
exascaleproject.org

Refactoring

Anshu Dubey
Argonne National Laboratory

Software Productivity Track, ATPESC 2020

See slide 2 for
license details

2

License, Citation and Acknowledgements
License and Citation
• This work is licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0).
• The requested citation the overall tutorial is: David E. Bernholdt, Anshu Dubey, Mark C. Miller, Katherine M. Riley,

and James M. Willenbring, Software Productivity Track, in Argonne Training Program for Extreme Scale
Computing (ATPESC), August 2020, online. DOI: 10.6084/m9.figshare.12719834

• Individual modules may be cited as Speaker, Module Title, in Software Productivity Track…

Acknowledgements
• Additional contributors include: Patricia Grubel, Rinku Gupta, Mike Heroux, Alicia Klinvex, Jared O’Neal, David Rogers,

Deborah Stevens
• This work was supported by the U.S. Department of Energy Office of Science, Office of Advanced Scientific Computing

Research (ASCR), and by the Exascale Computing Project (17-SC-20-SC), a collaborative effort of the U.S. Department
of Energy Office of Science and the National Nuclear Security Administration.

• This work was performed in part at the Argonne National Laboratory, which is managed by UChicago Argonne, LLC for
the U.S. Department of Energy under Contract No. DE-AC02-06CH11357.

• This work was performed in part at the Oak Ridge National Laboratory, which is managed by UT-Battelle, LLC for the U.S.
Department of Energy under Contract No. DE-AC05-00OR22725.

• This work was performed in part at the Lawrence Livermore National Laboratory, which is managed by Lawrence
Livermore National Security, LLC for the U.S. Department of Energy under Contract No. DE-AC52-07NA27344.

• This work was performed in part at Sandia National Laboratories. Sandia National Laboratories is a multi-mission
laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned
subsidiary of Honeywell International, Inc., for the U.S. Department of Energy’s National Nuclear Security Administration
under contract DE-NA0003525.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.6084/m9.figshare.12719834

3

Look at the Running Example

Link to the code

https://github.com/betters
cientificsoftware/hello-
numerical-world-atpesc-
2020/blob/main/heatAll.C

• Monolithic code

• Make it modular and
more maintainable

https://github.com/betterscientificsoftware/hello-numerical-world-atpesc-2020/blob/main/heatAll.C

4

Definition: Refactoring is a disciplined
technique for restructuring an existing
body of code, altering its internal structure
without changing its external behavior.
• Different from development

– You have a working code
– You know and understand the behavior
– You have a baseline that you can use for

comparison

What is Refactoring

5

Definition: Refactoring is a disciplined
technique for restructuring an existing
body of code, altering its internal structure
without changing its external behavior.
• Different from development

– You have a working code
– You know and understand the behavior
– You have a baseline that you can use for

comparison

What is Refactoring

• General motivations
– Modularity enhancement

• Improve sustainability
– Release to outside users

• Easier to use and understand
– Port to new platforms

• Performance portability
– Expand capabilities

• Structural flexibility

6

Refactoring

An example of workflow with testing

7

• Know why you are refactoring
– Is it necessary
– Where should the code be after refactoring

Considerations for Refactoring

• In heat example
– It is necessary because

• It is a monolithic code
• No reusability of any part of the code
• Devising tests is hard
• Limited extensibility

– Where do we want to be after refactoring
• Closer to the version that you encountered in math libraries track
• More modular, maintainable and extensible

8

• Know the scope of refactoring
– How deep a change
– How much code will be affected

• In heat example
– No capability extension
– No performance consideration
– Cleaner, more maintainable code

Considerations for Refactoring

• What do we do
– Separate out utilities, generalize interfaces
– Separate out integration function

• Make a general interface to allow alternative
implementations

– Create a general build function
– No new code or intrusive changes

9

• Know your cost estimates
• Verification

– Check for coverage provided by
existing tests

– Develop new tests where there are
gaps

– Make sure tests exist at different
granularities
• There should be demanding integration

and system level tests

Before Starting

• Know your bounds
– on acceptable behavior change
– error bounds

• bitwise reproduction of results unlikely
after transition

• Map from here to there

Incorporate testing overheads into refactoring cost estimates

10

• Can be costly itself if the project is large
• Most projects do a terrible job of estimation

– Insufficient understanding of code complexity
– Insufficient provisioning for verification and obstacles
– Refactoring often overruns in both time and budget

• Factors that can help
– Knowing the scope and sticking to it

• If there is change in scope estimate again
– Plan for all stages of the process with contingency factors built-in
– Make provision for developing tests and other forms of verification

• Can be nearly as much or more work than the code change
• Insufficient verification incurs technical debt

The biggest potential pitfall

Cost estimation

11

• Potential for branch divergence
• Policies for code modification

– Estimate the cost of synchronization
– Plan synchronization schedule and account for

overheads

• Anticipate production disruption
– From code freeze due to merges
– Account for resources for quick resolution of

merge issues

This is where buy-in from the stake-holders
is critical

When development and production co-exist

Cost estimation

• In the heat example
– No more than a few hours

of developer time
– No disruption
– No need for a buy-in

12

• Expose parts of the code that aren’t being tested
– gcov - standard utility with the GNU compiler

collection suite (we will use it in the next few slides)
– Compile/link with –coverage & turn off optimization
– counts the number of times each statement is

executed

• gcov also works for C and Fortran
– Other tools exist for other languages
– JCov for Java
– Coverage.py for python
– Devel::Cover for perl
– profile for MATLAB

Code coverage tools
How do we determine what other tests are needed?

• Lcov
– a graphical front-end for gcov
– available at

http://ltp.sourceforge.net/coverage
/lcov.php

– Codecov.io in CI module

• Hosted servers (e.g. coveralls,
codecov)

• graphical visualization of results
• push results to server through

continuous integration server

Interoperability coverage may need something like
the matrix in testing module

13

Exercise: Refactoring the Running Example
• Convert heatAll.C to the cleaner version with reusable code.

– Though a solution exists and has been given to you your solution need not be identical
– Think about how you want your final product to be and then go through the exercise of

refactoring

• Here I am taking the clean solution that Mark wrote and generalizing the
update_solution interface
– Motivation: Do not want to change heat.C for adding another method
– For this exercise we will use “ftcs” and “upwind15” as alternative options

14

• In your working copy add -coverage
as shown below

• Run ./heat runame=“ftcs_results”
• Run gcov heat.C
• Examine heat.C.gcov

Preparing for Refactoring – check coverage

15

• In your working copy add -coverage
as shown below

• Run ./heat runame=“ftcs_results”
• Run gcov heat.C
• Examine heat.C.gcov

• A dash indicates non-executable line
• A number indicated the times the line

was called
• ##### indicates line wasn’t exercised

Preparing for Refactoring – check coverage

16

Preparing for Refactoring – get baselines
• Call to upwind15 not exercised

• Run ./heat alg=“upwind15” runame=“upwind_results

• We have baselines for ftcs and upwind

17

Refactoring – The starting code

• Interfaces are not identical
• crankn has an extra argument
• It also has an extra step in initialization

18

Refactoring

• Generalize the interface

• Modify the makefile

19

Refactoring

• Generalize the interface

• Modify the makefile

20

Refactoring

• Generalize the interface

• Modify the makefile
• Add null implementations of

initialize_crank in ftcs and
upwind15

21

Refactoring
• make heat1
• Run ./heat runame=“ftcs_results”
• Make heat2
• Run ./heat runame=“upwind_results”
• Verify against baseline

22

Graphical View of Gcov Output and Tutorials for Code Coverage

Online tutorial - https://github.com/amklinv/morpheus
Other example - https://github.com/jrdoneal/infrastructure

Overall Analysis

Detailed Analysis

https://github.com/amklinv/morpheus
https://github.com/amklinv/morpheus

23

• Grid
– Manages data
– Domain discretization

• Physics
– Several solvers

• Driver
– Time-stepping
– Orchestrates interactions

More Realistic Example From FLASH

24

Goal: Replace Paramesh with AMReX

Changes and new
implementation

More Realistic Example From FLASH

25

• Cost estimation
– Expected developer time
– Extent of disruption in production

schedules

• Get a buy-in from the
stakeholders
– That includes the users
– For both development time and

disruption

Considerations
• In FLASH

– Initial estimate at 6-12 months
– Took close to 12 months

26

Refactoring for Next Generation Hardware

FLASH5

AMReX - Lawrence Berkeley National Lab
• Designed for exascale
• Node-level heterogeneity
• Smart iterators hide parallelization

Goal: Replace Paramesh with AMReX

Plan: Getting there from here
• On ramping
• Design
• Intermediate steps
• Realizing the goal

27

Proportionate to the scope

Map from Here to There: On ramp plan

Invasive large-scale
change in the code -
Bad idea

All at once

Scattered independent
changes - May be OK

All at once

28

So how should it be done

On ramp plan

 Incrementally if at all possible
 Small components, verified

individually
 Migrated back, integration tests

done

 Alternatively migrate
them into new
infrastructure

29

• Paramesh & AMReX coexist
• Adapt interfaces to suit AMReX
• Refactor Paramesh

implementation
• Compare AMReX implementation

against Paramesh implementation

Map From Here to There

30

Design
• Degree & scope of change
• Formulate initial requirements
Prototyping
• Explore & test design decisions
• Update requirements
Implementation
• Recover from prototyping
• Expand & implement design decisions

Refactoring plan

31

• Derive and understand principal definitions &
abstractions

• Collect & understand Paramesh/AMReX
constraints
– Generally useful design due to two sets of constraints?

• Collect & understand physics unit requirements on
Grid unit

• Design fundamental data structures & update
interface

Sit, think, hypothesize, & argue

Phase 1 - design

32

• Implement new data structures
– Evolve design/implementation by iterating between Paramesh & AMReX

• Explore Grid/physics unit interface
– simpleUnsplit Hydro unit
– A simplified implementation

• No need to be physically correct
• Exercise the grid interface identically to the real solver

• Discover use patterns of data structures and Grid unit interface
• Adjust requirements & interfaces

Quick, dirty, & light

Phase 2 - prototyping

33

• Derive & implement lessons learned
– Clean code & inline documentation

• Update Unsplit Hydro

• Hybrid FLASH
– AMReX manages data
– Paramesh drives AMR

• Fully-functioning simulation with AMReX
• Prune old code

Toward quantifiable success & Continuous Integration

Phase 3 - implementation

34

• Developers should know what the end code should be
– They will do the code implementation
– You may need to develop some possibly throwaway code

• Often that ends up being useful in unexpected ways

Process and policies are important
• Managing branch divergence
• Any code pruning
• Schedule of testing
• Schedule of integration and release

– Release may be external or just to the internal users

Procedures and policies

Important Takeaways

35

Other resources
• Software testing levels and definitions:

– http://www.tutorialspoint.com/software_testing/software_testing_levels.htm

• Working Effectively with Legacy Code, Michael Feathers.
– The legacy software change algorithm described in this book is very straight-forward and powerful for

anyone working on a code that has insufficient testing.

• Code Complete, Steve McConnell. Includes testing advice.

• Software Carpentry: http://katyhuff.github.io/python-testing/

• Tutorial from Udacity: https://www.udacity.com/course/software-testing--cs258

• Papers on testing:
– http://www.sciencedirect.com/science/article/pii/S0950584914001232
– https://www.researchgate.net/publication/264697060_Ongoing_verification_of_a_multiphysics_communi

ty_code_FLASH

• Resources for Trilinos testing:
– Trilinos testing policy: https://github.com/trilinos/Trilinos/wiki/Trilinos-Testing-Policy
– Trilinos test harness: https://github.com/trilinos/Trilinos/wiki/Policies--%7C-Testing

http://www.tutorialspoint.com/software_testing/software_testing_levels.htm
http://katyhuff.github.io/python-testing/
https://www.udacity.com/course/software-testing--cs258
http://www.sciencedirect.com/science/article/pii/S0950584914001232
https://www.researchgate.net/publication/264697060_Ongoing_verification_of_a_multiphysics_community_code_FLASH
https://github.com/trilinos/Trilinos/wiki/Trilinos-Testing-Policy
https://github.com/trilinos/Trilinos/wiki/Policies--%7C-Testing

36

TO HAVE GOOD OUTCOME FROM REFACTORING
1. KNOW WHY
2. KNOW HOW MUCH
3. KNOW THE COST
4. PLAN
5. HAVE STRONG TESTING AND VERIFICATION
6. GET BUY-IN FROM STAKEHOLDERS

	Refactoring
	License, Citation and Acknowledgements
	Look at the Running Example
	What is Refactoring �
	What is Refactoring �
	Refactoring
	Considerations for Refactoring
	Considerations for Refactoring
	Before Starting
	Cost estimation
	Cost estimation
	How do we determine what other tests are needed?
	Exercise: Refactoring the Running Example
	Preparing for Refactoring – check coverage
	Preparing for Refactoring – check coverage
	Preparing for Refactoring – get baselines
	Refactoring – The starting code
	Refactoring
	Refactoring
	Refactoring
	Refactoring
	Graphical View of Gcov Output and Tutorials for Code Coverage
	More Realistic Example From FLASH
	More Realistic Example From FLASH
	Considerations
	FLASH5
	Map from Here to There: On ramp plan
	On ramp plan
	Map From Here to There
	Refactoring plan
	Phase 1 - design
	Phase 2 - prototyping
	Phase 3 - implementation
	Important Takeaways
	Other resources
	Slide Number 36

