygons) so that this user

interface can be applied.

It is important to note that all point data underlying this approach are reprojected to web mercator

(EPSG:3857). Great care must be taken when using these high resolution data for research purposes,

particularly accounting for any precision scaling if a dataset extends over a substantial latitude range.

Combining discovery and visualisation using TerriaJS
TerriaJS is a CSIRO data61 product for data exploration using a web-based virtual globe, exemplified in the

New South Wales Government digital twin project: https://nsw.digitaltwin.terria.io/. Because it can

display both 2- and 3D data in a single user interface, it is an attractive candidate for data discovery and

visualisation interfaces. Its core 4D display engine is the open source CesiumJS library. Its native 3D data

format is Cesium 3D Tiles, an hierarchical JSON-based data format which was recently adopted as an OGC

community standard. 3D Tiles are able to encode vector, point and model data - using level-of-detail

 8

https://github.com/hobu/usgs-lidar/
https://nsw.digitaltwin.terria.io/

dependent cues for adaptive visualisation.

Two dimensional data in most common geospatial formats is also usable in CesiumJS, meaning an interface

like the one demonstrated for https://usgs.entwine.io could be rapidly redeployed in 3D using TerriaJS. An

example of GeoJSON polygon loading and display is given here:

Lidar point cloud boundaries over terrain in a CesiumJS web-based virtual globe

For point data, most approaches at present require conversion of point clouds to static 3D tiles. This has

the same implications for storage as using the Potree point cloud format - duplicating data for the purpose

of visualisation.

EPT-tools (is a lightweight server application designed to solve this issue. It is an on-the-fly EPT to 3D tiles

converter, allowing direct display of static EPT resources in CesiumJS. The following image shows an EPT

tileset dynamically rendered to CesiumJS using ept-tools. It covers around 900 square kilometres and

contains 615 602 157 points.

Lidar point cloud over terrain in a CesiumJS web-based virtual globe. Note terrain interference.

 9

https://usgs.entwine.io/

Because Cesium’s native terrain interferes with the point cloud, the next image shows the same data with

terrain turned off in the browser. Here, level of detail based point rendering is apparent.

Lidar point cloud without terrain in a CesiumJS web-based virtual globe, showing level-of-detail rendering.

The aim of this approach is to present users with a bounding box showing data coverage until zoomed in

close enough to present point clouds. It is not yet fully built out as a functional system - EPT tools expect

data to exist on the same filesystem as the server. Ideally data hosted in object stores or on remote

filesystems would be equally useable.

A key drawback is that point cloud elevations often interfere with CesiumJS terrain, making exploration

with ‘terrain on’ difficult.

As a final example, TerriaJS can be used for visualising metadata, raw data and data products. This example

shows DroneDB-collected camera locations and estimated image footprints (red), with an EPT point cloud

rendered on the fly.

 10

Camera centre and image footprint data with derived photogrammetric point cloud, visualised over terrain in TerriaJS

Co-visualisation of georeferenced numeric data
Co-visualisation of georeferenced numeric data comes ‘out of the box’ with TerriaJS as an exploration
platform. This example shows Geoscience Australia intertidal extent model (ITEM) and national intertidal 1

elevation model (NIDEM) data overlaid on CesiumJS terrain, with a photogrammetric point cloud. These 2

are used as examples only. Depending on the use case, these layers could be replaced with spatiotemporal
data for landcover, crop health, surface geology, forest cover - in fact whatever data can be displayed using
OGC standard services, or any of TerriaJS’ data layer types . 3

Photogrammetric point cloud and spatially-coincident data visualised over terrain in TerriaJS

1 Intertidal Extents Model 25m v. 2.0.0:

https://ecat.ga.gov.au/geonetwork/srv/eng/catalog.search#/metadata/113842
2 National Intertidal Digital Elevation Model 25m 1.0.0:

https://ecat.ga.gov.au/geonetwork/srv/eng/catalog.search#/metadata/123678
3 https://docs.terria.io/guide/connecting-to-data/catalog-items/

 11

Suggested roadmap for implementation

● Present users with data bounding boxes using either leafletJS or CesiumJS

● Allow users to select a 2D or 3D view

● In the latter case, replace bounds with points as users zoom in

● Present a plain potree viewer option as a fallback

● Allow users to click and select data from a catalogue

● Allow users to adjust point elevations to avoid terrain interference

● Allow users to click on, or draw subsetting regions over, data to select it for downstream

processing

● Present users with a library of processing capabilities using TerriaJS menus

Suggested work packages

ept-tools

● Remote data asset access for ept-tools (eg serving points hosted in cloud object stores)

TerriaJS

● TerriaJS interface component allowing users to dynamically adjust point data height to just above

terrain

● TerriaJS interface tweaks to swap boundaries for points as users zoom in

● Dynamic TerriaJS data catalogue construction using ASDC data catalogue queries

● TerriaJS user tools to allow selection of point datasets or subsets by polygon drawing

● Tools to send drawn polygons and selected dataset details to an API (eg WPS) for processing

● Tools to display a catalogue of data extraction and processing services

Exploring point clouds in XR
Virtual and augmented reality can be grouped into ‘mixed’ or ‘extended’ reality - denoted here as XR. An

ability to immersively explore dense point data; and project point cloud data over real world objects has

been subject to attention in research, industry and defence. Previous work has demonstrated unlimited

scale point clouds in XR platforms (augmented and virtual) based on the Potree viewer (http://potree.org/)
and potree’s bespoke octree data format. Its key outcome was breaking a common

‘expensive/bespoke/limited by GPU’ model for point cloud rendering in XR.

Suggested roadmap for implementation

For pointsDC, this demonstration presents a roadmap to XR capabilities using predominantly existing

components:

● Implement EPT Octree rendering in Unity and Unreal engines using Potree components

Suggested work packages

● Modify XR renderers to read and display EPT octrees

 12

http://potree.org/

● Further work on user interaction and data discovery tools in an XR environment

On demand analysis for ASDC outputs

Part of the PointsDC remit is providing easy download / analytical tooling for ASDC outputs. A common

issue for researchers is needing to manage huge datasets in order to use a tiny part that they require.

Inspired by efforts in the satellite earth observation community, pointWPS was developed at the National

Computational Infrastructure in 2017. The project was discontinued at a prototype stage, however it

provides a pattern for ‘clip and ship’ analysis of massive point cloud datasets and is publicly available on

github (here). At its core, all it did was provide a standard API to drive PDAL pipelines using data identified

by a postGIS cataloguing system. In doing so it proved a concept - using an OGC standard API to deliver

what research users wanted on massive point data collections with a minimum of fuss, using the state of

technology in 2017.

The PointWPS concept - a method for user-needs driven access to massive point cloud collections

 13

https://github.com/adamsteer/pointWPS
https://github.com/adamsteer/pointWPS

The proposed PointWPS implementation presented at EGU 2017 was conceptually useful but represents a 4

number of solutions (for example on-cloud processing of many different source file formats) that have

turned out not to be feasible. A longer and more constrained explanation was delivered at FOSS4G 2017:

goo.gl/WU7Pwc . 5

PyWPS continues to be developed, and is in use at the NCRIS ecocommons facility. It has a support

community as a formal PSGeo project, and a large user/developer community in the birdhouse WPS

project (bird-house.github.io). For ASDC purposes, PyWPS provides an OGC standard API which can be

integrated into desktop GIS (eg QGIS) with a library of on-demand, repeatable analytical products.

Suggested roadmap for implementation

● Develop a library of WPS processed derived from the research community

● Develop a spatially-enabled, rich metadata catalogue with at least the data identified here:

https://github.com/adamsteer/pointWPS/blob/master/docs/metadata-attributes.md

● Provision a demonstration WPS endpoint

Suggested work packages

● Rewrite pointWPS to better use PDAL Python API and EPT data sources (or abandon pointWPS and

start over knowing it was done once and can be done better)

● Rewrite pointWPS to use ASDC data catalogues for metadata queries

● Distributed processing from PyWPS API calls

● UI components to expose available functions

● UI components to allow data selection by drawing polygons

Metadata considerations

Using metadata to power most data queries

PointsDC capabilities rely entirely on data being catalogued with rich and appropriate metadata.

Visualisation tools need to know ‘where and when’ data exist, and be able to display some form of

coverage information ahead of users diving into actual data. Analytical tools (eg cloud based processing

services) need to be able to run fast queries about many aspects of data without needing to read the data

themselves - for example tight bounding polygons, types of points present, coordinate reference systems,

temporal data, point counts and densities, number of bands and so on.

There is a need to provision metadata appropriate to meet ISO19115

4https://www.researchgate.net/profile/Adam_Steer/publication/316272527_An_open_interoperable_tran
sdisciplinary_approach_to_point_cloud_data_services/links/58f83b5da6fdcc86f8124fc6/An-open-interope
rable-transdisciplinary-approach-to-point-cloud-data-services.pdf
5 10.13140/RG.2.2.27345.02409

 14

https://goo.gl/WU7Pwc
http://bird-house.github.io/
https://github.com/adamsteer/pointWPS/blob/master/docs/metadata-attributes.md
https://www.researchgate.net/profile/Adam_Steer/publication/316272527_An_open_interoperable_transdisciplinary_approach_to_point_cloud_data_services/links/58f83b5da6fdcc86f8124fc6/An-open-interoperable-transdisciplinary-approach-to-point-cloud-data-services.pdf
https://www.researchgate.net/profile/Adam_Steer/publication/316272527_An_open_interoperable_transdisciplinary_approach_to_point_cloud_data_services/links/58f83b5da6fdcc86f8124fc6/An-open-interoperable-transdisciplinary-approach-to-point-cloud-data-services.pdf
https://www.researchgate.net/profile/Adam_Steer/publication/316272527_An_open_interoperable_transdisciplinary_approach_to_point_cloud_data_services/links/58f83b5da6fdcc86f8124fc6/An-open-interoperable-transdisciplinary-approach-to-point-cloud-data-services.pdf
https://www.researchgate.net/deref/http%3A%2F%2Fdx.doi.org%2F10.13140%2FRG.2.2.27345.02409?_sg%5B0%5D=2Bw3cLKntKFeWbo4JVow9nVUn10fc6OhZRREFYrR37n7eYk9jLwCDXvEDjOaTN-4d7CUbpLmsFqaByImx3xBUG2Obw.1qjebe9dNS97RXIpFMlc9xnjU0GTMN3zFGHUPFKBivGsT6hlLNqrr0Ad-YB4GRLi68F5gtockv3BOfZP9pYKjQ

(https://www.iso.org/standard/53798.html) and DCAT standard (https://www.w3.org/TR/vocab-dcat-2/)
descriptions. However, it is not apparent whether either of these provide sufficient data to power the

types of spatial queries pointsDC will need.

STAC-spec (https://stacspec.org/), while not a formal standard, provides a community-supported means of

enabling deeper geospatial queries, for example ‘find me the exact intersection of my query polygon and

data’; or ‘in my selected region, find me all datasets which have points labelled as tall trees’. It has an active

development and usage community (eg: https://stacspec.org/#examples). While aimed at earth

observation data, STAC uses a modular extension system for other data types - for example point clouds:

https://github.com/radiantearth/stac-spec/tree/master/extensions/pointcloud

STAC assets are written out as JSON structures, which are not dynamically queryable themselves. The

model for usage is to maintain a static catalogue as JSON, and create ‘views’ from it as required for active

querying (using, for example, PostGIS). This way the static catalogue can be updated and modified in situ,

with views refreshed at some time period.

Associated with a catalogue is a file crawling system which, in some cases, automatically extracts rich

metadata from incoming datasets. A crawler should also check that datasets continue to exist at the

catalogued locations.

Metadata for incoming datasets
At the time of writing the DroneDB project provides a partially complete set for incoming data, and should

be actively expanded to collect more information from incoming datasets. LandRS is another option,

although it is not ready for usage now. While neither of these derives data according to (for example) TERN

plot ontologies, they are both open source projects and therefore extensible as needed.

Importantly, metadata should be programmatically derived wherever possible. Firstly, nobody wants to

manually enter thousands of image locations (for example). Secondly, it may be useful to expect that

certain metadata are encoded at capture time. Missing metadata (eg camera centre locations) need not be

a blocker, it should be a flag that the data may not be usable for functions which depend on those

metadata.

Metadata for processed datasets
When data products are constructed, metadata should be programmatically added to the catalogue. Inside

the ASDC platform, ASDC has full control over delivering processing parameters and other provenance data

alongside geospatial and descriptive metadata.

The key driver here is ‘are we keeping enough detail to reproduce these data?’ - along with the

considerations for downstream visualisation and processing described above.

When externally processed data are ingested into ASDC, metadata should be programmatically determined

as far as possible, with user-entry fields for (eg) processing parameter sets. Again, incomplete metadata

should not be a blocking factor - although datasets should be flagged as non-reproducible or of limited use

if sufficient information is not provided.

 15

https://www.iso.org/standard/53798.html
https://www.w3.org/TR/vocab-dcat-2/
https://stacspec.org/
https://stacspec.org/#examples
https://github.com/radiantearth/stac-spec/tree/master/extensions/pointcloud

Key data formats

Cloud Optimised GeoTIFF
Cloud Optimised GeoTIFF (COG) is a GeoTIFF format with internal pyramids, designed for fast range read

queries.

Because COG is optimised for range reading and contains internal pyramids, it is fast to view in desktop

GIS. Its structure allows dynamic map tile service requests using lightweight servers (for example rio-tiler:

https://github.com/cogeotiff/rio-tiler).

Like an ordinary GeoTIFF, COGs are analytical products. Again, the format is openly defined and openly

described.

https://www.cogeo.org/

https://www.ogc.org/standards/geotiff

Entwine Point Tiles
Entwine Point Tiles (EPT) is a data management format for point cloud data. Conceptually it acts like slippy

map tiles for 3D point data, reorganising data at any scale in a lossless static octree. This is designed to

allow both data visualisation using level-of-detail capable visualisation tools (Potree, CesiumJS) and data

processing using the open source Point Data Abstraction Library (PDAL). On disk, data are stored as

compressed LAS 1.4 (an OGC community standard: https://www.ogc.org/standards/LAS), or as binary files

using a customised user-provided data schema.

Its key advantages over LAS tiles, or Potree Octrees, or postGIS-pointcloud are:

● EPT assets are designed for both visualisation and processing, a key capability missing in standard

LAS formats.

● EPT datasets can be directly read over http by PDAL, meaning a data processing infrastructure

already exists

● EPT datasets are fully lossless (Potree is not lossless). Using LAS tiles as an example, if an EPT

dataset is constructed from 800 LAS tiles, every single tile can be completely (losslessly)

reconstructed from the EPT dataset

● EPT is almost infinitely scalable. It can store data at sub-centimetre resolution or over thousands of

square kilometres, or both.

● Metadata from the entire dataset and individual source files is retained in straightforward plain

text JSON structures. This makes discovery of data attributes fast and simple.

Using EPT removes a requirement to hold duplicate data for analysis and exploration/visualisation. Both

aims are achieved with a single data source, lowering both storage cost and data management complexity.

EPT ties analysts into using PDAL for data analysis at the time of writing this report. However, the EPT data

structure is openly described and the EPT reader is open source C++ code. It is available for anyone to

recast into their favourite analytical toolkit.

 16

https://github.com/cogeotiff/rio-tiler
https://www.cogeo.org/
https://www.ogc.org/standards/geotiff
https://www.ogc.org/standards/LAS

Using PDAL, EPT assets can be directly queried by spatial bounds and desired point resolution (loosely

translating to octree depth). From there statistical, point based or raster products can be generated in

standard formats for consumption by downstream processes.

Its main drawback is that octree structures are written out as many small files on disk. This is undramatic

for object stores (eg Amazon S3), but may become problematic for HPC storage. For very large pointclouds,

an EPT octree will be composed of millions of files in a flat directory structure.

https://entwine.io/

https://entwine.io/entwine-point-tile.html

GeoJSON
GeoJSON is a description of a JSON format which encodes geospatial information. It is simple to parse in

many languages, and useable for both desktop and web GIS applications (eg QGIS and TerriaJS). It is useful

in PointsDC terms for storing instrument and instrument platform metadata, for example aircraft

descriptions, camera centres (aircraft position and attitude), camera parameters (eg radiometry). In

addition, it provides a simple method of describing, visualising and performing operations on processed

dataset bounds.

Its primary inflexibility is around coordinate systems - it requires all coordinates to be expressed in

EPSG:4326 (WGS 84 latitudes and longitudes). Using GeoJSON-compatible structures to encode different

CRS may be an option, as long as the coordinate system used is well described in allowable property

declarations.

https://geojson.org/

Key software tools

Visualisation

CesiumJS / TerriaJS

Cesium is a Javascript ‘virtual globe’ which was developed for the visualisation of 4D geospatial data.

TerriaJS uses Cesium as a 3/4D viewer, adding cataloguing and convenient ‘drag and drop’ data

visualisation tools. TerriaJS also adds the foundation for data query tools - drawing regions for data

selection, or querying a single point. A key use case for Cesium/TerriaJS is the co-visualisation of multiple

data types (raster, vector, points) in one platform. A key drawback is its resource consumption on client

computers.

https://terria.io/

https://cesium.com/cesiumjs/

 17

https://entwine.io/
https://entwine.io/entwine-point-tile.html
https://geojson.org/
https://terria.io/
https://cesium.com/cesiumjs/

ept-tools

Ept-tools is an application developed by the Entwine Point Tiles team. For PointsDC purposes its role is to

convert static EPT indexes to Cesium 3D tiles on demand from a discovery interface. It can run on local EPT

data or as an AWS lambda. Ideally, however, remote datasets would be useable, for example an ept-tools

instance at “http://eptserver.com” could serve EPT indexes from remote s3 or other object stores, or from

remote http:// accessible filesystems. It is also uncertain at the time of writing whether all point attributes

are made available to the on-demand 3D tileset. Developing this capability could form a discrete work

package for ASDC.

https://github.com/connormanning/ept-tools

Potree

Potree is a javascript application for visualisation of massive point clouds using webGL. It relies on

octree-structured points. It can currently read its own data formats and EPT. As a point cloud exploration

utility it has a lot of built in functionality, which has helped its popularity. Its key weaknesses are lack of

modularity - it is very hard to modify, and its inability to easily display coincident map data.

https://github.com/potree/potree/

Processing

PDAL

PDAL is an open source application for translating and processing point cloud data. It reads and writes

many common point data formats, including native EPT reading. It has Python, Julia and Java bindings.

There is no GUI for PDAL, it operates entirely as a programmatic interface. It expects the user to manage

parallelisation for most tasks. PDAL uses a powerful JSON-based pipeline syntax for configuring complex

point cloud processing tasks, using a modular system of data processing stages.

PDAL is an OSGeo project, with a mature community of developers.

https://pdal.io

GDAL

GDAL is used for raster and vector processing in almost every open source geospatial application. It is an

essential tool for PointsDC, providing the geospatial underpinnings to PDAL, and allowing convenient raster

IO functionality. GDAL uses filesystem and object store drivers, meaning it takes very little work to run the

same code on data hosted on either. GDAL can operate on files in memory; and has a powerful virtual

raster format (VRT) allowing stacking of operations before any pixels need to be read. In short, it offers

methods for lazy compute approaches, and allows for building processing engines with very minimal

(sometimes no) local storage requirements.

https://gdal.org

 18

https://github.com/connormanning/ept-tools
https://github.com/potree/potree/
https://pdal.io/
https://gdal.org/

Data Organisation

DroneDB

https://github.com/uav4geo/DroneDB is an open source project in development, aimed at the problem of

‘remote users and central management’. It is a system designed to ingest imagery metadata and create a

local database for a directory tree of data. These local databases can be used directly in desktop GIS

software, and ingested into centralised data stores as opportunities arise. Because it uses spatialite

(https://spatialite.org) as a data storage method, spatial queries can be used to generate derived products,

for example flight tracks, labelled image sets, or pop-up overlays describing each image.

DroneDB data products displayed in CesiumJS

Camera metadata made available in DroneDB data products, exposed by clicking a camera centre point in CesiumJS

 19

https://github.com/uav4geo/DroneDB
https://spatialite.org/

DroneDB provides an immediately-useable toolset for ASDC to work with, and has some key benefits:

● Field-first design

● Already interoperable with web and desktop data visualisation tools

● Already interoperable with metadata storage catalogues

● Extendable - adding TERN and RDA ontology concepts can be done at any point

● Early in the project - the roadmap is still being constructed, giving ASDC the opportunity to have a

product built ground up with ASDC needs in mind.

DroneDB competes directly in the same space as the LandRS proposal developed as part of the RDA UAS

interest group. At present it has key advantages in that it exists now and can be used for data collected by

a huge range of off the shelf (or bespoke) aircraft + sensor combinations. It is relatively low in complexity,

and lets researchers use what they feel comfortable with for flight planning and execution.

Ultimately DroneDB may end up as one option people can choose to use, although at the time of writing it

seems substantially more useful to more pilots and researchers.

https://uav4geo.org/dronedb

https://uav4geo.com/software/dronedb

Entwine

Entwine is a set of tools for writing entwine point tiles. It is open source, lightweight and configurable. It is

highly integrated with PDAL, which has a specific EPT reader. Because writing EPT is considered a one time

operation for most datasets, the Entwine writer is managed separately from PDAL’s standard set of data

translation tools. Being a living software suite, that may change given user demand and funding.

https://entwine.io

PostGIS

PostGIS is a strawman in this case - since any database with spatial querying will do. PostGIS has a very

mature development and user community, and can handle all of the metadata queries a pointsDC

capability would require, before heavyweight data lifting. For example:

● Data discovery - finding datasets overlapping a query polygon

● Metadata extraction - if sufficiently data-full, handle queries about data completeness, labelling

status, point density, accuracy, and so on.

● Usage of static views into the catalogue, allowing background updating of ‘living’ static or dynamic

catalogues without service interruption.

PostGIS handled all of the metadata queries for pointWPS, using a nightly-generated static view into the

NCI ‘Metadata Attribute System’ which was exposed to pointWPS via an http API. An example data schema

is given here: https://github.com/adamsteer/pointWPS/blob/master/docs/metadata-attributes.md. This

pattern is repeated often in earth observation, because datasets grow so large it is necessary to perform

many operations on metadata ahead of firing up machinery to actually process data.

 20

https://uav4geo.org/dronedb
https://uav4geo.com/software/dronedb
https://entwine.io/
https://github.com/adamsteer/pointWPS/blob/master/docs/metadata-attributes.md

Delivery

PyWPS

PyWPS is a python implementation of the OGC Web Processing Service standard. It provides the OGC WPS

API for driving data processing tasks on somebody else’s computer. Run as a server which tasks other

machines to do processing work, it is lightweight and flexible. The processes which can be run are limited

by available compute power and an ability to write Python. As an example, pointWPS used Python to

manage jobs and outputs. All the processing tasks were achieved using shell scripts. PyWPS is already in

use by the NCRIS ecocommons facility (https://github.com/ausecocloud/silvereye_wps_demo) and has an

international community of practice in the birdhouse climate analysis tools: http://bird-house.github.io

https://pywps.org/

rio-tiler

Rio-tiler is a python library which, in the ASDC context, has one job: act as a tile server which translates

from COG to TMS on the fly. It is already deployed in webODM to deliver map results in a browser

interface.

https://github.com/cogeotiff/rio-tiler

Glossary
ARDC: Australian Scalable Drone Cloud

APPF: Australian Plant Phenomics Facility

B2: Backblaze object storage (https://www.backblaze.com/b2/cloud-storage.html)
CASA: Civil Aviation Safety Authority (Australia)

COG: Cloud optimised geotiff, a format for geo-located image data (https://www.cogeo.org/)
EPT: Entwine Point Tiles, an organisation structure for point cloud data

(https://entwine.io/entwine-point-tile.html)
EXIF: Exchangeable image file format - an image metadata transmission standard

(https://en.wikipedia.org/wiki/Exif)
GeoJSON: a standardised method of writing Javascript Object Notation (JSON) files to hold geospatial data

(https://geojson.org/)
GeoTIFF: ‘geospatial tagged image file format’ - an image format capable of holding geospatial reference

data in its header, giving locations for pixels (https://github.com/OSGeo/libgeotiff)
LAS: a standardised data exchange format for lidar products (https://github.com/ASPRSorg/LAS)
LAZ: a compressed las format (https://laszip.org/)
LIDAR: light detection and ranging, in this case detecting objects overflown by airborne lidar sensors to

produce 3D maps of those objects. Lower case in use (eg ‘The lidar…’)

NCRIS: National Computational Research Infrastructure

OGC: the Open Geospatial Consortium, a body concerned with geospatial data standards

(https://www.ogc.org/)
OSGeo: the Open Source Geospatial foundation, a body supporting development and use of open source

geospatial software (https://osgeo.org)

RGB: red, green, blue. The three colour bands of ‘regular photography’ imaging

RPA: Remotely Piloted Aircraft, informally ‘drone’.

RPAS: Remotely Piloted Aircraft System (including ground control segment)

 21

https://github.com/ausecocloud/silvereye_wps_demo
http://bird-house.github.io/
https://pywps.org/
https://github.com/cogeotiff/rio-tiler
https://www.backblaze.com/b2/cloud-storage.html
https://www.cogeo.org/
https://entwine.io/entwine-point-tile.html
https://en.wikipedia.org/wiki/Exif
https://geojson.org/
https://github.com/OSGeo/libgeotiff
https://github.com/ASPRSorg/LAS
https://laszip.org/
https://www.ogc.org/

S3: Simple Storage Service, an object storage service run by Amazon Web Services

(https://aws.amazon.com/s3/)
XR: eXtended Reality - used as a catch-all term for ‘Virtual Reality’ (VR) and ‘Augmented Reality’ (AR)

References

Software and tools
Cloud Optimized Geotiff: https://www.cogeo.org

DroneDB: https://uav4geo.com/software/dronedb

DroneDB registry: https://github.com/DroneDB/Registry

Ecocommons Silvereye WPS: https://github.com/ausecocloud/silvereye_wps_demo

Entwine: https://github.com/connormanning/entwine

Ept-tools: https://github.com/connormanning/ept-tools

LandRS: http://www.landrs.org

OpenDroneMap: https://www.opendronemap.org

PDAL: https://pdal.io/

PointWPS: https://github.com/adamsteer/pointWPS

Rio-tiler: https://github.com/cogeotiff/rio-tiler

WebODM: https://www.opendronemap.org/webodm/

Related organisations
https://www.rd-alliance.org/groups/small-unmanned-aircraft-systems%E2%80%99-data-ig

Related proposals
https://github.com/landrs-toolkit/DroneDataBuddy

Related presentations and papers
PointWPS (Adam Steer, FOSS4G 2017, Boston):

https://docs.google.com/presentation/d/1XTrg0tMc7uLkJa8d2ezVAP_tb0VOpdPeKGjGeuNw4qw/

Managing continent scale point clouds (Connor Manning, FOSS4G 2019, Bucharest):

https://data.entwine.io/slides/foss4g2019.html

Examples of related commercial products
End to end solution:

● Dronedeploy: https://www.dronedeploy.com

Drone flight tracking:

● https://airdata.com

● https://www.dronelogbook.com/

Drone data ingest, mapping and modelling:

● Propellor aero: https://www.propelleraero.com/

Example commercial implementation of ODM:

● Aerosurvey: https://aerosurvey.co.nz/

 22

https://aws.amazon.com/s3/
https://www.cogeo.org/
https://uav4geo.com/software/dronedb
https://github.com/DroneDB/Registry
https://github.com/ausecocloud/silvereye_wps_demo
https://github.com/connormanning/entwine
https://github.com/connormanning/ept-tools
http://www.landrs.org/
https://www.opendronemap.org/
https://pdal.io/
https://github.com/adamsteer/pointWPS
https://github.com/cogeotiff/rio-tiler
https://www.opendronemap.org/webodm/
https://www.rd-alliance.org/groups/small-unmanned-aircraft-systems%E2%80%99-data-ig
https://github.com/landrs-toolkit/DroneDataBuddy
https://docs.google.com/presentation/d/1XTrg0tMc7uLkJa8d2ezVAP_tb0VOpdPeKGjGeuNw4qw/edit#slide=id.p3
https://data.entwine.io/slides/foss4g2019.html
https://www.dronedeploy.com/
https://airdata.com/
https://www.dronelogbook.com/
https://www.propelleraero.com/
https://aerosurvey.co.nz/

