
Supplemental Document

Modeling of an X-ray grating-based imaging
interferometer using ray tracing: supplement

JEFFREY P. WILDE1,∗ AND LAMBERTUS HESSELINK1,2

1E. L. Ginzton Laboratory, Stanford University, Stanford, CA 94305, USA
2Department of Electrical Engineering, Stanford University, Stanford, CA 94305, USA
∗jpwilde@stanford.edu

This supplement published with The Optical Society on 5 August 2020 by The Authors under the
terms of the Creative Commons Attribution 4.0 License in the format provided by the authors
and unedited. Further distribution of this work must maintain attribution to the author(s) and the
published article’s title, journal citation, and DOI.

Supplement DOI: https://doi.org/10.6084/m9.figshare.12727010

Parent Article DOI: https://doi.org/10.1364/OE.400640



Modeling of an X-ray grating-based
imaging interferometer using ray
tracing: supplemental document

We used a commercially available ray tracing software package, Zemax OpticStudio® [1], for our
simulation work presented in the paper. This supplemental document describes some of the more
salient details related to our specific version of the modeling implementation. However, it should
become obvious that there exists significant flexibility to modify the model setup and parameters
to best match a particular problem or geometry of interest. The discussion here assumes the
reader has a basic working knowledge of OpticStudio. For more detailed information, the reader
is directed to the comprehensive built-in help documentation provided with the software.

1. OVERVIEW OF THE ZEMAX MODEL (WITH A MATLAB INTERFACE)

The simulation runs in purely non-sequential mode. We use the Zemax OpticStudio Application
Programming Interface (ZOS-API) in conjunction with Matlab [2] to write custom control and
analysis code. ZOS-API is a very powerful object-oriented interface that allows external code
to fully control the OpticStudio model setup and ray trace execution, so virtually any change
that can be made via the graphical user interface inside OpticStudio can also be implemented
programmatically. In addition, ray trace results can be stored to file and then imported into
Matlab for post-processing. All of this can done with a single Matlab script file.

Various sources are available in OpticStudio, but we generally choose to use the “Source Two
Angle” object with a circular spatial shape and a rectangular angular distribution of rays (chosen
to optimally fill a rectangular detector). Source rays are chosen quasi-randomly by selecting the
Sobol ray sampling method. They have a uniform distribution both spatially and angularly. The
same set of source rays can be reproduced during repeated ray traces by setting the random
number generator seed in OpticStudio to a fixed value using the following ZOS-API command:
“TheSystem.Tools.OpenNSCRayTrace().SetRandomSeed(x)” where “x” is the seed value. The
source spectrum is represented by a weighted set of wavelengths as shown in Fig. 3(b) of the
paper (using either system wavelengths or an SPCD file).

Native 2D surfaces and/or 3D objects may be used. Externally generated CAD objects (e.g., in
the form of STEP files) may also be utilized in OpticStudio. For volume objects, the refractive
index and linear attenuation coefficient for a given material are included by means of a custom
Zemax Table Glass (ZTG) file, which is a simple text listing in which each line consists of a
wavelength in microns followed by the corresponding index and transmission data. We opt to use
the specific source wavelengths in this ZTG file to avoid potential errors related to cubic spline
fitting of the material values if a different wavelength sampling were to be used. Bulk scattering
can be applied to solids, while surface scattering can be used on stand-alone surfaces or on the
faces of volume objects.

We choose to turn off ray splitting, so each traced ray consists of just one branch having multiple
segments from the source origination point to the final ray termination point. Each new segment
arises at a ray-surface intercept or, in the case of volume scattering, at a ray scattering event in
space. When ray splitting is off, no child rays are spawned, which helps keep the size of the
ray data set manageable, and more importantly it maintains a one-to-one relationship between
detected object rays and the corresponding reference rays. This helps simplify ray parsing and
sorting when comparing the reference and object ray data sets. By not employing ray splitting we
are neglecting spurious Fresnel reflection, which is quite reasonable in the X-ray regime given the
very small refractive index decrements of typical materials. Also, when simulating surface scatter,
it is in general possible to have many child rays split from one incoming parent ray; however,
with the splitting function turned off, only one outgoing ray (either scattered or specular) leaves
for each incoming ray. This approach is perfectly fine because tracing a large number of rays still
leads to the proper statistical result.

In general, the coherent scattering cross-section is a function of energy (wavelength) and angle.
However, the built-in bulk “Angle Scattering” distribution in OpticStudio is neither wavelength
nor angle dependent. If that level of detail is important for a particular problem, then the best



solution would entail writing a custom scattering DLL (dynamic link library) as explained in the
help documentation. Nevertheless, use of an average angular distribution is still quite useful for
assessing the general impact of scattering on the visibility-contrast image.

2. RAY DATA SELECTION AND RECORDING

In OpticStudio, ray data sets can only be stored to disk and then read back for subsequent
processing. One option, and perhaps the only approach that seems workable at first glance, is
to use the standard Zemax Ray Database (ZRD) file format. Data are recorded for all segments
of every ray, including the ray segment spatial coordinates, direction cosines, wavelength and
intensity at each point where the segment intersects an object or is scattered in a new direction.
For ray-object intercepts, the object number and face number are also stored. When a segment
strikes a detector, the pixel number is included. While having access to this myriad of segment
data can be helpful, it can pose a problem when scaling the model to include a large number of
small objects, or especially when bulk scattering is turned on to simulate the visibility-contrast
(dark-field) signal. The problem centers on the fact that every time a ray strikes an object boundary
or is scattered, a new segment is created and the data values associated with that segment are
added to the stored file. The number of ray segments can therefore grow exponentially. This
in turn means that the ZRD ray data files may become excessively large, consuming more disk
spacing and taking longer to write and to subsequently read and process. For our purposes, we
only need data for the first and last ray segments, and possibly for the segment that intercepts G1,
but the rest of the segment data is superfluous.

We therefore devised a scheme to modify the method by which ray information is stored so as
to better streamline the process. Fortunately, OpticStudio offers one other file format (SDF) for
storing only those ray segments that strike a single user-selected object. After investigating this
option more carefully, we discovered a way to make it work for our needs. We did this by adding
one or two dummy rectangular volumes containing air to the model and instructing OpticStudio
to only store ray segments that intersect the dummy volume(s). If objects are only placed in the
beam path after G1, then just one dummy volume is used with an input face located very close to
the source plane (but the source is just outside of the dummy volume), and the opposing face of
the dummy volume is very close to the detector surface (but the detector is positioned outside).
Here very close means less than about 10 microns, although the exact value is not critical. The
size of this dummy volume is large enough to enclose all of the objects in the beam path. Now
when rays are traced, only the segments hitting the input and output faces of this dummy volume
object are recorded to file, independent of the number of intervening segments generated during
propagation. If objects are placed in the beam prior to G1, then two dummy volumes are used
as illustrated in Figure S1. The first volume has its input face adjacent to the source plane and

Fig. S1. Interferometer imaging model layout in Zemax OpticStudio.

its output face adjacent to the input side of G1. The second dummy volume has its input/ouput
faces adjacent to the output surface of G1 and the detector plane, respectively. The two volumes
are combined into a single dummy object by using a “Boolean Native” object. This allows the
segments associated with the intersection of G1 to be recorded as required by Eq. 19 in the paper.
Actually, two intermediate segments are recorded, one on each side of G1. Only one of these is
needed and the second one is ignored. Finally, a filter string can be applied during ray tracing so
that only the segments for rays that hit the detector are saved. Figure S2 is a screen shot of the ray
trace control panel that illustrates an example of how this is accomplished.

Having just explained why the SDF file format is superior for capturing only the ray segments
of interest, in simple cases one may opt for the ZDF format given the built-in ray database
viewer tool for examining the contents of ZDF files. So, another important aspect related to non-
sequential ray tracing in OpticStudio and storing the results in a ZRD file is worth highlighting.
Ray tracing can be multi-threaded for a significant speed improvement, but the results are written

2



Fig. S2. Screen capture of ray trace settings window showing how ray segments that intersect
dummy object number 2 are saved to an SDF file. Only segments for rays reaching the detector
object number 5 are saved by using the H5 filter string.

to disk in the order that various threads complete execution. Therefore the ray number stored
in the ZRD file cannot be used to compare the reference and object data sets. In other words, a
particular source ray in the reference case will have an assigned ray number in the ZRD file, but
the same physical source ray will, in general, have a different ray number in the object data set.
Even for single-core ray tracing, the number of object rays may not correspond to the number of
reference rays due to, for example, complete attenuation of object rays by metallic objects. For
these reasons, even when working with ZRD files, we still use the first ray segment coordinates
and direction cosines for purposes of sorting in Matlab.

3. RAY DATA PARSING IN MATLAB

After ray tracing is complete, the Matlab script includes instructions to read the SDF files from
disk (one file for the reference ray trace and a second file for the object trace) and to then separate
the reference and object ray segments into three groups: the first group corresponds to the source
segments, the second is for segments incident on G1, and the third is for segments incident on
the detector (or G2 plane). Note that the reference segment groups all have the same number of
elements, as do the object segment groups, but the object groups may have a smaller number of
elements compared to the reference groups. This is because during the object ray trace, some of
the rays may be completely attenuated by an object or there could be a ray trace error associated
with a ray striking the facet boundary of a CAD object. If an object ray does not make it all the
way to the detector, then the filter string prevents that ray (and its segments) from being saved.
Knowing this could be the case, the first group of ray segments (i.e., those emitted by the source)
for both the reference trace and object trace are compared and sorted (based on spatial coordinates
and direction cosines) using the “intersect” command in Matlab. Doing so ensures that these
initial segments for the two traces are ordered in precisely the same way and also eliminates
any reference segments that have no corresponding object segments. The detector ray segments
(and the G1 intersection segments if needed) can then be sorted using the array index vectors
generated by the “intersect” operation. The reference and object ray segment arrays can now be
used on a segment-by-segment basis to complete the required analysis according to Section 4.4 of
the paper.

4. SUMMARY

The most complicated aspect of the ray trace model as implemented in OpticStudio pertains
to the ray parsing and sorting in Matlab, followed by binning the results to mimic a pixelated
detector. However, the optical path construction in OpticStudio is quite straightforward, and the

3



multi-threaded ray tracing runs efficiently. To summarize, we use a Matlab script to control the
OpticStudio simulation according to the following main steps:

1. First, select “Ignore” for all objects and run an air ray trace to serve as a reference. Save the
ray segment data to file. Rays that do not reach the detector are not saved.

2. Turn the objects back on by deselecting “Ignore” and rerun the ray trace using exactly the
same set of source rays (by using the same random number generator seed value and Sobol
ray sampling). Save this object ray data to a second file. Again, rays that do not reach the
detector are not saved.

3. Read the ray data sets from disk. Separate the ray segments into three groups (source
segments, segments that intersect G1, and segments that intersect G2), and then compare
and sort the segments within each group as described in Section 3 above.

4. Compute the difference in the x-direction ray crossing coordinates at G1 and G2 and find
the local fringe phase shift for each reference/object ray pair using Eq. 19.

5. Evaluate the phasor sum per pixel according to Eq. 26.

6. Calculate image projections for the three modalities per Eqs. 32-34.

REFERENCES

1. OpticStudio 20.1, Zemax, LLC, Kirkland, Washington, United States (www.zemax.com).
2. MATLAB 2019b, The MathWorks, Inc., Natick, Massachusetts, United States

(www.mathworks.com).

4


