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Look at the Running Example

Link to the code

https://github.com/betters
cientificsoftware/hello-
numerical-world-atpesc-
2020/blob/main/heatAll.C

• Monolithic code

• Make it modular and 
more maintainable

https://github.com/betterscientificsoftware/hello-numerical-world-atpesc-2020/blob/main/heatAll.C
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Definition: Refactoring is a disciplined 
technique for restructuring an existing 
body of code, altering its internal structure 
without changing its external behavior.
• Different from development

– You have a working code 
– You know and understand the behavior
– You have a baseline that you can use for 

comparison

What is Refactoring 
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Definition: Refactoring is a disciplined 
technique for restructuring an existing 
body of code, altering its internal structure 
without changing its external behavior.
• Different from development

– You have a working code 
– You know and understand the behavior
– You have a baseline that you can use for 

comparison

What is Refactoring 

• General motivations
– Modularity enhancement 

• Improve sustainability
– Release to outside users

• Easier to use and understand
– Port to new platforms

• Performance portability
– Expand capabilities

• Structural flexibility
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Refactoring

An example of workflow with testing
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• Know why you are refactoring
– Is it necessary 
– Where should the code be after refactoring

Considerations for Refactoring

• In heat example
– It is necessary because

• It is a monolithic code
• No reusability of any part of the code
• Devising tests is hard
• Limited extensibility

– Where do we want to be after refactoring
• Closer to the version that you encountered in math libraries track
• More modular, maintainable and extensible
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• Know the scope of refactoring
– How deep a change
– How much code will be affected

• In heat example
– No capability extension
– No performance consideration
– Cleaner, more maintainable code

Considerations for Refactoring

• What do we do
– Separate out utilities, generalize interfaces
– Separate out integration function

• Make a general interface to allow alternative 
implementations

– Create a general build function
– No new code or intrusive changes
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• Know your cost estimates
• Verification

– Check for coverage provided by 
existing tests

– Develop new tests where there are 
gaps

– Make sure tests exist at different 
granularities
• There should be demanding integration 

and system level tests

Before Starting

• Know your bounds
– on acceptable behavior change
– error bounds

• bitwise reproduction of results unlikely 
after transition 

• Map from here to there

Incorporate testing overheads into refactoring cost estimates
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• Can be costly itself if the project is large
• Most projects do a terrible job of estimation

– Insufficient understanding of code complexity
– Insufficient provisioning for verification and obstacles
– Refactoring often overruns in both time and budget

• Factors that can help
– Knowing the scope and sticking to it

• If there is change in scope estimate again
– Plan for all stages of the process with contingency factors built-in
– Make provision for developing tests and other forms of verification

• Can be nearly as much or more work than the code change
• Insufficient verification incurs technical debt

The biggest potential pitfall

Cost estimation
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• Potential for branch divergence
• Policies for code modification

– Estimate the cost of synchronization
– Plan synchronization schedule and account for 

overheads

• Anticipate production disruption 
– From code freeze due to merges
– Account for resources for quick resolution of 

merge issues

This is where buy-in from the stake-holders 
is critical

When development and production co-exist

Cost estimation

• In the heat example
– No more than a few hours 

of developer time
– No disruption
– No need for a buy-in
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• Expose parts of the code that aren’t being tested
– gcov - standard utility with the GNU compiler 

collection suite (we will use it in the next few slides)
– Compile/link with –coverage & turn off optimization
– counts the number of times each statement is 

executed

• gcov also works for C and Fortran
– Other tools exist for other languages
– JCov for Java
– Coverage.py for python
– Devel::Cover for perl
– profile for MATLAB

Code coverage tools
How do we determine what other tests are needed?

• Lcov
– a graphical front-end for gcov
– available at 

http://ltp.sourceforge.net/coverage
/lcov.php

– Codecov.io in CI module 

• Hosted servers (e.g. coveralls, 
codecov)

• graphical visualization of results
• push results to server through 

continuous integration server

Interoperability coverage may need something like 
the matrix in testing module
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Exercise: Refactoring the Running Example
• Convert heatAll.C to the cleaner version with reusable code.

– Though a solution exists and has been given to you your solution need not be identical
– Think about how you want your final product to be and then go through the exercise of 

refactoring

• Here I am taking the clean solution that Mark wrote and generalizing the 
update_solution interface
– Motivation: Do not want to change heat.C for adding another method
– For this exercise we will use “ftcs” and “upwind15” as alternative options
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• In your working copy add -coverage 
as shown below

• Run ./heat runame=“ftcs_results”
• Run gcov heat.C
• Examine heat.C.gcov

Preparing for Refactoring – check coverage
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• In your working copy add -coverage 
as shown below

• Run ./heat runame=“ftcs_results”
• Run gcov heat.C
• Examine heat.C.gcov

• A dash indicates non-executable line
• A number indicated the times the line 

was called
• ##### indicates line wasn’t exercised

Preparing for Refactoring – check coverage
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Preparing for Refactoring – get baselines
• Call to upwind15 not exercised

• Run ./heat alg=“upwind15” runame=“upwind_results

• We have baselines for ftcs and upwind
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Refactoring – The starting code 

• Interfaces are not identical
• crankn has an extra argument
• It also has an extra step in initialization
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Refactoring 

• Generalize the interface

• Modify the makefile
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Refactoring 

• Generalize the interface

• Modify the makefile
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Refactoring 

• Generalize the interface

• Modify the makefile
• Add null implementations of 

initialize_crank in ftcs and 
upwind15
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Refactoring 
• make heat1
• Run ./heat runame=“ftcs_results”
• Make heat2
• Run ./heat runame=“upwind_results”
• Verify against baseline
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Graphical View of Gcov Output and Tutorials for Code Coverage 

Online tutorial - https://github.com/amklinv/morpheus
Other example - https://github.com/jrdoneal/infrastructure

Overall Analysis

Detailed Analysis

https://github.com/amklinv/morpheus
https://github.com/amklinv/morpheus
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• Grid
– Manages data
– Domain discretization

• Physics 
– Several solvers

• Driver
– Time-stepping
– Orchestrates interactions

More Realistic Example From FLASH 
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Goal: Replace Paramesh with AMReX

Changes and new
implementation

More Realistic Example From FLASH
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• Cost estimation
– Expected developer time 
– Extent of disruption in production 

schedules

• Get a buy-in from the 
stakeholders
– That includes the users
– For both development time and 

disruption

Considerations
• In FLASH

– Initial estimate at 6-12 months
– Took close to 12 months
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Refactoring for Next Generation Hardware

FLASH5

AMReX - Lawrence Berkeley National Lab
• Designed for exascale
• Node-level heterogeneity
• Smart iterators hide parallelization

Goal: Replace Paramesh with AMReX

Plan: Getting there from here
• On ramping
• Design
• Intermediate steps
• Realizing the goal
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Proportionate to the scope

Map from Here to There: On ramp plan

Invasive large-scale 
change in the code -
Bad idea

All at once

Scattered independent 
changes - May be OK

All at once
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So how should it be done

On ramp plan

 Incrementally if at all possible
 Small components, verified 

individually
 Migrated back, integration tests 

done

 Alternatively migrate 
them into new 
infrastructure
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• Paramesh & AMReX coexist
• Adapt interfaces to suit AMReX
• Refactor Paramesh 

implementation
• Compare AMReX implementation 

against Paramesh implementation

Map From Here to There
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Design
• Degree & scope of change
• Formulate initial requirements
Prototyping
• Explore & test design decisions
• Update requirements
Implementation
• Recover from prototyping
• Expand & implement design decisions

Refactoring plan
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• Derive and understand principal definitions & 
abstractions

• Collect & understand Paramesh/AMReX
constraints
– Generally useful design due to two sets of constraints?

• Collect & understand physics unit requirements on 
Grid unit

• Design fundamental data structures & update 
interface

Sit, think, hypothesize, & argue

Phase 1 - design
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• Implement new data structures
– Evolve design/implementation by iterating between Paramesh & AMReX

• Explore Grid/physics unit interface
– simpleUnsplit Hydro unit
– A simplified implementation 

• No need to be physically correct
• Exercise the grid interface identically to the real solver

• Discover use patterns of data structures and Grid unit interface
• Adjust requirements & interfaces

Quick, dirty, & light

Phase 2 - prototyping
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• Derive & implement lessons learned
– Clean code & inline documentation

• Update Unsplit Hydro

• Hybrid FLASH
– AMReX manages data
– Paramesh drives AMR

• Fully-functioning simulation with AMReX
• Prune old code

Toward quantifiable success & Continuous Integration

Phase 3 - implementation
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• Developers should know what the end code should be
– They will do the code implementation
– You may need to develop some possibly throwaway code

• Often that ends up being useful in unexpected ways

Process and policies are important
• Managing branch divergence
• Any code pruning
• Schedule of testing
• Schedule of integration and release

– Release may be external or just to the internal users

Procedures and policies

Important Takeaways 
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Other resources
• Software testing levels and definitions:

– http://www.tutorialspoint.com/software_testing/software_testing_levels.htm

• Working Effectively with Legacy Code, Michael Feathers.  
– The legacy software change algorithm described in this book is very straight-forward and powerful for 

anyone working on a code that has insufficient testing.

• Code Complete, Steve McConnell.  Includes testing advice.

• Software Carpentry: http://katyhuff.github.io/python-testing/

• Tutorial from Udacity: https://www.udacity.com/course/software-testing--cs258

• Papers on testing:
– http://www.sciencedirect.com/science/article/pii/S0950584914001232
– https://www.researchgate.net/publication/264697060_Ongoing_verification_of_a_multiphysics_communi

ty_code_FLASH

• Resources for Trilinos testing:
– Trilinos testing policy: https://github.com/trilinos/Trilinos/wiki/Trilinos-Testing-Policy
– Trilinos test harness: https://github.com/trilinos/Trilinos/wiki/Policies--%7C-Testing

http://www.tutorialspoint.com/software_testing/software_testing_levels.htm
http://katyhuff.github.io/python-testing/
https://www.udacity.com/course/software-testing--cs258
http://www.sciencedirect.com/science/article/pii/S0950584914001232
https://www.researchgate.net/publication/264697060_Ongoing_verification_of_a_multiphysics_community_code_FLASH
https://github.com/trilinos/Trilinos/wiki/Trilinos-Testing-Policy
https://github.com/trilinos/Trilinos/wiki/Policies--%7C-Testing
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TO HAVE GOOD OUTCOME FROM REFACTORING
1. KNOW WHY
2. KNOW HOW MUCH
3. KNOW THE COST
4. PLAN
5. HAVE STRONG TESTING AND VERIFICATION
6. GET BUY-IN FROM STAKEHOLDERS
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