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It follows some properties of the misiec´s complex zeta function expressed 

in terms of the sum , remembering that all of the misiec´s numbers have 

the property of respecting the sin x =x theorem when x tends to zero and 

violates current known values for the squeeze theorem when applied to 

the sin x/x=1. 

It follows the realtions encountered over the given so called misiec´s 

numbers : 

 

 

 

 ∑
1

𝑛∗𝑛
1
2

+𝑛∗𝑛∗𝑖
= 2.83 + 4.08𝑖∞

𝑛=1  

sin (2.83+4.08i)= 9.06885251 - 28.1406579 i 

cos (2.83+4.08i)= -28.1567512 - 9.0636691 i 

 

𝑠𝑖𝑛

𝑐𝑜𝑠
= 𝑡𝑎𝑛 →   

sin (𝑅𝑒𝑎𝑙)

cos (𝑅𝑒𝑎𝑙)
=

9.06

−28.1
= 𝐶𝑜𝑡 →

cos (𝑖)

sin (𝑖)
=

−9.06𝑖

−28.1
 

 
𝑡𝑎𝑛

𝑐𝑜𝑡
= 𝑡𝑎𝑛 ∗ 𝑡𝑎𝑛 = −1 = 𝑇𝑎𝑛2 = −1 𝑡𝑎𝑛 = 𝑖 

tan
𝑛2

2
∗ 𝑖 = 

1

2
 𝑖𝑚𝑎𝑔𝑖𝑛𝑎𝑟𝑦 𝑓𝑜𝑟 𝑎𝑛𝑦 𝑅𝑒𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 while 

𝑛2

2
∗ 𝑖=

𝑑

𝑑𝑛
(𝑖 ∗ ∫ 𝑛 𝑑𝑛) = 𝑛2𝑖 

     as shown in the graphic of the Wolfram alpha page below 

 

  

𝐴 = [
9.06 𝑟𝑒𝑎𝑙 −28.1𝑖

−28.1𝑟𝑒𝑎𝑙 −9.06 𝑖
] →  −𝐴 = [

−9.06 𝑟𝑒𝑎𝑙 28.1𝑖
28.1𝑟𝑒𝑎𝑙 9.06 𝑖

] →  𝐴𝑇   



= [
9.06 𝑟𝑒𝑎𝑙 −28.1𝑖

−28.1𝑟𝑒𝑎𝑙 9.06 𝑖
] =  𝐴2 = [ 9.06 𝑟𝑒𝑎𝑙2 −28.1𝑖2

−28.1𝑟𝑒𝑎𝑙2 −9.06 𝑖2] = 𝐴𝐻

= [9.06 𝑟𝑒𝑎𝑙2 28.12

28.1𝑟𝑒𝑎𝑙2 9.06 2
] 

𝑤𝑜𝑟𝑘 𝑎𝑠 𝑠𝑒𝑙𝑓 𝑎𝑑𝑗𝑜𝑖𝑛𝑡 𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟 of an unbounded function tan = i which is undefined 

in terms of a previous function like f(n) </= Real ( not a product of the function but 

defined to be imaginary in terms of n, so it is unbounded, but sstill gives eigenvalues 

that correspond to the initial function f=
1

𝑛∗𝑛
1
2

+𝑛∗𝑛∗𝑖
. While  

 

 ∑ (
1

𝑛∗𝑛
1
2

+𝑛∗𝑛∗𝑖
)^ − 1 = ∞∞

𝑛=1 .   So the product of  ∑
1

𝑛∗𝑛
1
2

+𝑛∗𝑛∗𝑖
∗∞

𝑛=1

∑ (
1

𝑛∗𝑛
1
2

+𝑛∗𝑛∗𝑖
)

−1

= ∞∞
𝑛=1 ∗ 2.83 + 4.08𝑖 = 1 𝑠𝑢𝑐ℎ 𝑤ℎ𝑒𝑛 𝑎−1 ∗ 𝑎 =

1 𝑜𝑟 𝑖 ∗ ∞ = 1    

𝑎−1 ∗ 𝑎 = 1 =>
𝑛∗𝑛

1
2∗𝑛𝑛2𝑖

𝑛∗𝑛
1
2∗𝑛𝑛2𝑖

= 1 𝑎𝑛𝑑 𝑎−1 + 𝑎 =
1

𝑛∗𝑛
1
2∗𝑛𝑛2𝑖

+ 𝑛 ∗ 𝑛
1

2 ∗ 𝑛𝑛2𝑖 =

𝑛2 ∗ 𝑛1 ∗ 𝑛4𝑖 ∴ 𝑎−1 + 𝑎 = 𝑛3+4𝑖     𝑡ℎ𝑒 𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡 ≈ 2.83 + 4.08𝑖±= 3 +

4𝑖 for a =∑
1

𝑛∗𝑛
1
2

+𝑛∗𝑛∗𝑖

∞
𝑛=1  so the sum is equal to the exponent of the sum, 

allowing me to use the exponents to calculate the derivative to find the 

value of the tangent for the sum of the misiec´s zeta xomplex function to be 

equal to ½ i as shown before in “tan
𝑛2

2
∗ 𝑖 = 

1

2
 𝑖𝑚𝑎𝑔𝑖𝑛𝑎𝑟𝑦 𝑓𝑜𝑟 𝑎𝑛𝑦 𝑅𝑒𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 while 

𝑛2

2
∗ 𝑖=

𝑑

𝑑𝑛
(𝑖 ∗ ∫ 𝑛 𝑑𝑛) =

𝑛3𝑖

𝑛
=

𝑛2𝑖 𝑙𝑖𝑘𝑒 𝑡ℎ𝑒 𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡 𝑜𝑓 
1

𝑛∗𝑛
1
2

+𝑛∗𝑛∗𝑖
 which is( 𝑛2 ∗ 𝑛1 ∗ 𝑛4𝑖)^1/2 for 𝑎 =

1

𝑛1∗𝑛
1
2∗𝑛𝑛2𝑖

. If I consider the expression. of the derivative to be 
𝑛3𝑖

𝑛
+ 𝑐 =

𝑛2𝑖  𝑡ℎ𝑒𝑛 𝑐 = 𝑛−1 and -1=0 meaning that the values of negative integers 
will be counted at the zero point. And if consideering n-> infinity c 
becomes the value of the derviative of a constant wich is zero meaning tht 
the derivative of the initial expression to infinity will equal zero or the 
tangent will assume a value of zero wich is equal to i so that as the 
function assumes values that go to infinity there will be many zeros for 
every number on the critical line ½ . or in other terms the tangent of zero 
will be zero or i expressed as an orthogonal line of value of a 90 degrees 
angle which is also equal to the infinity that will correspond to a^-1, when 
in the denominator will equal the value o i = 0 as explained in the lines 
below. To infinity then every value of n will equal the value of i in critical 
strip between 1 and zero tending to the value of zero at the half point 
when the 0+1/2 equal the real value ½ of the real axis that coincides at the 
point of the circle to the 90 degrees angle of the polar plot. 



In relative terms then the denominator n being real is disatatched from 
the n associated with i in in^2 and will Always have a value of ½ 
proportional to any infinit value of ni and can be represented as a real 
variable constant c being equal ½ . So the circular graph at the end of this 
pages has a real componente of 1/2i to be =1/2 and an imaginary “y” axis 
to have the values from 0 to 1 referring 1 to be equivalent in a polar 
coordinate to infinity. Plus , the expnent needed to bring the value of the 
exponent of the sum of a +a^-1 can be used to be considered as the total 
value of the sum as it was the case for 2.83 + 4.08𝑖±= 3 + 4𝑖 when 

𝑎−1 + 𝑎 =
1

𝑛∗𝑛
1
2∗𝑛𝑛2𝑖

+ 𝑛 ∗ 𝑛
1

2 ∗ 𝑛𝑛2𝑖 = 𝑛2 ∗ 𝑛1 ∗ 𝑛4𝑖 needs to normalized 

to the original value of “a”= 𝑛 ∗ 𝑛
1

2 ∗ 𝑛𝑛2𝑖 as the exponent. Then the 

exponent  ½ is the point where 𝑎−1 + 𝑎 = 𝑎2
1
2  𝑚𝑎𝑘𝑖𝑛𝑔 𝑎−1 =

0 𝑎𝑛𝑑 𝑚𝑎𝑘𝑖𝑛𝑔 𝑎−1 ∗ 𝑖 = 1 𝑠𝑖𝑛𝑐𝑒 𝑎 = 𝑖  𝑎𝑛𝑑 𝑎𝑠 𝑎−1 =
1

𝑖
 𝑎𝑛𝑑 𝑎−1 =

0 𝑤ℎ𝑎𝑡 𝑙𝑒𝑎𝑑𝑠 𝑡𝑜 𝑐𝑜𝑛𝑐𝑙𝑢𝑑𝑒 𝑡ℎ𝑎𝑡 𝑎−1 𝑏𝑒𝑖𝑛𝑔 𝑎 𝑑𝑖𝑣𝑒𝑟𝑔𝑒𝑛𝑡 𝑠𝑒𝑟𝑖𝑒𝑠 𝑡𝑜 𝑖𝑛𝑓𝑖𝑛𝑖𝑡𝑦 

Makes 𝑖 =
1

𝑎−1
=

1

∞
= 0 𝑤ℎ𝑒𝑛 𝑐𝑜𝑛𝑠𝑖𝑑𝑒𝑟𝑖𝑛𝑔 𝑖𝑛𝑓𝑖𝑛𝑖𝑡 𝑛𝑢𝑚𝑏𝑒𝑟𝑠 what 

proves that there are infinit zeros at the point of ½ real when used as an 
exponent . So far we have that the 1 at polar plot means infinity and the 
zero means the value of i to infinity both at the value of ½ when  
 
 𝑤ℎ𝑒𝑛 𝑐𝑜𝑛𝑠𝑖𝑑𝑒𝑟𝑖𝑛𝑔 𝑎𝑛 𝑎𝑛𝑎𝑙𝑦𝑡𝑖𝑐𝑎𝑙 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑎𝑡𝑖𝑜𝑛 𝑎𝑛𝑎𝑙𝑦𝑠𝑖𝑠 as the value 
of a^-1= divergence series. Explaining then that there are inifnit zeros 
associated with the value of the exponent  = ½ real. In between the points 
of 1 and zero both associated with the infnit representation theres is a 
factor that divides the correlation that is 0 + 1 /2 =1/2 when considered 
expressed in the imaginary y line of the graph relates to the pinto f ½ real 
of the x axis and it represents na intermediate point where the two 
functions a and a^-1 = 0 for na exponent of ½ real and that repeats it self 
for every cycle arround that point. 
 

 

 

which is represented in the last circular graph as the value of 1 in the 

imaginary “y” axis. But if i consider n^2/x* i = i*1/2 then it can be 

considered that n^2/2 is equal 1/2 real. 

 
 

 



 
 
 
 
 
 
 
 



sq=Table[j,{j,1000}] 
n=Select[sq,PrimeQ,(100)] 
r=Table[k1,{k1,100}] 
sq2=Table[k,{k,100}] 
n3=sq2*-1 
f=(((Pi+1)*r)*Sqrt[(-2*Pi*r)/((Pi+1)*r)])/((Sqrt[(2*Pi*r)^2+2*Pi*r/n])) 
bb=Im[f] 
s1c1=1/n*n^((1/2)+n*n*Sqrt[-1]) 
s1c=ReIm[s1c1] 
z=Sin[s1c] 
v=z-s1c 
PolarPlot[Log[v],{v,-200,200}] 

 

 

 

sq=Table[j,{j,1000}] 
n=Select[sq,PrimeQ,(100)] 
r=Table[k1,{k1,100}] 
sq2=Table[k,{k,100}] 
n3=sq2*-1 
f=(((Pi+1)*r)*Sqrt[(-2*Pi*r)/((Pi+1)*r)])/((Sqrt[(2*Pi*r)^2+2*Pi*r/n])) 
bb=Im[f] 
s1c1=1/n*n^((1/2)+n*n*Sqrt[-1]) 
s1c=ReIm[s1c1] 
z=Sin[s1c] 
v=z-s1c 
PolarPlot[Sin[s1c],{s1c,-200,200}] 

 

 

Or 

8 6 4 2 2 4

4

2

2

4



sq=Table[j,{j,1000}] 
n=Select[sq,PrimeQ,(100)] 
r=Table[k1,{k1,100}] 
sq2=Table[k,{k,100}] 
n3=sq2*-1 
f=(((Pi+1)*r)*Sqrt[(-2*Pi*r)/((Pi+1)*r)])/((Sqrt[(2*Pi*r)^2+2*Pi*r/n])) 
bb=Im[f] 
s1c1=1/n*n^((1/2)+bb*n*Sqrt[-1]) 
s1c=ReIm[s1c1] 
z=Sin[s1c] 
v=z-s1c 
PolarPlot[Sin[s1c],{s1c,-200,200}] 

 

Or the inverse of the misiec’s function : 

sq=Table[j,{j,1000}] 
n=Select[sq,PrimeQ,(100)] 
r=Table[k1,{k1,100}] 
sq2=Table[k,{k,100}] 
n3=sq2*-1 
f=(((Pi+1)*r)*Sqrt[(-2*Pi*r)/((Pi+1)*r)])/((Sqrt[(2*Pi*r)^2+2*Pi*r/n])) 
bb=Im[f] 
s1c1=1/n*n^((1/2)+n*n*Sqrt[-1]) 
s1c=ReIm[s1c1^-1] 
z=Sin[s1c] 
v=z-s1c 
PolarPlot[Sin[s1c],{s1c,-200,200}] 

 

Gives the graph: 

 



 

 

The value of the imaginary axis “y” ato ne is equal to the limit of the product of the 2 

funtions of the sum of the misiec zeta function where the value of “f” is equal to the 

sin of the value gives a continous infinit relation to the value of infinity times i here 

represented by 1 and to the value of the tangent of the imaginary exponent of the zeta 

function while a^-1 +a = a^2 +1 that when represented as a^2=-1 is equal to the value 

of √−1 or “i”  when “a” is (∑ (
1

𝑛∗𝑛
1
2

+𝑛∗𝑛∗𝑖
))∞

𝑛=1 . And ½  over the “x” axis is the 

value of the 

(∑ (
1

𝑛∗𝑛
1
2

+𝑛∗𝑛∗𝑖
))∞

𝑛=1  𝑡ℎ𝑎𝑡 𝑤𝑜𝑢𝑙𝑑 𝑙𝑒𝑎𝑣𝑒𝑓𝑜𝑟 𝑡ℎ𝑒 𝑑𝑒𝑛𝑜𝑚𝑖𝑛𝑎𝑡𝑜𝑟 𝑛 ∗ 𝑛
1
2 ∗

1

2
 𝑤ℎ𝑖𝑐ℎ 𝑙𝑒𝑎𝑣𝑒𝑠 𝑎𝑠 𝑡ℎ𝑒 𝑠𝑢𝑚 𝑡𝑜 𝑟𝑒𝑎𝑙  𝑖𝑛𝑓𝑖𝑛𝑖𝑡𝑦 +

1

2
  𝑓𝑜𝑟 𝑒𝑣𝑒𝑟𝑦 𝑐𝑜𝑚𝑝𝑙𝑒𝑥 𝑛𝑢𝑚𝑏𝑒𝑟 𝑎 +

𝑏𝑖 𝑤𝑖𝑡ℎ 𝑟𝑒𝑎𝑙𝑝𝑎𝑟𝑡
1

2
 𝑎𝑙𝑜𝑛𝑔 𝑎𝑛 𝑖𝑛𝑓𝑛𝑖𝑡 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑐𝑖𝑟𝑐𝑢𝑙𝑎𝑟 𝑝𝑎𝑡ℎ. 

  

 

 

 Re[2
1

2
−4𝑖], Im[2

1

2
−4𝑖]}, {Re[3

1

2
−9𝑖], Im[3

1

2
−9𝑖]}, {Re[5

1

2
−25𝑖], Im[5

1

2
−25𝑖] 

 Re[5
1

2
−25𝑖], Im[5

1

2
−25𝑖]}, {Re[7

1

2
−49𝑖], Im[7

1

2
−49𝑖] 

 Re[11
1

2
−121𝑖], Im[11

1

2
−121𝑖]}, {Re[13

1

2
−169𝑖], Im[13

1

2
−169𝑖] 

0.4 0.2 0.2 0.4

0.2

0.4

0.6

0.8

1.0



 40 , {Re[211
1

2
−44521𝑖], Im[211

1

2
−44521𝑖]}, {Re[223

1

2
−49729𝑖] Im[223

1

2
−49729𝑖] 

 Re[227
1

2
−51529𝑖], Im[227

1

2
−51529𝑖]}, {Re[229

1

2
−52441𝑖], Im[229

1

2
−52441𝑖]... 

 

(227^1/2)/227^-51529i  = -111.380863 - 21.8301011 i 

 

-21.8301011 i+0.8118i=21.0182   non trivial zero =  21.0220396 

 

(223^1/2)/223^-49729i  =  -41.6253458 - 103.438777 i 

 

- 103.438777 i   non trivial zero=103.725 
 

 

 

(211^1/2)/211^-44521i = 67.4421223 - 81.1283559 i 

 
- 81.1283559 i  -0.8118i  =-81.93i non trivial zero= 82.910 =/- 1 

 

 

(227^1/2)/227-51529i =0.5-51529i 

 

223^1/2/223-49729i=0.5-49729i 

 

 

𝜁(0) = 𝜃 + 𝑖𝑡 

For simplicity of writing 𝜁(0) = 𝑆 → 𝑆 = 𝑡 + 𝑖𝑡 => −𝑡 = 𝑖𝑡 => 𝑖 =
−𝑡

𝑡
→ 𝑖 = −1 

 √−1 = −1 

 −11/2 = −11 

 
1

2
= 1  “exponentes” ;  1=2 

 

S= 𝜃 + 𝑖𝑡;  𝜃 =
1

2 
;  𝑡 =

1

2
   (a) 

 0 =
1

2
+

𝑖

2
 

 −
1

2
=

𝑖

2
 

 𝑖 = −1    ;  1=2  “exponents” 



 

Making t different  from theta it is possible to deduce that it is equal the condition of 

𝜃 ℎ𝑎𝑣𝑖𝑛𝑔 𝑡ℎ𝑒 𝑠𝑎𝑚𝑒 𝑣𝑎𝑙𝑢𝑒 𝑎𝑠 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑡 𝑏𝑒𝑖𝑛𝑔 𝜃 𝑡ℎ𝑒 𝑟𝑒𝑎𝑙 𝑝𝑎𝑟𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑧𝑒𝑡𝑎 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑒𝑞𝑢𝑎𝑙𝑠 ℎ𝑎𝑙𝑓 𝑖𝑡 

Resembles  and mimic the values of the real part being equal to the imaginary term of           

𝑠 = 𝜃 + 𝑖𝑡   whcih is the case for the square of the sine and cosine of the summation of 

∑
1

𝑛∗𝑛
1
2

+𝑛∗𝑛∗𝑖
= 2.83 + 4.08𝑖∞

𝑛=1     that is shown in the last line as it also 

shows that the greater value for the exponent that it is raised the closer 

ande equal becomes the real to the imaginary part of the zeta function 

thus proving that it is a necessary condition to have the theta with a value 

of ½ . 

 

 

 0 =
1

2
+ 𝑖𝑡 

 −
1

2
= 𝑖𝑡  ;  −1 = 2𝑖𝑡 

 𝑖 =
−1

2𝑡
→ 𝑖 = −1 ∗ 10−𝑛 

−11/2 = −2𝑡−1     ÷ 2 →   
−11/2

2
= −𝑡−1 →    √−1 ∗ 2−1 = −𝑡−1 → 

 −11/2 ∗ 2−1 = −𝑡−1 → 

−2−1/2=−𝑡−1   ∴    𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑠  
1

2
=1   ->  1=2 

 

 (𝑖)−1 = (
−1

2𝑡
)

−1
→

1

𝑖
= −2𝑡 → 

 −1−1/2 = −2𝑡 →  
−1

√1
= −2𝑡 →  

−√1

1
= −2𝑡 

1=2t   ∴ 𝑡 =
1

2
  (a)       i=-1   and 1=2 

 

 

If I consider that the number when 𝜃 =

1 𝑎𝑛𝑑 0 𝑚𝑢𝑠𝑡 𝑏𝑒 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑑 𝑖𝑛 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑡ℎ𝑒 𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 𝑠𝑡𝑟𝑖𝑝 0 𝑎𝑛𝑑 1 𝑡ℎ𝑒𝑛 𝑡ℎ𝑒 𝑠𝑢𝑚 𝑜𝑓 𝑡ℎ𝑒 𝑧𝑒𝑡𝑎 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛  

for those numbers must fall with in the limits of the summation when i consider 𝜃 = 1/2 and 

as a fact the summation gives the following results : for  𝜃 =  
1

2

2
=



1 𝑡ℎ𝑒𝑛 𝑖 𝑐𝑎𝑛 𝑐𝑜𝑠𝑖𝑑𝑒𝑟 𝑡ℎ𝑒 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 (∑
1

𝑛∗𝑛
1
2

+𝑛∗𝑛∗𝑖
)∞

𝑛=1

2

= ∑
1

𝑛∗𝑛
1
1

+(𝑛∗𝑛∗𝑖)^2
=∞

𝑛=1

    when 1.12393+0.0535117i < 2.83+4.08i 

 

and when 𝜃 = 0 →  

  𝑡ℎ𝑎 𝑖𝑠 𝑒𝑣𝑒𝑛 𝑙𝑜𝑤𝑒𝑟 𝑡ℎ𝑎𝑛 𝑡ℎ𝑒 𝑠𝑢𝑚𝑚𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝜃 = 1 

 

 

 

“ sin((2.83+4.08i)^2)= -3.78743747 × 109 - 3.77322494 × 109 i 

 

cos((2.83+4.08i)^2)= -3.77322494 × 109 + 3.78743747 × 109 i” 
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Since n is a natural integer n it will be prime if only if n ^ (3/2) = n√n without other 

representations. Even if I arbitrarily establish a relationship between a radical and the 

factorial expression of that number, I can list its exponents and verify a list of 

inequalities that are not repeated except for prime numbers such as: 

√𝑛(𝑟𝑎𝑑𝑖𝑐𝑎𝑙) = 𝑛 (𝑓𝑎𝑐𝑡𝑜𝑟𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑝𝑟𝑜𝑑𝑢𝑐𝑡)  where 𝑛
1

2 =

𝑛1 𝑚𝑎𝑘𝑖𝑛𝑔 𝑡ℎ𝑒 𝑖𝑛𝑒𝑞𝑢𝑎𝑙𝑖𝑡𝑦 
1

2
= 1  𝑓𝑜𝑟 1 =

1   𝑤ℎ𝑐𝑖ℎ 𝑑𝑜𝑒𝑠 𝑛𝑜𝑡 𝑠𝑡𝑎𝑛𝑑 𝑓𝑜𝑟 𝑎𝑛𝑦 𝑜𝑡ℎ𝑒𝑟 𝑛𝑜𝑛 𝑝𝑟𝑖𝑚𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑎𝑠 𝑖𝑛 √28 = 2√7   →

28
1

2 = 21 ∗ 7
1

2 ∴ 14
1

2 = 7
1

2   𝑤ℎ𝑒𝑟𝑒 𝑡ℎ𝑒 𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑠 𝑤𝑖𝑙𝑙 𝑏𝑒 
1

2
=

1

2
 𝑓𝑜𝑟 2 = 1 but if i 

relate 
1

2
= 1 𝑓𝑜𝑟 𝑆𝑖𝑛 

𝑛
1
2

𝑛1
 𝑡ℎ𝑒𝑛 𝑆𝑖𝑛 

𝑛
1
2

𝑛1
= 1 𝑎𝑛𝑑 𝑖𝑓 √𝑛=n then  𝑆𝑖𝑛 

√𝑛

𝑛
= 

𝑆𝑖𝑛√𝑛  𝑎𝑠 𝑖𝑡 ℎ𝑎𝑝𝑝𝑒𝑛𝑠 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑖𝑛𝑣𝑒𝑟𝑠𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑚𝑖𝑠𝑖𝑒𝑐´𝑠 𝑛𝑢𝑚𝑏𝑒𝑟𝑠 𝑠ℎ𝑜𝑤𝑛 𝑖𝑛 𝑡ℎ𝑒 𝑙𝑎𝑠𝑡 2 𝑔𝑟𝑎𝑝ℎ𝑠 

Which then proves the relation of the misiec´s numbers to prime numbers factoring 

and radicals. 

 

Since Sin (x)/x =1 for x tending to zero, and it is true for  x= 
1

𝑛∗𝑛
1
2

+𝑛∗𝑛∗𝑖
  then by making 

√𝑛 = 𝑛 𝑡ℎ𝑒𝑛 𝑆𝑖𝑛 √𝑛=n or  𝑆𝑖𝑛 √𝑛 =

√𝑛 𝑎 𝑠𝑡𝑖𝑙𝑙 𝑝𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛𝑎𝑙 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 𝑣𝑎𝑙𝑖𝑑 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑎𝑏𝑜𝑣𝑒 𝑠𝑞𝑢𝑒𝑒𝑧𝑒 𝑡ℎ𝑒𝑜𝑟𝑒𝑚 𝑠𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡 

 As it happens in 𝑆𝑖𝑛 𝑛
1

2 ∗ 𝑛−1 = 𝑆𝑖𝑛
1

√𝑛
= 𝑆𝑖𝑛 √𝑛 𝑜𝑟 𝑆𝑖𝑛 𝑛 ∴ 𝑆𝑖𝑛 

√𝑛

𝑛
= 1 where the 

solution is according to Wolfram alpha na integer value of zero the same value for Sin 

n=n that is valid for the case of the inverse of the misiec´s numbers shown in the last 

graph of this paper  
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This will be true for every number that respect the usual relation of the sinx =x for x 

tending to zero theorem by since it has been found emprirically that it is valid for any 

misiec´s complex number then it can be applied to 
1

𝑛∗𝑛
1
2

+𝑛∗𝑛∗𝑖
  and its inverse as proven 
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sq=Table[j,{j,1000}] 



n=Select[sq,PrimeQ,(100)] 
sq2=Table[k,{k,100}] 
n3=sq2*-1 
r=Table[k1,{k1,100}] 
f=(((Pi+1)*r)*Sqrt[(-2*Pi*r)/((Pi+1)*r)])/((Sqrt[(2*Pi*r)^2+2*Pi*r/n])) 

 bb = Im[𝑓] 
 s1c = ((1 2⁄ ) + bb ∗ 𝑟 ∗ Sqrt[−1]) 
zz=-n3 
zx=n 

x1c1=(1/zz^s1c)^-1 
x1c=ReIm[x1c1] 

ListLinePlot[x1c/n] 
ListLinePlot[Sin[x1c/n]] 
 

 
 

 

 

 
 
 

sq=Table[j,{j,1000}] 
n=Select[sq,PrimeQ,(100)] 
sq2=Table[k,{k,100}] 
n3=sq2*-1 
r=Table[k1,{k1,100}] 

0.05 0.05

0.10

0.05

0.05

0.10

0.05 0.05

0.10

0.05

0.05

0.10



f=(((Pi+1)*r)*Sqrt[(-2*Pi*r)/((Pi+1)*r)])/((Sqrt[(2*Pi*r)^2+2*Pi*r/n])) 

 bb = Im[𝑓] 
 s1c = ((1 2⁄ ) + bb ∗ 𝑟 ∗ Sqrt[−1]) 
zz=-n3 
zx=n 

x1c1=(1/zx^s1c)^-1 
x1c=ReIm[x1c1] 

ListLinePlot[x1c/n] 
ListLinePlot[Sin[x1c/n]] 
 

 

 

 

When considering prime numbers for n in the inverse of the misiec´s zeta complex 

number the graph behavior spares the centers and repeats itself for the sin of the 

value corroborating for the supracited relations between the prime numbers and its 

radical correspondent that allows for one to verify by the behavior of the graph if it 

constitutes a graph of pure prime numbers from a graph of natural integers non 

primes. 

 

If one think of aplications for these numbers, one can think of the formation of 

hurricanes, that need to have an emptyness in the center, so one might relate the 
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formation of a hurricane to be intimately related to the arrangement with which the 

prime numbers relate to them selves in a series of primes applied to the form of the 

misiec´s zeta complex numbers derived from the study of the Riemann zeta function 

that after generalized gives inumerous aplications in terms of applied mathmatics and 

might even play a role in the understanding of turbulance and spiral geometries in 

nature  and it has been shown in Riemann Hypothesis Solution by the same author in 

Fighsare. 

 

If the signs of the product of the real and imaginary part are considered then there is a 

random distribution similar to prime numbers and non prime numbers that confers a 

similarity of random distribution for the misiec´s zeta complex numbers: 

1/2*2^(1/2+2*2*i)= -0.659509357 + 0.255043934 i  - 

1/3*3^(1/2+3*3*i)= -0.516633808 - 0.257726292 i  +  

1/5*5^(1/2+5*5*i) = -0.367895998 + 0.254268626 i  - 

1/7*7^(1/2+7*7*i) = 0.170830655 + 0.337155795 i  + 

1/11*11^(1/2+11*11*i)=  0.131687722 + 0.271233174 i + 

1/13*13^(1/2+13*13*i)=  0.276793842 - 0.0175569353 i  - 

1/17*17^(1/2+17*17*i)=  -0.0975148897 + 0.222068403 i    - 

1/19*19^(1/2+19*19*i) =  0.107288598 + 0.202782484 i      + 

1/23*23^(1/2+23*23*i)=  0.207770771 - 0.0175945327 i     - 

1/29*29^(1/2+29*29*i)= -0.0459389178 - 0.179923246 i   + 

1/31*31^(1/2+31*31*i)= 0.0323983193 + 0.176659032 i      + 

1/37*37^(1/2+37*37*i)= 0.00831208182 - 0.164188722 i     - 

1/41*41^(1/2+41*41*i)= -0.153921385 - 0.0264282235 i    + 

1/43*43^(1/2+43*43*i)= 0.0788851864 - 0.130510311 i        - 

1/47*47^(1/2+47*47*i)= -0.112984719 - 0.0922553474 i     + 

1/53*53^(1/2+53*53*i)= 0.136619313 - 0.0142508907 i     - 

1/59*59^(1/2+59*59*i)= 0.127790832 + 0.0248727931 i     + 

1/61*61^(1/2+61*61*i)= -0.126655652 - 0.018756022 i       + 

1/67*67^(1/2+67*67*i) =  0.120271331 + 0.0214518086 i      + 

1/71*71^(1/2+71*71*i) =  0.112484747 - 0.0378376625 i       - 

1/73*73^(1/2+73*73*i) =  0.0929637129 - 0.0711082148 i      - 

1/79*79^(1/2+79*79*i) = 0.0860649426 + 0.0724641532 i      + 



1/83*83^(1/2+83*83*i) = 0.0880502189 - 0.0655389329 i       - 

1/89*89^(1/2+89*89*i)= -0.0495278912 - 0.0937173572 i      + 

1/97*97^(1/2+97*97*i)=    -0.0893641659 - 0.0482008735 i        + 

 

 

-1.83947999 + 1.27134313 i 
 
 
 
 
 
 
1/1*1^(1/2+1*1*i)=1 

1/2*2^(1/2+2*2*i)= -0.659509357 + 0.255043934 i  - 

1/3*3^(1/2+3*3*i)= -0.516633808 - 0.257726292 i  +  

1/4*4^(1/2+4*4*i)= -0.491043506 - 0.094213988 i              + 
1/5*5^(1/2+5*5*i) = -0.367895998 + 0.254268626 i  - 

1/6*6^(1/2+6*6*i)= -0.0410377027 + 0.406180469 i         - 
1/7*7^(1/2+7*7*i) = 0.170830655 + 0.337155795 i  + 

1/8*8^(1/2+8*8*i)= 0.148487223 + 0.320860631 i               + 

1/9*9^(1/2+9*9*i)=  -0.152507162 + 0.296399522 i             - 
1/10*10^(1/2+10*10*i)= -0.191011702 - 0.252020891 i     + 
1/11*11^(1/2+11*11*i)=  0.131687722 + 0.271233174 i + 

1/12*12^(1/2+12*12*i)= 0.274470831 - 0.0894376674 i     - 
1/13*13^(1/2+13*13*i)=  0.276793842 - 0.0175569353 i  - 

 
1/14*14^(1/2+14*14*i)= -0.119426631 + 0.239093813 i    - 
1/15*15^(1/2+15*15*i)= 0.254995756 - 0.0405441884 i    - 
1/16*16^(1/2+16*16*i)=  0.244124722 - 0.0538806115 i    - 

 


