Supporting Information

Slicing and Splicing of Bromodifluoro-N-arylacetamides: Dearomatization and Difunctionalization of Pyridines

Hongtai Chen,† Yanyan Yang,† Lianxin Wang,† Yuxiang Niu,† Minjie Guo,‡ Xiangwei Ren,†
Wentao Zhao,† Xiangyang Tang,† Guangwei Wang*,†

[†]Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China

[‡]Institute for Molecular Design and Synthesis, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, P. R. China

*Email: <u>wanggw@tju.edu.cn</u>.

Table of Contents

1. General information	S2
2. Screening of aromatic nitrogen heteroarenes for N-difluromet	hylation
$/\beta$ -imidization	S2
3. Optimization of bromination reaction conditions	S5
4. Mechanistic studies	S6
5. Representative procedure I and characterization of 3aa-3qa, 3ab-3ai	S9
6. Representative procedure II and characterization of 4b-4l	S23
7. X-Ray crystal structures of 3aa and 3da	S30
8. References	S33
9. ¹ H NMR, ¹⁹ F NMR, ¹³ C NMR and HRMS spectra	S34
10. ¹ H NMR spectra of deuterated compounds	S106
11. NMR and HRMS spectra of compounds P-1, P-2, and P-3	S108

1. General Information

All reactions were carried out under argon atmosphere with dry solvents in unless otherwise flame-dried glassware noted. Dimethyl sulfoxide, 4-(dimethylamino)pyridine, and CuI were purchased from commercial sources and used as received. Flash chromatographic separations were carried out on 200-300 mesh silica gel. Reactions were monitored by TLC or GC analysis of reaction aliquots. GC analyses were performed on an Agilent 7890 Gas Chromatography using a HP-5 capillary column (30 m × 0.32 mm, 0.5 µm film) and Shimadzu 2010 Plus Gas Chromatograph with a barrier discharge ionization detector (BID) using helium as a carrier gas. ¹H, ¹⁹F, and ¹³C NMR spectra were recorded in deuterated solvents on a Bruker AVANCE III or JNM-ECZ600R spectrometer and calibrated using residual undeuterated solvent (CDCl₃ at 7.26 ppm ¹H NMR, 77.16 ppm ¹³C NMR). Chemical shifts (δ) are reported in ppm, and coupling constants (J) are in hertz (Hz). The following abbreviations were used to explain the multiplicities: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad. High resolution mass spectrometry (HRMS) was recorded on a QTOF mass analyzer with electrospray ionization (ESI) through a Bruker Daltonics - micrOTOF-QII or Waters G2-XS QTOF mass spectrometer.

Bromodifluoroacetamides **1a-1q** were synthesized from ethyl bromodifluoroacetate and the corresponding aniline according to the reported procedure.¹ 4-Aminopyridines **2b-2i** were synthesized from 4-halopyridines and the corresponding amines according to the reported procedure.²

2. Screening of aromatic nitrogen heteroarenes for N-difluoromethylation $/\beta$ -imidization

A series of nitrogen containing heterocyclic substrates have been subjected with 2-bromo-2,2-difluoro-*N*-phenylacetamide **1a**, catalytic amount of CuI and pyridine in DMSO (1.0 mL) at 110 °C. Unfortunately, some of which did not work and starting materials were partially recovered (**S-2a** - **S-2s**), while the others were messy resulting complicated inseparable mixture (**S-2t** and **S-2u**).

Scheme S1. Screening of aromatic nitrogen heterocycles

Reaction conditions: unless otherwise noted, all reactions were performed with **1a** (0.2 mmol), **2** (0.3 mmol), CuI (10 mol%), and pyridine (20 mol%) in DMSO (0.5 mL) at 110 °C under Ar for 12 h.

For the reaction of substrate 4-methoxy pyridine (S-2c), instead of desired product (3a-S2c), compounds 2,2-difluoro-2-(4-oxopyridin-1(4*H*)-yl)-*N*-phenylacetamide (P-1) and 1-methylpyridin-4(1*H*)-one (P-2) were isolated, and a large amount of 1a was also recovered. For the formation of these two compounds, we proposed a preliminary mechanism as followed (Scheme S2). First, an *N*-difluoroacetamide-4-methoxy-pyridium salt (Int-1) was formed from nucleophilic substitution of 1a by S-2c. Then, the nucleophilic attack of S-2c toward the methoxy carbon of Int-1 could lead to P-1 and *N*-methyl-4-methoxy-pyridium salt (Int-2). Next, the nucleophilic attack of S-2c toward the methoxy carbon of Int-2 could lead to P-2 and regenerate Int-2. Therefore, the major formation of P-2 could be viewed as an *N*-methyl-4-methoxy-pyridium salt (Int-2) catalyzed hydrolysis of S-2c.

Scheme S2. Possible mechanism for *N*-methyl and *N*-CF₂CONHPh pyridinone

Preparation and characterization of compounds P-1 and P-2:

To a mixture of 2-bromo-2,2-difluoro-*N*-phenylacetamide (**1a**) (125 mg, 0.5 mmol), CuI (10.0 mg, 0.05 mmol), 4-methoxypyridine (**S-2c**) (102 μ L, 109 mg, 1.0 mmol) in DMSO (1.0 mL) were added pyridine (8 μ L, 0.10 mmol). The resultant mixture was stirred at 110 °C (oil bath) for 12 hrs and monitored by TLC. The reaction was quenched with ethyl acetate and water, and then extracted with ethyl acetate (3 x 10 mL). The combined organic layers were dried over anhydrous Na₂SO₄. After filtration, the filtrate was concentrated in vacuum and the residue was purified by silica gel column chromatography (DCM/EtOAc = 10:1) to give compound **P-1** as pale yellow solid (8 mg, 6% yield based on **1a**), compound **P-2** as as white solid (70.8 mg, 65% yield based on **S-2c**), and **1a** (64 mg, 51% recovery yield).

2,2-Difluoro-2-(4-oxopyridin-1(4*H***)-yl)-***N***-phenylacetamide (P-1). Pale yellow solid, mp 64-65 °C. ¹H NMR (400 MHz, DMSO-d_6) \delta 11.30 (s, 1H), 7.98 (d, J = 8.1 Hz, 2H), 7.70 (d, J = 7.3 Hz, 2H), 7.42 (t, J = 8.0 Hz, 2H), 7.23 (t, J = 7.5 Hz, 1H), 6.28 (d, J = 8.1 Hz, 2H); ¹³C{¹H} NMR (151 MHz, DMSO-d_6) \delta 178.6, 157.1 (t, J = 34.2 Hz), 137.0, 135.5 (2C), 129.5 (2C), 126.3, 121.7 (2C), 118.7 (2C), 112.5 (t, J = 270.8 Hz); ¹⁹F NMR (565 MHz, DMSO-d_6) \delta -87.36. HRMS (ESI): m/z calcd. for C₁₃H₁₁F₂N₂O₂⁺ [M+H⁺]: 265.0783, found: 265.0790.**

1-Methylpyridin-4(1*H***)-one** (**P-2**).³ White solid, mp 91-92 °C. ¹H NMR (600 MHz, DMSO- d_6) δ 7.66 (d, J = 7.6 Hz, 2H), 6.12 (d, J = 7.6 Hz, 2H), 3.66 (s, 3H); ¹³C{¹H} NMR (151 MHz, DMSO- d_6) δ 177.5, 142.2 (2C), 117.8 (2C), 43.2.

For the reaction of substrate *N*,*N*-dimethylquinolin-4-amine (**S-2v**) under the standard conditions, the de-diffuoromethylated product (**P-3**) was isolated with large amounts of both starting materials being recovered.

Preparation and characterization of compound P-3:

(E)-N,N-Dimethyl-2-(phenylimino)-1,2-dihydroquinolin-4-amine (P-3).mixture of 2-bromo-2,2-difluoro-N-phenylacetamide (1a) (125 mg, 0.5 mmol), CuI (10.0 mg, 0.05 mmol), 4-(dimethylamino)quinolin (S-2v) (116 µL, 0.75 mmol) in DMSO (1.0 mL) were added pyridine (8 µL, 0.10 mmol). The resultant mixture was stirred at 110 °C (oil bath) for 12 hrs and monitored by TLC. The reaction was quenched with ethyl acetate and water, and then extracted with ethyl acetate (3 x 10 mL). The combined organic layers were dried over anhydrous Na₂SO₄. After filtration, the filtrate was concentrated in vacuum and the residue was purified by silica gel column chromatography (DCM/EtOAc = 10:1) to give the title compound as pale yellow oil (31.6 mg, 24% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.83 (d, J = 8.3 Hz, 1H), 7.66 (d, J = 8.4 Hz, 1H), 7.48 – 7.40 (m, 3H), 7.28 (t, J = 7.9 Hz, 2H), 7.18 – 7.13 (m, 1H), 7.00 (t, J = 7.4 Hz, 1H), 6.33 (s, 1H), 2.89 (s, 6H); ${}^{13}C\{{}^{1}H\}$ NMR (101) MHz, CDCl₃) δ 159.3, 155.0, 149.0, 140.6, 129.5, 129.4 (2C), 127.1, 124.5, 123.0, 122.0, 120.6 (2C), 119.9, 96.9, 44.0 (2C). HRMS (ESI): m/z [M+H+] calcd for C₁₇H₁₈N₃⁺: 264.1495, found: 264.1502.

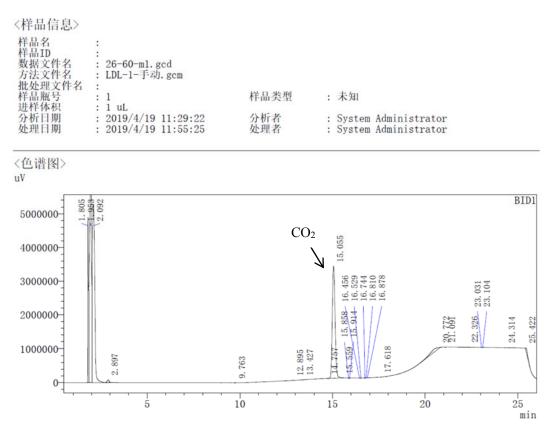
3. Screening of oxidants for in situ preparation of an active bromination species.

Table S1. Optimization of bromination reaction conditions.^a

entry	oxidant	yield of $3da^b$ (%)	yield of $3aa^b$ (%)
1	$\mathrm{K}_2\mathrm{S}_2\mathrm{O}_8$	n.d.	n.d.
2	DDQ	n.d.	n.d.
3	ТВНР	n.d.	28
4	$ m Ag_2O$	n.d.	n.d.
5	m-CPBA	n.d.	n.d.
6	PhI(OAc) ₂	4	55
7	Dess-Martin periodinane	n.d.	n.d.
8	H_2O_2	44	18
9 ^c	O_2	59(50)	n.d.

^aReaction conditions: unless otherwise noted, all reactions were performed with **1a** (0.2 mmol), **2a** (0.3 mmol), CuI (0.02 mmol, 0.1 equiv), pyridine (0.04 mmol, 0.2 equiv), DMSO (0.5 mL), under Ar at 110 °C for 24 h. The value in parentheses is the isolated yield. ${}^{b}GC$ yield. n.d. = not detected. ${}^{c}O_{2}$ (balloon).

4. Mechanistic studies


(a) Radical and carbene trap experiments.

Benzo[d]imidazole, which can trap difluorocarbene as literature reported,⁴ was added under the standard reaction. But 1-(difluoromethyl)-1H-benzo[d]imidazole was not formed and the desired product **3aa** was formed in 40% yield (SI, eq. 1), which indicate the reaction might bypass difluorocarbene intermediate and proceed through other ways. When the radical scavenger 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO) was added to the reaction mixture, the desired product **3aa** was observed with 54% yield and the TEMPO-CF₂CONHPh was not detected, which suggested that a radical intermediate may not be involved in this transformation (SI, eq. 2).

(b) Capturing CO2 and Me2S

After completing the reaction, we used GC system to analyze the ingredient of gas phase and liquid phase of this reaction tub respectively. The CO₂ and dimethyl sulfide was detected, which indicated that the rearrangement of **B** affording **C** may be reasonable.

LabSolutions 分析报告

Figure S1. GC Analysis Report for capturing of CO₂. The ingredient of gas phase were analyzed by on-line Shimadzu 2010 Plus Gas Chromatograph with a barrier discharge ionization detector (BID) using He as a carrier gas.

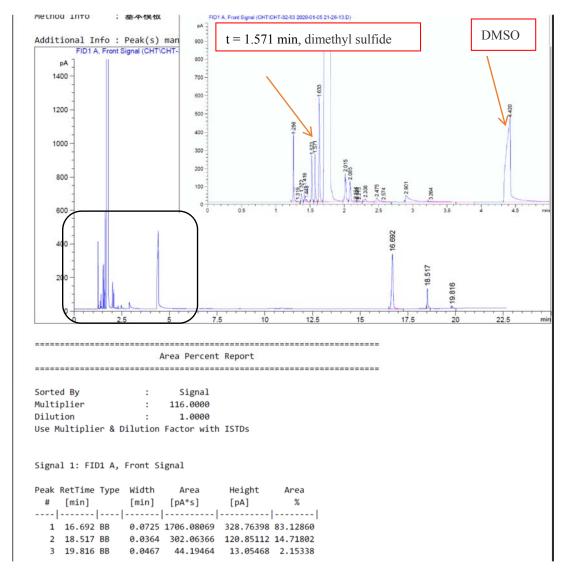


Figure S2. GC Analysis Report for capturing of Me_2S . GC analysis was performed on an Agilent 7890 Gas Chromatography using a HP-5 capillary column (30 m × 0.32 mm, 0.5 μ m film).

5. Representative procedure I and characterization of 3aa-3qa, 3ab-3ai

Synthesis of (*E*)-1-(difluoromethyl)-4-(*N*,*N*-dimethylamino)-2-(phenylimino)-1,2-dihydropyridine (3aa). *Representative Procedure I*. To a mixture of 2-bromo-2,2-difluoro-*N*-phenylacetamide (1a) (250 mg, 1.0 mmol), CuI (19.0 mg, 0.10 mmol), 4-(*N*,*N*-dimethylamino)pyridine (2a) (183 mg, 1.50 mmol) in DMSO

(1.0 mL) were added pyridine (16 μ L, 0.20 mmol). The resultant mixture was stirred at 110 °C (oil bath) for 12 hrs and monitored by TLC. The reaction was quenched with ethyl acetate and water, and then extracted with ethyl acetate (3 x 10 mL). The combined organic layers were dried over anhydrous Na₂SO₄. After filtration, the filtrate was concentrated in vacuum and the residue was purified by silica gel column chromatography (DCM/EtOAc = 10/1) to give the desired product **3aa** as yellow oil (181 mg, 69% yield) (The isolated yield is 72% when the reaction was run in a 0.2 mmol scale). ¹H NMR (400 MHz, CDCl₃) δ 7.97 (t, J = 61.3 Hz, 1H), 7.31 – 7.24 (m, 2H), 7.16 (d, J = 8.2 Hz, 1H), 6.97 – 6.88 (m, 3H), 5.77 (dd, J = 8.2, 2.3 Hz, 1H), 5.17 (d, J = 2.3 Hz, 1H), 2.85 (s, 6H); ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 153.1, 152.0, 151.1, 129.4 (3C), 122.6 (2C), 121.5, 108.3 (t, J = 249.6 Hz), 97.5, 85.6, 39.5 (2C); ¹⁹F NMR (376 MHz, CDCl₃) δ -103.15 (d, J = 61.3 Hz, 2F). HRMS (ESI): m/z [M+H⁺] calcd for C₁₄H₁₆F₂N₃⁺: 264.1307, found: 264.1310.

(*E*)-1-(Difluoromethyl)-2-((4-fluorophenyl)imino)-4-(*N*,*N*-dimethylamino)-1,2-dih ydropyridine (3ba). The title compound was prepared according to *Representative Procedure I* except that 2-bromo-2,2-difluoro-*N*-(4-fluorophenyl)acetamide was used instead of 2-bromo-2,2-difluoro-*N*-phenylacetamide. The crude product was purified by silica gel column chromatography (DCM/EtOAc = 10:1) to give the title compound as yellow oil (87 mg, 62% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.94 (t, *J* = 61.3 Hz, 1H), 7.16 (d, *J* = 8.2 Hz, 1H), 7.01 – 6.92 (m, 2H), 6.87 – 6.79 (m, 2H), 5.77 (dd, *J* = 8.2, 2.2 Hz, 1H), 5.07 (d, *J* = 2.2 Hz, 1H), 2.86 (s, 6H); ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 158.3 (d, *J* = 239.4 Hz), 153.2, 152.6, 147.1 (d, *J* = 2.3 Hz), 129.4 (t, *J* = 3.5 Hz), 123.6 (d, *J* = 7.8 Hz, 2C), 115.9 (d, *J* = 22.0 Hz, 2C), 108.2 (t, *J* = 249.5 Hz), 97.5, 85.4, 39.5 (2C). ¹⁹F NMR (376 MHz, CDCl₃) δ -103.19 (d, *J* = 61.3 Hz, 2F), -123.35 – -123.47 (m, 1F); HRMS (ESI): m/z [M+H⁺] calcd for C₁₄H₁₅F₃N₃⁺: 282.1213, found: 282.1217.

(E)-1-(Difluoromethyl)-2-((4-chlorophenyl)imino)-4-(N,N-dimethylamino)-1,2-di

hydropyridine (3ca). The title compound was prepared according to *Representative Procedure I* except that 2-bromo-*N*-(4-chlorophenyl)-2,2-difluoroacetamide was used instead of 2-bromo-2,2-difluoro-*N*-phenylacetamide. The crude product was purified by silica gel column chromatography (DCM/EtOAc = 10:1) to give the desired product as yellow oil (102 mg, 69% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.88 (t, J = 61.0 Hz, 1H), 7.21 – 7.09 (m, 3H), 6.80 (d, J = 7.7 Hz, 2H), 5.77 (d, J = 8.0 Hz, 1H), 5.09 (s, 1H), 2.81 (s, 6H); ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 153.7, 152.2, 148.8, 129.7, 129.4 (2C), 126.6, 124.1 (2C), 108.3 (t, J = 249.6 Hz), 98.1, 85.6, 39.6 (2C); ¹⁹F{¹H} NMR (376 MHz, CDCl₃) δ -102.83 (s, 2F). HRMS (ESI): m/z [M+H⁺] calcd for C₁₄H₁₅ClF₂N₃⁺: 298.0917, found: 298.0914.

(E)-1-(Difluoromethyl)-2-((4-bromophenyl)imino)-4-(N,N-dimethylamino)-1,2-di

hydropyridine (3da). The title compound was prepared according to *Representative Procedure I* except that 2-bromo-*N*-(4-bromophenyl)-2,2-difluoroacetamide was used instead of 2-bromo-2,2-difluoro-*N*-phenylacetamide. The crude product was purified by silica gel column chromatography (DCM/EtOAc = 10:1) to give the desired product as yellow oil (124 mg, 73% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.93 (t, J = 61.3 Hz, 1H), 7.35 (d, J = 8.5 Hz, 2H), 7.17 (d, J = 8.2 Hz, 1H), 6.79 (d, J = 8.5 Hz, 2H), 5.78 (dd, J = 8.2 Hz, 2.0 Hz, 1H), 5.12 (d, J = 2.0 Hz, 1H), 2.87 (s, 6H); ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 153.4, 152.2, 150.3, 132.3 (2C), 129.5, 124.5 (2C), 113.8, 108.2 (t, J = 249.9 Hz), 97.7, 85.3, 39.6 (2C); ¹⁹F NMR (376 MHz, CDCl₃) δ -103.15

(d, J = 61.3 Hz, 2F). HRMS (ESI): m/z [M+H⁺] calcd for C₁₄H₁₅BrF₂N₃⁺: 342.0412, found: 342.0408.

(E)-1-(Difluoromethyl)-2-(p-tolylimino)-4-(N,N-dimethylamino)-1,2-dihydropyri

dine (3ea). The title compound was prepared according to *Representative Procedure I* except that 2-bromo-2,2-difluoro-*N*-(*p*-tolyl)acetamide was used instead of 2-bromo-2,2-difluoro-*N*-phenylacetamide. The crude product was purified by silica gel column chromatography (DCM/EtOAc = 10:1) to give the desired product as yellow oil (91 mg, 66% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.97 (t, J = 61.3 Hz, 1H), 7.14 (d, J = 8.2 Hz, 1H), 7.07 (d, J = 8.0 Hz, 2H), 6.81 (d, J = 8.0 Hz, 2H), 5.75 (dd, J = 8.2 Hz, 2.1 Hz, 1H), 5.19 (d, J = 2.1 Hz, 1H), 2.85 (s, 6H), 2.30 (s, 3H); 13 C{ 1 H} NMR (101 MHz, CDCl₃) δ 153.0, 152.1, 148.1, 130.6, 130.0 (2C), 129.3, 122.3 (2C), 108.3 (t, J = 249.5 Hz), 97.5, 85.7, 39.5 (2C), 21.0; 19 F{ 1 H} NMR (376 MHz, CDCl₃) δ -102.80 (s, 2F). HRMS (ESI): m/z [M+H⁺] calcd for C₁₅H₁₈F₂N₃⁺: 278.1463, found: 278.1460.

(E)-1-(Difluoromethyl)-2-((4-methoxyphenyl)imino)-4-(N,N-dimethylamino)-1,2-

dihydropyridine (3fa). The title compound was prepared according to *Representative Procedure I* except that 2-bromo-2,2-difluoro-*N*-(4-methoxyphenyl)acetamide was used instead of 2-bromo-2,2-difluoro-*N*-phenylacetamide. The crude product was purified by silica gel column chromatography (DCM/EtOAc = 10:1) to give the desired product as yellow oil (82 mg, 56% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.97 (t, J = 61.4 Hz, 1H), 7.14 (d, J = 8.2 Hz, 1H), 6.86 – 6.80 (m, 4H), 5.75 (d, J = 8.2 Hz, 1H), 5.14 (s, 1H), 3.79 (s, 3H), 2.85 (s, 6H); ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 154.6, 153.0, 152.4, 144.1, 129.4, 123.3 (2C), 114.8 (2C), 108.3 (t, J = 249.3 Hz),

97.4, 85.8, 55.6, 39.5 (2C); ${}^{19}F\{{}^{1}H\}$ NMR (376 MHz, CDCl₃) δ -103.07 (s, 2F). HRMS (ESI): m/z [M+H⁺] calcd for $C_{15}H_{18}F_{2}N_{3}O^{+}$: 294.1412, found: 294.1416.

(E)-1-(Difluoromethyl)-2-((4-pentylphenyl)imino)-4-(N,N-dimethylamino)-1,2-di

hydropyridine (3ga). The title compound was prepared according to *Representative Procedure I* except that 2-bromo-2,2-difluoro-*N*-(*p*-pentylphenyl)acetamide was used instead of 2-bromo-2,2-difluoro-*N*-phenylacetamide. The crude product was purified by silica gel column chromatography (DCM/EtOAc = 10:1) to give the desired product as yellow oil (125 mg, 75% yield). ¹H NMR (400 MHz, CDCl₃) δ 8.17 (t, J = 60.0 Hz, 1H), 7.39 (d, J = 8.1 Hz, 1H), 7.11 (d, J = 7.4 Hz, 2H), 6.97 (d, J = 7.4 Hz, 2H), 6.06 (d, J = 8.1 Hz, 1H), 5.41 (s, 1H), 2.93 (s, 6H), 2.55 (t, J = 7.5 Hz, 2H), 1.66 – 1.53 (m, 2H), 1.38 – 1.21 (m, 4H), 0.87 (t, J = 6.3 Hz, 3H); ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 154.5, 151.6, 143.5, 138.0, 130.7, 129.5 (2C), 123.0 (2C), 108.8 (t, J = 253.3 Hz), 99.8, 87.0, 39.9 (2C), 35.5, 31.6, 31.3, 22.6, 14.2; ¹⁹F{¹H} NMR (376 MHz, CDCl₃) δ -101.14 (s, 2F). HRMS (ESI): m/z [M+H⁺] calcd for C₁₉H₂₆F₂N₃⁺: 334.2089, found: 334.2084.

(E)-1-(Difluoromethyl)-2-((4-(tert-butyl)phenyl)imino)-4-(N,N-dimethylamino)-1, 2-dihydropyridine (3ha). The title compound was prepared according to Representative Procedure Ι except that 2-bromo-*N*-(4-(*tert*-butyl)phenyl)-2,2-difluoroacetamide used instead of was 2-bromo-2,2-difluoro-N-phenylacetamide. The crude product was purified by silica gel column chromatography (DCM/EtOAc = 10:1) to give the desired product as yellow oil (107 mg, 67% yield). H NMR (400 MHz, CDCl₃) δ 8.05 (t, J = 60.7 Hz, 1H), 7.22 (d, J = 7.9 Hz, 2H), 7.17 (d, J = 8.0 Hz, 1H), 6.85 (d, J = 7.9 Hz, 2H), 5.81

(d, J = 8.0 Hz, 1H), 5.31 (s, 1H), 2.82 (s, 6H), 1.23 (s, 9H); 13 C{ 1 H} NMR (101 MHz, CDCl₃) δ 153.7, 151.7, 145.7, 144.9, 129.9, 126.2 (2C), 122.2 (2C), 108.5 (t, J = 250.9 Hz), 98.5, 86.3, 39.7 (2C), 34.3, 31.6 (3C); 19 F{ 1 H} NMR (376 MHz, CDCl₃) δ -102.23 (s, 2F). HRMS (ESI): m/z [M+H⁺] calcd for C_{18} H₂₄F₂N₃⁺: 320.1933, found: 320.1923.

(*E*)-1-(Difluoromethyl)-2-((4-cyanophenyl)imino)-4-(*N*,*N*-dimethylamino)-1,2-dih ydropyridine (3ia). The title compound was prepared according to *Representative Procedure I* except that 2-bromo-*N*-(4-cyanophenyl)-2,2-difluoroacetamide was used instead of 2-bromo-2,2-difluoro-*N*-phenylacetamide. The crude product was purified by silica gel column chromatography (DCM/EtOAc = 10:1) to give the desired product as yellow oil (102 mg, 71% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.92 (t, *J* = 61.1 Hz, 1H), 7.52 (d, *J* = 8.2 Hz, 2H), 7.23 (d, *J* = 8.2 Hz, 1H), 6.98 (d, *J* = 8.2 Hz, 2H), 5.86 (d, *J* = 8.2 Hz, 1H), 5.22 (s, 1H), 2.91 (s, 6H); ¹³C { ¹H } NMR (101 MHz, CDCl₃) δ 156.0, 154.1, 152.2, 133.6 (2C), 129.8, 123.2 (2C), 120.4, 108.2 (t, *J* = 250.7 Hz), 103.3, 98.2, 85.0, 39.7 (2C); ¹⁹F { ¹H } NMR (376 MHz, CDCl₃) δ -103.03 (s, 2F). HRMS (ESI): m/z [M+H⁺] calcd for C₁₅H₁₅F₂N₄⁺: 289.1259, found: 289.1257.

(*E*)-1-(Difluoromethyl)-2-((4-ethoxycarbonylphenyl)imino)-4-(N,N-dimethylamin o)-1,2-dihydropyridine (3ja). The title compound was prepared according to *Representative Procedure* I except that 2-bromo-2,2-difluoro-N-(4-ethoxycarbonylphenyl)acetamide was used instead of 2-bromo-2,2-difluoro-N-phenylacetamide. The crude product was purified by silica gel column chromatography (DCM/EtOAc = 10:1) to give the desired product as

yellow oil (109 mg, 65% yield). ¹H NMR (400 MHz, CDCl₃) δ 8.11 – 7.77 (m, 3H), 7.19 (d, J = 8.2 Hz, 1H), 6.95 (d, J = 7.9 Hz, 2H), 5.81 (d, J = 8.2 Hz, 1H), 5.22 (s, 1H), 4.33 (q, J = 7.0 Hz, 2H), 2.86 (s, 6H), 1.37 (t, J = 7.0 Hz, 3H); ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 167.1, 156.2, 153.6, 152.0, 131.2 (2C), 129.5, 122.9, 122.3 (2C), 108.2 (t, J = 250.0 Hz), 97.9, 85.3, 60.5, 39.6 (2C), 14.5; ¹⁹F{¹H} NMR (376 MHz, CDCl₃) δ -103.02 (s, 2F). HRMS (ESI): m/z [M+H⁺] calcd for C₁₇H₂₀F₂N₃O₂⁺: 336.1518, found: 336.1518.

dine (3ka). The title compound was prepared according to *Representative Procedure I* except that 2-bromo-2,2-difluoro-*N*-(*m*-tolylphenyl)acetamide was used instead of 2-bromo-2,2-difluoro-*N*-phenylacetamide. The crude product was purified by silica gel column chromatography (DCM/EtOAc = 10:1) to give the desired product as yellow oil (88 mg, 64% yield). ¹H NMR (400 MHz, CDCl₃) δ 8.19 (t, J = 59.9 Hz, 1H), 7.40 (d, J = 8.0 Hz, 1H), 7.19 (t, J = 7.6 Hz, 1H), 6.91 (s, 1H), 6.89 – 6.83 (m, 2H), 6.09 (d, J = 8.0 Hz, 1H), 5.45 (s, 1H), 2.95 (s, 6H), 2.31 (s, 3H); ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 154.7, 151.6, 145.9, 139.5, 130.7, 129.4, 124.3, 124.0, 120.1, 108.8 (t, J = 250.3 Hz), 100.0, 87.3, 40.0 (2C), 21.5; ¹⁹F{¹H} NMR (376 MHz, CDCl₃)

 δ -101.07 (s, 2F). HRMS (ESI): m/z [M+H⁺] calcd for C₁₅H₁₈F₂N₃⁺: 278.1463, found:

(E)-1-(Difluoromethyl)-2-(m-tolylimino)-4-(N,N-dimethylamino)-1,2-dihydropyri

278.1459.

(E)-1-(Difluoromethyl)-2-((3-(trifluoromethyl)phenyl)imino)-4-(N,N-dimethylami no)-1,2-dihydropyridine (3la). The title compound was prepared according to Representative Procedure I except that

2-bromo-2,2-difluoro-*N*-(3-(trifluoromethyl)phenyl)acetamide was used instead of 2-bromo-2,2-difluoro-*N*-phenylacetamide. The crude product was purified by silica gel column chromatography (DCM/EtOAc = 10:1) to give the desired product as yellow oil (121 mg, 73% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.88 (t, J = 61.3 Hz, 1H), 7.27 (t, J = 7.8 Hz, 1H), 7.15 – 7.05 (m, 3H), 7.01 (d, J = 7.9 Hz, 1H), 5.73 (d, J = 8.2 Hz, 1H), 5.08 (s, 1H), 2.78 (s, 6H); ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 153.7, 152.5, 151.7, 131.5 (q, J = 31.6 Hz), 129.8, 129.5 (t, J = 3.50 Hz), 126.2, 124.6 (q, J = 273.45 Hz), 119.5 (q, J = 3.6 Hz), 117.8 (q, J = 3.9 Hz), 108.2 (t, J = 249.2 Hz), 97.9, 85.0, 39.6 (2C); ¹⁹F{¹H} NMR (376 MHz, CDCl₃) δ -62.55 (s, 3F), -103.11 (s, 2F). HRMS (ESI): m/z [M+H⁺] calcd for C₁₅H₁₅F₅N₃⁺: 332.1181, found: 332.1186.

(E)-1-(Difluoromethyl)-2-((3-methoxyphenyl)imino)-4-(N,N-dimethylamino)-1,2dihydropyridine (3ma). The title compound was prepared according to Procedure Representative Ι except that 2-bromo-2,2-difluoro-*N*-(*m*-methoxyphenyl)acetamide instead of was used 2-bromo-2,2-difluoro-N-phenylacetamide. The crude product was purified by silica gel column chromatography (DCM/EtOAc = 10:1) to give the desired product as yellow oil (90.6 mg, 62% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.96 (t, J = 61.3 Hz, 1H), 7.22 - 7.11 (m, 2H), 6.56 - 6.46 (m, 3H), 5.77 (d, J = 8.1 Hz, 1H), 5.21 (s, 1H), 3.78 (s, 3H), 2.86 (s, 6H); ${}^{13}C\{{}^{1}H\}$ NMR (101 MHz, CDCl₃) δ 160.9, 153.2, 152.5, 152.0, 130.0, 129.4, 115.0, 108.3 (t, J = 249.7 Hz), 107.8, 107.7, 97.6, 85.8, 55.3, 39.6 (2C); ${}^{19}F\{{}^{1}H\}$ NMR (376 MHz, CDCl₃) δ -102.67 (s, 2F). HRMS (ESI): m/z $[M+H^+]$ calcd for $C_{15}H_{18}F_2N_3O^+$: 294.1412, found: 294.1417.

(*E*)-1-(Difluoromethyl)-2-(*o*-tolylimino)-4-(*N*,*N*-dimethylamino)-1,2-dihydropyri dine (3na). The title compound was prepared according to *Representative Procedure I* except that 2-bromo-2,2-difluoro-*N*-(*o*-tolylphenyl)acetamide was used instead of 2-bromo-2,2-difluoro-*N*-phenylacetamide. The crude product was purified by silica gel column chromatography (DCM/EtOAc = 10:1) to give the desired product as yellow oil (94 mg, 68% yield). ¹H NMR (400 MHz, CDCl₃) δ 8.14 (t, *J* = 61.1 Hz, 1H), 7.24 – 7.15 (m, 2H), 7.12 (t, *J* = 7.5 Hz, 1H), 6.96 – 6.86 (m, 2H), 5.73 (d, *J* = 8.0 Hz, 1H), 4.84 (s, 1H), 2.84 (s, 6H), 2.14 (s, 3H); ¹³C { ¹H } NMR (101 MHz, CDCl₃) δ 153.4, 150.8, 147.7, 131.2, 130.7, 129.5, 126.8, 122.4, 122.4, 108.5 (t, *J* = 249.6 Hz), 97.8, 85.7, 39.5 (2C), 18.0; ¹⁹F { ¹H } NMR (376 MHz, CDCl₃) δ -102.88 (s, 2F). HRMS (ESI): m/z [M+H⁺] calcd for C₁₅H₁₈F₂N₃⁺: 278.1463, found: 278.1461.

(E)-1-(Difluoromethyl)-2-((2-methoxyphenyl)imino)-4-(N,N-dimethylamino)-1,2dihydropyridine The title compound was prepared according to (30a). Representative **Procedure** that except 2-bromo-2,2-difluoro-*N*-(2-methoxyphenyl)acetamide instead was used of 2-bromo-2,2-difluoro-N-phenylacetamide. The crude product was purified by silica gel column chromatography (DCM/EtOAc = 10:1) to give the desired product as yellow oil (83.6 mg, 57% yield). ¹H NMR (400 MHz, CDCl₃) δ 8.05 (t, J = 61.4 Hz, 1H), 7.14 (d, J = 8.2 Hz, 1H), 7.04 – 6.94 (m, 4H), 5.76 (d, J = 8.2 Hz, 1H), 4.96 (s, 1H), 3.78 (s, 3H), 2.82 (s, 6H); ${}^{13}C\{{}^{1}H\}$ NMR (101 MHz, CDCl₃) δ 152.8, 152.1, 152.0, 139.9, 129.0, 123.6, 122.3, 121.4, 112.2, 108.3 (t, J = 248.6 Hz), 97.5, 86.2, 55.9, 39.4 (2C); ${}^{19}F\{{}^{1}H\}$ NMR (376 MHz, CDCl₃) δ -103.01 (s, 2F). HRMS (ESI): m/z [M+H⁺] calcd for C₁₅H₁₈F₂N₃O⁺: 294.1412, found: 294.1408.

(E)-1-(Difluoromethyl)-2-((2,4-dimethylphenyl)imino)-4-(N,N-dimethylamino)-1,

2-dihydropyridine (3pa). The title compound was prepared according to Procedure Representative that except 2-bromo-*N*-(2,4-dimethylphenyl)-2,2-difluoroacetamide was instead of used 2-bromo-2,2-difluoro-N-phenylacetamide. The crude product was purified by silica gel column chromatography (DCM/EtOAc = 10:1) to give the desired product as yellow oil (85 mg, 58% yield). ¹H NMR (400 MHz, CDCl₃) δ 8.06 (t, J = 61.5 Hz, 1H), 7.15 (d, J = 8.2 Hz, 1H), 6.99 (s, 1H), 6.91 (d, J = 7.7 Hz, 1H), 6.73 (d, J = 7.7Hz, 1H), 5.74 (dd, J = 8.2 Hz, 1.84 Hz, 1H), 4.93 (s, 1H), 2.83 (s, 6H), 2.28 (s, 3H), 2.10 (s, 3H); ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 152.9, 150.9, 146.1, 131.4, 130.9, 130.5, 129.3, 127.3, 121.7, 108.4 (t, J = 248.5 Hz), 97.3, 85.8, 39.5 (2C), 20.9, 18.0; 19 F 1 H 19 NMR (376 MHz, CDCl₃) δ -103.31 (s, 2F). HRMS (ESI): m/z [M+H⁺] calcd for C₁₆H₂₀F₂N₃⁺: 292.1620, found: 292.1617.

(E)-1-(Difluoromethyl)-2-((2,4-difluorophenyl)imino)-4-(N,N-dimethylamino)-1,2 -dihydropyridine (3qa). The title compound was prepared according to Procedure Representative except that 2-bromo-*N*-(2,4-fluorophenyl)-2,2-difluoroacetamide instead of was used 2-bromo-2,2-difluoro-N-phenylacetamide. The crude product was purified by silica gel column chromatography (DCM/EtOAc = 10:1) to give the desired product as yellow oil (110 mg, 74% yield). H NMR (400 MHz, CDCl₃) δ 8.01 (t, J = 61.2 Hz, 1H), 7.20 (d, J = 8.2 Hz, 1H), 6.93 (dd, J = 15.2, 8.6 Hz, 1H), 6.86 – 6.73 (m, 2H), 5.83 (d, J = 8.2 Hz, 1H), 4.92 (s, 1H), 2.88 (s, 6H); ${}^{13}C\{{}^{1}H\}$ NMR (101 MHz, CDCl₃) δ 157.9 (dd, J = 242.24 Hz, 10.9 Hz), 154.9 (dd, J = 247.51 Hz, 11.9 Hz), 153.6, 153.0, 134.2 (dd, J = 127.76 Hz, 3.35 Hz), 129.4 (t, J = 3.6 Hz), 125.5 (dd, J = 9.0,

4.3 Hz), 111.3 (dd, J = 21.4, 3.7 Hz), 108.3 (t, J = 249.6 Hz), 104.4 (t, J = 25.2 Hz), 97.9, 85.72, 39.5 (2C); ¹⁹F{¹H} NMR (376 MHz, CDCl₃) δ -102.96 (s, 2F), -119.86 (s, 1F), -120.89 (s, 1F). HRMS (ESI): m/z [M+H⁺] calcd for C₁₄H₁₄F₄N₃⁺: 300.1118, found: 300.1106.

(E)-1-(Difluoromethyl)-2-(phenylimino)-4-(methylamino)-1,2-dihydropyridine

(3ab). The title compound was prepared according to *Representative Procedure I* except that 4-(methylamino)pyridine was used instead of 4-(dimethylamino)pyridine. The crude product was purified by silica gel column chromatography (DCM/EtOAc = 10:1) to give the desired product as yellow oil (83 mg, 67% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.90 (t, J = 61.2 Hz, 1H), 7.26 – 7.17 (m, 2H), 7.04 (d, J = 7.8 Hz, 1H), 6.90 (t, J = 7.4 Hz, 1H), 6.85 (d, J = 7.7 Hz, 2H), 5.40 (d, J = 7.8 Hz, 1H), 5.10 (s, 1H), 4.18 (s, 1H), 2.56 (d, J = 4.9 Hz, 3H); ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 152.6, 152.1, 150.2, 129.4 (2C), 129.3, 122.7 (2C), 121.9, 108.4 (t, J = 249.8 Hz), 100.5, 84.1, 29.6; ¹⁹F{¹H} NMR (376 MHz, CDCl₃) δ -102.77 (s, 2F). HRMS (ESI): m/z [M+H⁺] calcd for C₁₃H₁₄F₂N₃⁺: 250.1150, found: 250.1156.

(E)-1-(Difluoromethyl)-2-(phenylimino)-4-(phenylamino)-1,2-dihydropyridine

(3ac). The title compound was prepared according to *Representative Procedure I* except that 4-(phenylamino)pyridine was used instead of 4-(dimethylamino)pyridine. The crude product was purified by silica gel column chromatography (DCM/EtOAc = 10:1) to give the desired product as yellow oil (98 mg, 63% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.86 (t, J = 61.1 Hz, 1H), 7.24 – 7.14 (m, 4H), 7.11 (d, J = 7.8 Hz, 1H), 6.99 (t, J = 7.4 Hz, 1H), 6.92 (d, J = 7.8 Hz, 2H), 6.87 (t, J = 7.4 Hz, 1H), 6.79

(d, J = 7.7 Hz, 2H), 5.90 (s, 1H), 5.69 – 5.59 (m, 2H); $^{13}C\{^{1}H\}$ NMR (101 MHz, CDCl₃) δ 151.8, 150.1, 148.9, 138.8, 130.1, 129.5 (2C), 129.3 (2C), 124.6, 122.5 (2C), 122.1 (3C), 108.2 (t, J = 249.3 Hz), 100.0, 89.5; $^{19}F\{^{1}H\}$ NMR (376 MHz, CDCl₃) δ –103.07 (s, 2F). HRMS (ESI): m/z [M+H⁺] calcd for $C_{18}H_{16}F_{2}N_{3}^{+}$: 312.1307, found: 312.1311.

(E)-1-(Difluoromethyl)-2-(phenylimino)-4-(diethylamino)-1,2-dihydropyridine

(3ad). The title compound was prepared according to *Representative Procedure I* except that 4-(diethylamino)pyridine was used instead of 4-(dimethylamino)pyridine. The crude product was purified by silica gel column chromatography (DCM/EtOAc = 10:1) to give the desired product as yellow oil (102 mg, 70% yield). ¹H NMR (400 MHz, CDCl₃) δ 8.01 (t, J = 60.7 Hz, 1H), 7.25 – 7.16 (m, 3H), 6.95 – 6.87 (m, 3H), 5.79 (d, J = 7.8 Hz, 1H), 5.21 (s, 1H), 3.12 (q, J = 6.7 Hz, 4H), 1.00 (t, J = 6.7 Hz, 6H); ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 152.0, 151.8, 148.8, 130.2, 129.4 (2C), 123.0 (2C), 122.2, 108.5 (t, J = 251.6 Hz), 98.6, 85.8, 44.6 (2C), 12.9 (2C); ¹⁹F{¹H} NMR (376 MHz, CDCl₃) δ -102.15 (s, 2F). HRMS (ESI): m/z [M+H⁺] calcd for C₁₆H₂₀F₂N₃⁺: 292.1620, found: 292.1625.

(E)-1-(Difluoromethyl)-2-(phenylimino)-4-(dibutylamino)-1,2-dihydropyridine

(3ae). The title compound was prepared according to *Representative Procedure I* except that 4-(dibutylamino)pyridine was used instead of 4-(dimethylamino)pyridine. The crude product was purified by silica gel column chromatography (DCM/EtOAc = 10:1) to give the desired product as yellow oil (104 mg, 60% yield). ¹H NMR (400 MHz, CDCl₃) δ 8.15 (t, J = 60.0 Hz, 1H), 7.34 (d, J = 8.0 Hz, 1H), 7.28 – 7.16 (m, 2H), 7.06 – 6.92 (m, 3H), 5.96 (d, J = 8.0 Hz, 1H), 5.28 (s, 1H), 3.08 (t, J = 7.1 Hz,

4H), 1.45 - 1.32 (m, 4H), 1.22 - 1.08 (m, 4H), 0.79 (t, J = 7.1 Hz, 6H); ${}^{13}C\{{}^{1}H\}$ NMR (101 MHz, CDCl₃) δ 153.0, 151.9, 146.1, 130.8, 129.5 (2C), 123.5 (2C), 123.5, 108.8 (t, J = 253.3 Hz), 100.0, 87.0, 50.9 (2C), 29.6 (2C), 20.0 (2C), 13.8 (2C); ${}^{19}F\{{}^{1}H\}$ NMR (376 MHz, CDCl₃) δ -101.03 (s, 2F). HRMS (ESI): m/z [M+H⁺] calcd for $C_{20}H_{28}F_{2}N_{3}^{+}$: 348.2246, found: 348.2240.

(E)-1-(Difluoromethyl)-2-(phenylimino)-4-(methylphenylamino)-1,2-dihydropyri

dine (3af). The title compound was prepared according to Representative Procedure I except that 4-(methylphenylamino)pyridine was used instead of 4-(dimethylamino)pyridine. The crude product was purified by silica gel column chromatography (DCM/EtOAc = 10:1) to give the desired product as yellow oil (83 mg, 51% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.87 (t, J = 61.3 Hz, 1H), 7.28 (t, J =7.4 Hz, 2H), 7.24 - 7.12 (m, 3H), 7.01 (d, J = 7.7 Hz, 2H), 6.93 - 6.83 (m, 4H), 5.36-5.30 (m, 2H), 2.97 (s, 3H); ${}^{13}C{}^{1}H$ } NMR (101 MHz, CDCl₃) δ 152.1, 151.9, 150.7, 145.5, 129.7 (2C), 129.4 (2C), 128.5, 126.9, 126.7, 122.5 (3C), 121.8, 108.2 (t, J =249.5 Hz), 99.7, 88.0, 40.1; ${}^{19}F\{{}^{1}H\}$ NMR (376 MHz, CDCl₃) δ -103.17 (s, 2F). HRMS (ESI): m/z [M+H⁺] calcd for $C_{19}H_{18}F_2N_3^+$: 326.1463, found: 326.1463.

(E)-1-(Difluoromethyl)-2-(phenylimino)-4-(pyrrolidin-1-yl)-1,2-dihydropyridine

(3ag). The title compound was prepared according to *Representative Procedure I* except that 4-(pyrrolidin-1-yl)pyridine was used instead of 4-(dimethylamino)pyridine. The crude product was purified by silica gel column chromatography (DCM/EtOAc = 10:1) to give the desired product as yellow oil (81 mg, 56% yield). ¹H NMR (400

MHz, CDCl₃) δ 8.00 (t, J = 61.1 Hz, 1H), 7.20 (t, J = 7.5 Hz, 2H), 7.12 (d, J = 8.0 Hz, 1H), 6.90 – 6.83 (m, 3H), 5.66 (d, J = 8.0 Hz, 1H), 5.04 (s, 1H), 3.25 – 2.97 (m, 4H), 1.90 – 1.76 (m, 4H). 13 C{ 1 H} NMR (101 MHz, CDCl₃) δ 152.1, 150.8, 150.4, 129.6, 129.3 (2C), 122.7 (2C), 121.6, 108.4 (t, J = 249.1 Hz), 98.9, 85.1, 47.5 (2C), 25.2 (2C); 19 F{ 1 H} NMR (376 MHz, CDCl₃) δ -102.58 (s, 2F). HRMS (ESI): m/z [M+H+] calcd for C₁₆H₁₈F₂N₃+: 290.1463, found: 290.1465.

(E)-1-(Difluoromethyl)-2-(phenylimino)-4-(piperidin-1-yl)-1,2-dihydropyridine

(3ah). The title compound was prepared according to *Representative Procedure I* except that 4-(piperidin-1-yl)pyridine was used instead of 4-(dimethylamino)pyridine. The crude product was purified by silica gel column chromatography (DCM/EtOAc = 10:1) to give the desired product as yellow oil (89 mg, 58% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.91 (t, J = 61.2 Hz, 1H), 7.21 (t, J = 7.9 Hz, 2H), 7.09 (d, J = 8.0 Hz, 1H), 6.93 – 6.79 (m, 3H), 5.75 (d, J = 8.0 Hz, 1H), 5.34 (s, 1H), 3.12 – 2.96 (m, 4H), 1.56 – 1.41 (m, 6H); ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 153.7, 152.1, 129.4 (3C), 122.6 (2C), 121.8, 108.3 (t, J = 249.0 Hz), 98.8, 88.2, 47.7 (2C), 25.4 (2C), 24.3; ¹⁹F{¹H} NMR (376 MHz, CDCl₃) δ -101.60 (s, 2F). HRMS (ESI): m/z [M+H⁺] calcd for C₁₇H₂₀F₂N₃⁺: 304.1620, found: 304.1625.

(E)-1-(Difluoromethyl)-2-(phenylimino)-4-(4-morpholinyl)-1,2-dihydropyridine

(3ai). The title compound was prepared according to *Representative Procedure I* except that 4-(4-morpholinyl)pyridine was used instead of 4-(dimethylamino)pyridine. The crude product was purified by silica gel column chromatography (DCM/EtOAc =

10:1) to give the desired product as yellow oil (68 mg, 45% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.87 (t, J = 61.1 Hz, 1H), 7.21 (t, J = 7.6 Hz, 2H), 7.11 (d, J = 8.1 Hz, 1H), 6.90 (t, J = 7.3 Hz, 1H), 6.82 (d, J = 7.6 Hz, 2H), 5.70 (d, J = 8.0 Hz, 1H), 5.33 (s, 1H), 3.67 – 3.58 (m, 4H), 3.04 – 2.95 (m, 4H); ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 153.9, 151.6, 150.1, 129.7, 129.5 (2C), 122.4 (2C), 122.0, 108.2 (t, J = 249.2 Hz), 98.0, 89.2, 66.3 (2C), 46.5 (2C); ¹⁹F{¹H} NMR (376 MHz, CDCl₃) δ -103.27 (s, 2F). HRMS (ESI): m/z [M+H⁺] calcd for C₁₆H₁₈F₂N₃O⁺: 306.1412, found: 306.1413.

6. Representative procedure II and characterization of 4b-4l

(E)-2-((4-Bromophenyl)imino)-1-(difluoromethyl)-4-(N,N-dimethylamino)-1,2-di Representative hydropyridine **Procedure** II. (3da). mixture 2-bromo-2,2-difluoro-N-phenylacetamide (1a) (125 mg, 0.5 mmol), CuI (10.0 mg, 0.05 mmol), pyridine (8 µL, 0.1 mmol), and 4-dimethylaminopyridine (2a) (93 mg, 0.75 mmol) in DMSO (1.0 mL) was stirred at 110 °C (oil bath) for 20 hrs under O₂ atmosphere. The reaction was quenched with ethyl acetate and water, and then extracted with ethyl acetate (3 x 10 mL). The combined organic layers were dried over anhydrous Na₂SO₄. After filtration, the filtrate was concentrated in vacuum and the residue was purified by silica gel column chromatography (DCM/EtOAc = 10/1) to give the desired product as yellow oil (85 mg, 50% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.93 (t, J = 61.3 Hz, 1H), 7.35 (d, J = 8.6 Hz, 2H), 7.16 (d, J = 8.2 Hz, 1H), 6.79 (d, J = 8.6 Hz, 2H), 5.78 (dd, J = 8.2, 2.6 Hz, 1H), 5.12 (d, J = 2.6 Hz, 1H), 2.87(s, 6H); ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 153.4, 152.2, 150.4, 132.3 (2C), 129.5, 124.5 (2C), 113.8, 108.2 (t, J = 249.0 Hz), 97.6, 85.3, 39.56 (2C). The NMR data of 3da strategy are the same those prepared by this as by 2-bromo-N-(4-bromophenyl)-2,2-difluoroacetamide according to Representative *Procedure I* and its structure was further confirmed by X-ray single crystal analysis.

(*E*)-1-(Difluoromethyl)-2-((2,4-dibromophenyl)imino)-4-(dimethylamino)-1,2-dih ydropyridine (4b). The title compound was prepared according to *Representative Procedure II* except that 2-bromo-*N*-(4-bromophenyl)-2,2-difluoroacetamide was used instead of 2-bromo-2,2-difluoro-*N*-phenylacetamide. The crude product was purified by silica gel column chromatography (DCM/EtOAc = 10:1) to give the desired product as yellow oil (92 mg, 44% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.99 (t, J = 61.3 Hz, 1H), 7.69 (s, 1H), 7.30 (d, J = 8.4 Hz, 1H), 7.22 (d, J = 8.1 Hz, 1H), 6.86 (d, J = 8.4 Hz, 1H), 5.83 (d, J = 8.1 Hz, 1H), 4.88 (s, 1H), 2.89 (s, 6H); ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 153.7, 151.8, 148.4, 135.4, 131.2, 129.5, 125.0, 119.4, 113.8, 108.3 (t, J = 249.6 Hz), 97.9, 85.4, 39.7 (2C); ¹⁹F{¹H} NMR (376 MHz, CDCl₃) δ -103.01 (s, 2F). HRMS (ESI): m/z [M+H⁺] calcd for C₁₄H₁₄Br₂F₂N₃⁺: 419.9517, found: 419.9525.

(*E*)-1-(Difluoromethyl)-2-((2-bromo-4-methylphenyl)imino)-4-(dimethylamino)-1, 2-dihydropyridine (4c). The title compound was prepared according to *Representative Procedure II* except that 2-bromo-2,2-difluoro-*N*-(*p*-tolyl)acetamide was used instead of 2-bromo-2,2-difluoro-*N*-phenylacetamide. The crude product was purified by silica gel column chromatography (DCM/EtOAc = 10:1) to give the desired product as yellow oil (76 mg, 43% yield). ¹H NMR (400 MHz, CDCl₃) δ 8.03 (t, *J* = 61.4 Hz, 1H), 7.39 (s, 1H), 7.18 (d, *J* = 8.0 Hz, 1H), 7.01 (d, *J* = 7.9 Hz, 1H), 6.85 (d, *J* = 7.9 Hz, 1H), 5.79 (d, *J* = 8.0 Hz, 1H), 4.91 (s, 1H), 2.85 (s, 6H), 2.28 (s, 3H); ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 153.2, 151.9, 146.2, 133.5, 132.4, 129.2, 129.0, 123.4, 118.1, 108.4 (t, *J* = 250.1 Hz), 97.6, 85.6, 39.5 (2C), 20.5; ¹⁹F{¹H}

NMR (376 MHz, CDCl₃) δ -102.99 (s, 2F). HRMS (ESI): m/z [M+H⁺] calcd for C₁₅H₁₇BrF₂N₃⁺: 356.0568, found: 356.0568.

 $(E)\hbox{-1-(Difluoromethyl)-2-((2-bromo-4-pentylphenyl)imino)-4-(dimethylamino)-1},$

2-dihydropyridine (4d). The title compound was prepared according to Representative Procedure IIexcept that 2-bromo-2,2-difluoro-*N*-(*p*-pentylphenyl)acetamide used instead of was 2-bromo-2,2-difluoro-N-phenylacetamide. The crude product was purified by silica gel column chromatography (DCM/EtOAc = 10:1) to give the desired product as yellow oil (86 mg, 42% yield). ¹H NMR (400 MHz, CDCl₃) δ 8.02 (t, J = 61.4 Hz, 1H), 7.38 (s, 1H), 7.18 (d, J = 8.2 Hz, 1H), 7.01 (d, J = 8.0 Hz, 1H), 6.87 (d, J = 8.0Hz, 1H), 5.77 (d, J = 8.2 Hz, 1H), 4.93 (s, 1H), 2.86 (s, 6H), 2.52 (t, J = 7.6 Hz, 2H), 1.64 - 1.53 (m, 2H), 1.37 - 1.24 (m, 4H), 0.87 (t, J = 6.4 Hz, 3H); ${}^{13}C\{{}^{1}H\}$ NMR (101) MHz, CDCl₃) δ 153.2, 151.8, 146.4, 137.6, 132.9, 129.3, 128.4, 123.3, 118.1, 108.4 (t, J = 249.0 Hz), 97.6, 85.7, 39.5 (2C), 35.1, 31.5, 31.2, 22.7, 14.2; ¹⁹F{¹H} NMR (376) MHz, CDCl₃) δ -103.06 (s, 2F). HRMS (ESI): m/z [M+H⁺] calcd for C₁₉H₂₅BrF₂N₃⁺: 412.1194, found: 412.1190.

(*E*)-1-(Difluoromethyl)-2-((2-bromo-4-(*tert*-butyl)phenyl)imino)-4-(dimethylamin o)-1,2-dihydropyridine (4e). The title compound was prepared according to *Representative Procedure II* except that 2-bromo-N-(4-(*tert*-butyl)phenyl)-2,2-difluoroacetamide was used instead of 2-bromo-2,2-difluoro-N-phenylacetamide. The crude product was purified by silica gel column chromatography (DCM/EtOAc = 10:1) to give the desired product as yellow oil (115 mg, 58% yield). ¹H NMR (400 MHz, CDCl₃) δ 8.04 (t, J = 61.4 Hz,

1H), 7.56 (s, 1H), 7.24 – 7.14 (m, 2H), 6.90 (d, J = 8.2 Hz, 1H), 5.79 (d, J = 8.0 Hz, 1H), 4.99 (s, 1H), 2.86 (s, 6H), 1.30 (s, 9H); $^{13}C\{^{1}H\}$ NMR (101 MHz, CDCl₃) δ 153.3, 151.6, 146.0, 145.8, 130.0, 129.2, 125.3, 122.8, 118.1, 108.4 (t, J = 250.0 Hz), 97.6, 85.6, 39.5 (2C), 34.3, 31.5 (3C); $^{19}F\{^{1}H\}$ NMR (376 MHz, CDCl₃) δ -103.02 (s, 2F). HRMS (ESI): m/z [M+H⁺] calcd for $C_{18}H_{23}BrF_{2}N_{3}^{+}$: 398.1038, found: 398.1041.

(E)-1-(Difluoromethyl)-2-((2-bromo-4-methoxyphenyl)imino)-4-(dimethylamino)

-1,2-dihydropyridine (4f). The title compound was prepared according to Procedure IIRepresentative except that 2-bromo-2,2-difluoro-*N*-(4-methoxyphenyl)acetamide was instead of used 2-bromo-2,2-difluoro-N-phenylacetamide. The crude product was purified by silica gel column chromatography (DCM/EtOAc = 10:1) to give the desired product as yellow oil (74 mg, 40% yield). ¹H NMR (400 MHz, CDCl₃) δ 8.01 (t, J = 61.4 Hz, 1H), 7.17 (d, J = 8.0 Hz, 1H), 7.14 (s, 1H), 6.91 - 6.75 (m, 2H), 5.71 (d, J = 8.1 Hz, 1H), 4.80 (s, 1H), 3.706 (s, 3H), 2.85 (s, 6H); ${}^{13}C\{{}^{1}H\}$ NMR (101 MHz, CDCl₃) δ 154.9, 153.2, 152.3, 142.4, 129.3, 124.0, 118.3, 118.1, 114.7, 108.3 (t, J = 249.2 Hz), 97.5, 85.7, 55.8, 39.5 (2C); ${}^{19}F\{{}^{1}H\}$ NMR (376 MHz, CDCl₃) δ -103.04 (s, 2F). HRMS (ESI): m/z [M+H⁺] calcd for $C_{15}H_{17}BrF_2N_3O^+$: 372.0518, found: 372.0517.

(E)-1-(Difluoromethyl)-2-((4-bromo-3-methylphenyl)imino)-4-(dimethylamino)-1

,2-dihydropyridine (4g). The title compound was prepared according to *Representative Procedure II* except that 2-bromo-2,2-difluoro-*N*-(*m*-methylphenyl)acetamide was used instead of 2-bromo-2,2-difluoro-*N*-phenylacetamide. The crude product was purified by silica gel column chromatography (DCM/EtOAc = 10:1) to give the desired product as yellow oil (81 mg, 46% yield). 1 H NMR (400 MHz, CDCl₃) δ 7.93 (t, J = 61.3 Hz,

1H), 7.37 (d, J = 8.3 Hz, 1H), 7.16 (d, J = 8.0 Hz, 1H), 6.81 (s, 1H), 6.63 (d, J = 8.3 Hz, 1H), 5.77 (d, J = 8.0 Hz, 1H), 5.14 (s, 1H), 2.86 (s, 6H), 2.33 (s, 3H); 13 C{ 1 H} NMR (101 MHz, CDCl₃) δ 153.3, 152.1, 150.4, 138.5, 132.9, 129.4, 125.3, 121.6, 116.4, 108.2 (t, J = 248.9 Hz), 97.6, 85.3, 39.5 (2C), 23.0; 19 F{ 1 H} NMR (376 MHz, CDCl₃) δ -103.07 (s, 2F). HRMS (ESI): m/z [M+H+] calcd for C₁₅H₁₇BrF₂N₃+: 356.0568, found: 356.0568.

(E)-1-(Difluoromethyl)-2-((4-bromo-3-methoxyphenyl)imino)-4-(dimethylamino)

-1,2-dihydropyridine (4h). The title compound was prepared according to Representative Procedure IIexcept that 2-bromo-2,2-difluoro-*N*-(*m*-methoxyphenyl)acetamide instead was used of 2-bromo-2,2-difluoro-N-phenylacetamide. The crude product was purified by silica gel column chromatography (DCM/EtOAc = 10:1) to give the desired product as yellow oil (66 mg, 36% yield). ¹H NMR (400 MHz, CDCl₃) δ 8.03 (t, J = 61.2 Hz, 1H), 7.42 (d, J = 8.7 Hz, 1H), 7.22 (d, J = 8.2 Hz, 1H), 6.57 (s, 1H), 6.43 (d, J = 8.7Hz, 1H), 5.83 (d, J = 8.1 Hz, 1H), 4.94 (s, 1H), 3.75 (s, 3H), 2.88 (s, 6H); ${}^{13}C\{{}^{1}H\}$ NMR (101 MHz, CDCl₃) δ 156.6, 153.9, 152.2, 139.5, 133.5, 129.9, 116.8, 115.9, 108.3 (t, J = 250.3 Hz), 107.3, 98.4, 85.9, 56.2, 39.7 (2C); ${}^{19}\text{F}\{{}^{1}\text{H}\}$ NMR (376 MHz, CDCl₃) δ -102.50 (s, 2F). HRMS (ESI): m/z [M+H⁺] calcd for C₁₅H₁₇BrF₂N₃O⁺: 372.0518, found: 372.0517.

(E)-1-(Difluoromethyl)-2-((4-bromo-2-methylphenyl)imino)-4-(dimethylamino)-1,2-dihydropyridine (4i). The title compound was prepared according to Representative Procedure II except that

2-bromo-2,2-difluoro-*N*-(*o*-methylphenyl)acetamide was used instead of 2-bromo-2,2-difluoro-*N*-phenylacetamide. The crude product was purified by silica gel column chromatography (DCM/EtOAc = 10:1) to give the desired product as yellow oil (122 mg, 69% yield). 1 H NMR (400 MHz, CDCl₃) δ 7.98 (t, J = 61.4 Hz, 1H), 7.29 (s, 1H), 7.22 – 7.13 (m, 2H), 6.71 (d, J = 8.3 Hz, 1H), 5.76 (d, J = 8.1 Hz, 1H), 4.84 (s, 1H), 2.85 (s, 6H), 2.09 (s, 3H); 13 C{ 1 H} NMR (101 MHz, CDCl₃) δ 153.2, 151.0, 148.5, 133.3, 133.2, 129.5, 129.3, 123.6, 113.9, 108.3 (t, J = 248.9 Hz), 97.4, 85.2, 39.6 (2C), 17.9; 19 F{ 1 H} NMR (376 MHz, CDCl₃) δ -103.43 (s, 2F). HRMS (ESI): m/z [M+H⁺] calcd for C₁₅H₁₇BrF₂N₃⁺: 356.0568, found: 356.0568.

(E)-1-(Difluoromethyl)-2-((4-bromo-2-methoxyphenyl)imino)-4-(dimethylamino)

-1,2-dihydropyridine (4j). The title compound was prepared according to Representative **Procedure** IIexcept that 2-bromo-2,2-difluoro-*N*-(*o*-methoxyphenyl)acetamide instead of was used 2-bromo-2,2-difluoro-N-phenylacetamide. The crude product was purified by silica gel column chromatography (DCM/EtOAc = 10:1) to give the desired product as yellow oil (96 mg, 52% yield). ¹H NMR (400 MHz, CDCl₃) δ 8.02 (t, J = 61.2 Hz, 1H), 7.17 (d, J = 8.2 Hz, 1H), 7.04 - 6.94 (m, 2H), 6.78 (d, J = 8.0 Hz, 1H), 5.79 (d, J= 8.2 Hz, 1H), 4.90 (s, 1H), 3.76 (s, 3H), 2.85 (s, 6H); ${}^{13}C\{{}^{1}H\}$ NMR (101 MHz, CDCl₃) δ 153.2, 153.0, 152.2, 138.9, 129.2, 124.8, 124.2, 115.4, 114.2, 108.3 (t, J =249.2 Hz), 97.7, 86.0, 56.1, 39.6 (2C); ${}^{19}F\{{}^{1}H\}$ NMR (376 MHz, CDCl₃) δ -102.83 (s, 2F). HRMS (ESI): m/z [M+H⁺] calcd for C₁₅H₁₇BrF₂N₃O⁺: 372.0518, found: 372.0517.

(*E*)-1-(Difluoromethyl)-2-((4-bromophenyl)imino)-4-(diethylamino)-1,2-dihydrop yridine (4k). The title compound was prepared according to *Representative Procedure II* except that 4-(diethylamino)pyridine was used instead of 4-(dimethylamino)pyridine. The crude product was purified by silica gel column chromatography (DCM/EtOAc = 10:1) to give the desired product as yellow oil (108 mg, 59% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.93 (t, J = 61.3 Hz, 1H), 7.35 (d, J = 8.0 Hz, 2H), 7.16 (d, J = 8.0 Hz, 1H), 6.79 (d, J = 8.0 Hz, 2H), 5.74 (d, J = 8.0 Hz, 1H), 5.14 (s, 1H), 3.19 (q, J = 7.2 Hz, 4H), 1.08 (t, J = 7.2 Hz, 6H); ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 152.4, 151.3, 150.4, 132.2 (2C), 129.7, 124.6 (2C), 113.6, 108.2 (t, J = 248.8 Hz), 97.6, 84.5, 44.4 (2C), 13.0 (2C); ¹⁹F{¹H} NMR (376 MHz, CDCl₃) δ -103.06 (s, 2F). HRMS (ESI): m/z [M+H⁺] calcd for C₁₆H₁₉BrF₂N₃⁺: 370.0725, found: 370.0727.

(*E*)-1-(difluoromethyl)-2-((4-bromophenyl)imino)-4-(piperidin-1-yl)-1,2-dihydro pyridine (4l). The title compound was prepared according to *Representative Procedure II* except that 4-(piperidin-1-yl)pyridine was used instead of 4-(dimethylamino)pyridine. The crude product was purified by silica gel column chromatography (DCM/EtOAc = 10:1) to give the desired product as yellow oil (91 mg, 48% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.92 (t, J = 61.2 Hz, 1H), 7.36 (d, J = 7.0 Hz, 2H), 7.16 (d, J = 8.0 Hz, 1H), 6.79 (d, J = 8.0 Hz, 2H), 5.83 (d, J = 8.0 Hz, 1H), 5.34 (s, 1H), 3.17 – 3.12 (m, 4H), 1.58 – 1.49 (m, 6H); ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 153.8, 152.3, 138.2, 132.3 (2C), 129.5, 124.5 (2C), 113.9, 108.1 (t, J = 249.2 Hz), 98.8, 87.4, 47.6 (2C), 25.3 (2C), 24.2; ¹⁹F{¹H} NMR (376 MHz, CDCl₃) δ -103.15 (s, 2F). HRMS (ESI): m/z [M+H⁺] calcd for C₁₇H₁₉BrF₂N₃⁺: 382.0725, found: 382.0723.

7. X-Ray crystal structure of 3aa and 3da

(1) X-Ray crystal structure of **3aa** (CCDC 1877511) (50% thermal ellipsoids) Procedure for the recrystallization of **3aa**: To a 0.5 mL glass tube containing **3aa** (10 mg) was added CH₂Cl₂ (0.4 mL) and a clear solution was formed. The above tube was placed in a 10 mL glass sample bottle that contains 5 mL petroleum ether. The sample bottle was sealed with a plastic cap and kept in refrigerator (4 °C). After two days, colorless crystals were produced in the glass tube. These crystals were measured on a Rigaku XtaLAB mini for single crystal XRD to determine the absolute configuration of **3aa**. CCDC 1877511 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

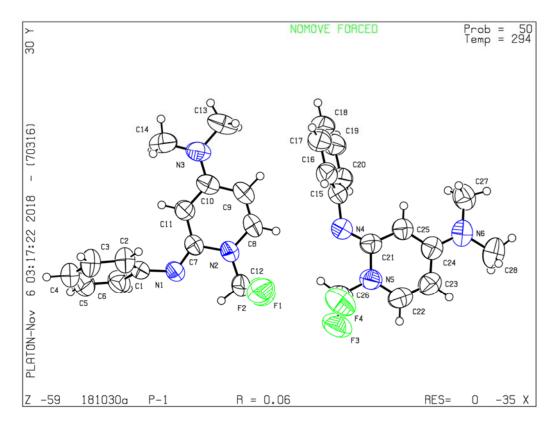


Table 1. Crystal data and structure refinement for 181030A.

Identification code 181030a

Empirical formula C28 H30 F4 N6

Formula weight 526.58
Temperature 294(2) K

Wavelength 0.71073 A

Crystal system, space group TRICLINIC, P-1

Unit cell dimensions a = 9.999(10) A alpha = 95.251(9) deg.

b = 10.196(9) A beta = 108.338(6) deg. c = 14.409(15) A gamma = 99.802(12) deg.

Volume 1357(2) A^3

Z, Calculated density 2, 1.288 Mg/m³

Absorption coefficient 0.098 mm^-1

F(000) 552

Crystal size $0.41 \times 0.24 \times 0.22 \text{ mm}$

Theta range for data collection 3.02 to 27.55 deg

Limiting indices -13 <= h <= 13, -13 <= k <= 13, -18 <= l <= 18

Reflections collected / unique 14384 / 6206 [R(int) = 0.0537]

Completeness to theta = 27.55 99.4 %

Absorption correction Semi-empirical from equivalents

Max. and min. transmission 1.000 and 0.920

Refinement method Full-matrix least-squares on F²

Data / restraints / parameters 6206 / 0 / 347

Goodness-of-fit on F² 1.043

Final R indices [I>2sigma(I)] R1 = 0.0611, wR2 = 0.1734

R indices (all data) R1 = 0.0953, wR2 = 0.2055

Largest diff. peak and hole 0.191 and -0.272 e.A^-3

X-Ray crystal structure of **3da** (CCDC 1880644) (50% thermal ellipsoids)

Procedure for the recrystallization of **3da**: To a 0.5 mL glass tube containing **3da** (10 mg) was added CH₂Cl₂ (0.4 mL) and a clear solution was formed. The above tube was placed in a 10 mL glass sample bottle that contains 5 mL petroleum ether. The sample bottle was sealed with a plastic cap and kept in refrigerator (4 °C). After two days, colorless crystals were produced in the glass tube. These crystals were measured on a Rigaku XtaLAB for single crystal XRD to determine the absolute configuration of **3da**. CCDC 1880644 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data request/cif.

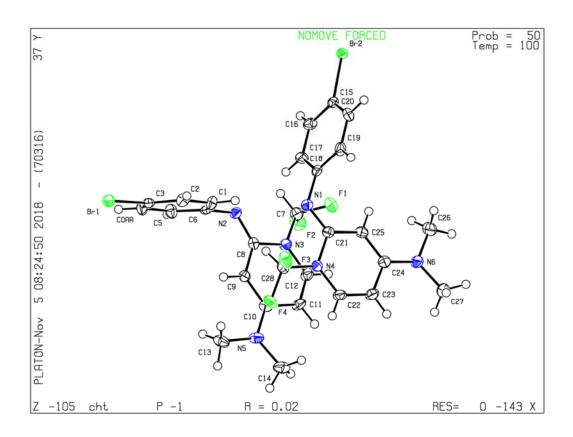


Table 1 Crystal data and structure refinement for CHT.

Identification code	CHT
Empirical formula	$C_{28}H_{28}Br_2F_4N_6$
Formula weight	684.38
Temperature/K	100.00(10)
Crystal system	triclinic
Space group	P-1
a/Å	8.32014(16)
b/Å	9.66755(20)
c/Å	17.7512(4)
α/°	81.8858(17)
β/°	88.0313(16)
γ/°	83.4840(16)
Volume/Å ³	1404.16(5)
Z	2
$\rho_{calc}g/cm^3$	1.619
μ/mm^{-1}	2.943
F(000)	688.0
Crystal size/mm ³	$0.25\times0.15\times0.05$
Radiation	$MoK\alpha (\lambda = 0.71073)$

 2Θ range for data collection/° 4.282 to 52.736

Index ranges $-10 \leqslant h \leqslant 10, -12 \leqslant k \leqslant 12, -22 \leqslant$

 $1 \leq 22$

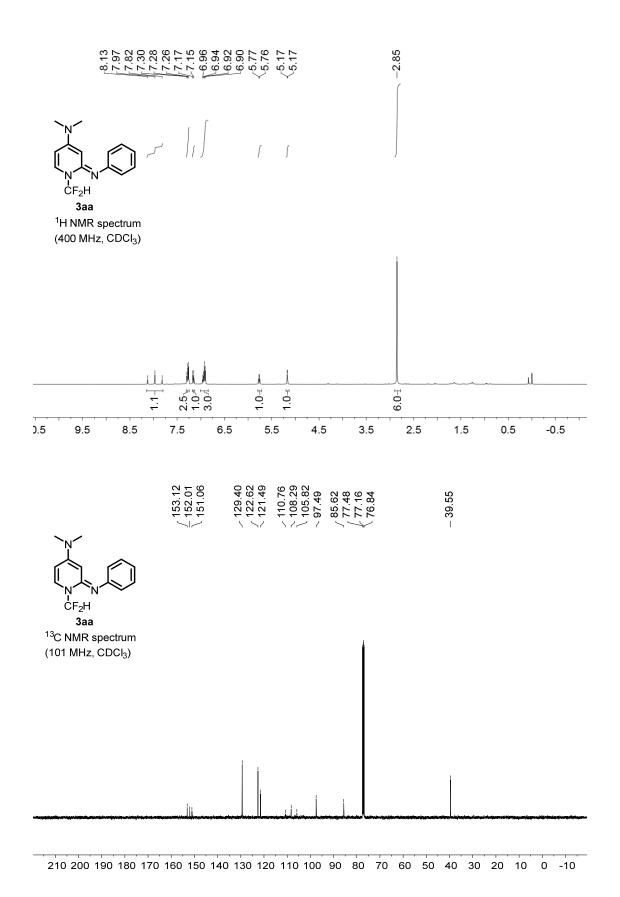
Reflections collected 26735

Independent reflections $5637 [R_{int} = 0.0341, R_{sigma} = 0.0308]$

Data/restraints/parameters 5637/0/365

Goodness-of-fit on F² 1.050

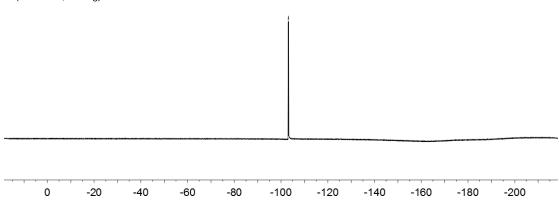
Final R indexes [I>=2 σ (I)] R₁ = 0.0249, wR₂ = 0.0541 Final R indexes [all data] R₁ = 0.0333, wR₂ = 0.0562

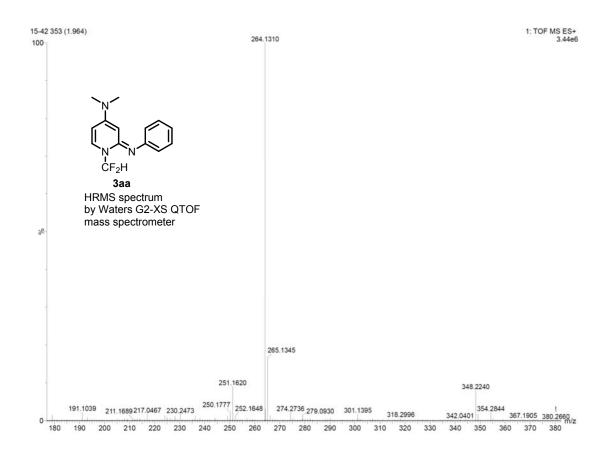

Largest diff. peak/hole / e Å⁻³ 0.39/-0.32

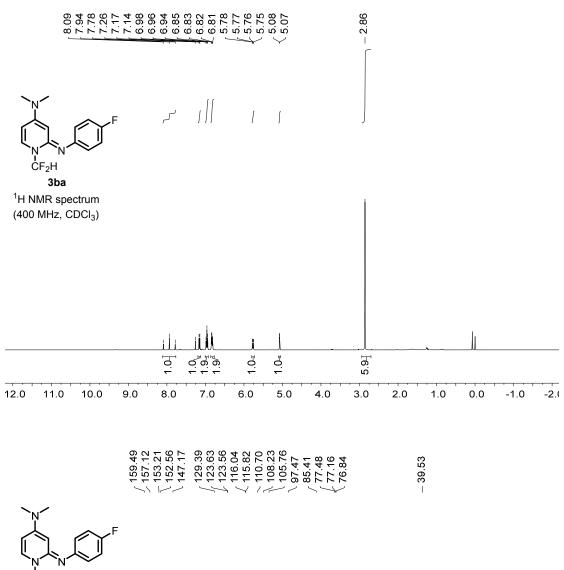
8. References:

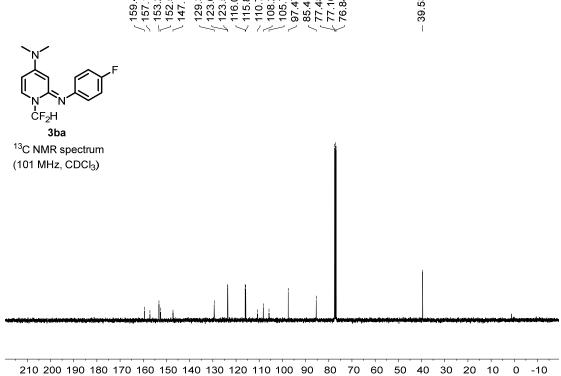
1. Li, Y.; Liu, J.; Zhao, S.; Du, X.; Guo, M.; Zhao, W.; Tang, X.; Wang, G. Copper-Catalyzed Fluoroolefination of Silyl Enol Ethers and Ketones toward the Synthesis of β-Fluoroenones. *Org. Lett.* **2018**, *20*, 917-920.

- 2. Kinens, A.; Balkaitis, S.; Suna, E. Preparative-Scale Synthesis of Vedejs Chiral DMAP Catalysts. *J. Org. Chem.* **2018**, *83*, 12449-12459.
- 3. (a) Beak, P.; Bonham, J. The Deuteration of Some *N*-Methyl-4-pyridones. *J. Am. Chem. Soc.* **1965**, *87*, 3365-3371. (b) Yi, X.; Chen, J.; Xu, X.; Ma, Y. Solvent and Substituent Effects on the Conversion of 4-Methoxypyridines to *N*-Methyl-4-pyridones. *Synth. Commun.* **2017**, *47*, 872-877.
- 4. Ma, X.; Zhou, Y.; Song, Q. Synthesis of β -Aminoenones *via* Cross-Coupling of In-Situ Generated Isocyanides with 1,3-Dicarbonyl Compounds. *Org. Lett.* **2018**, *20*, 4777–4781.

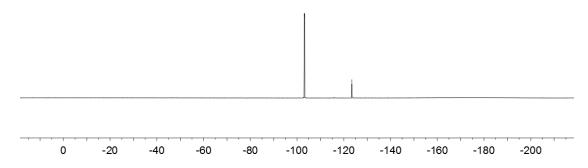

9. ¹H NMR, ¹⁹F NMR, ¹³C NMR, and HRMS spectra.

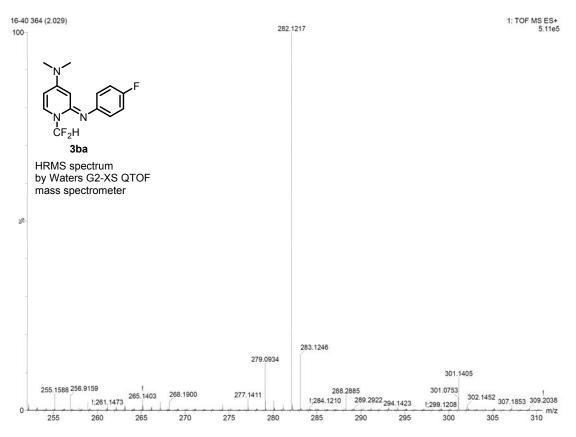


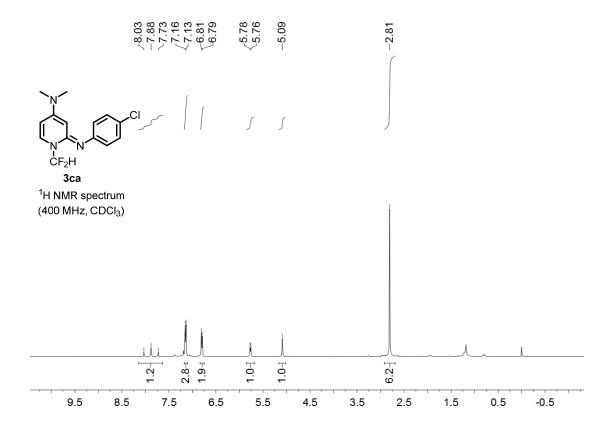


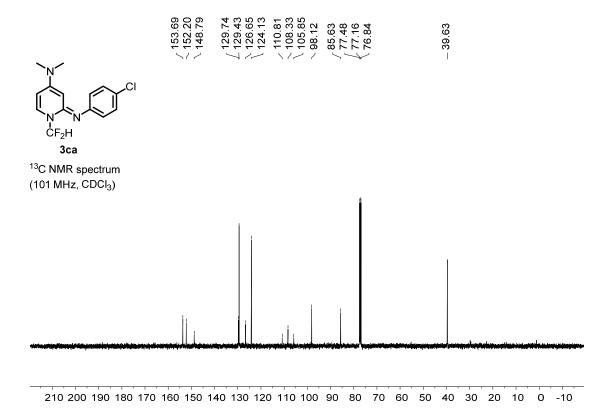


¹⁹F NMR spectrum (376 MHz, CDCl₃)

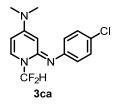


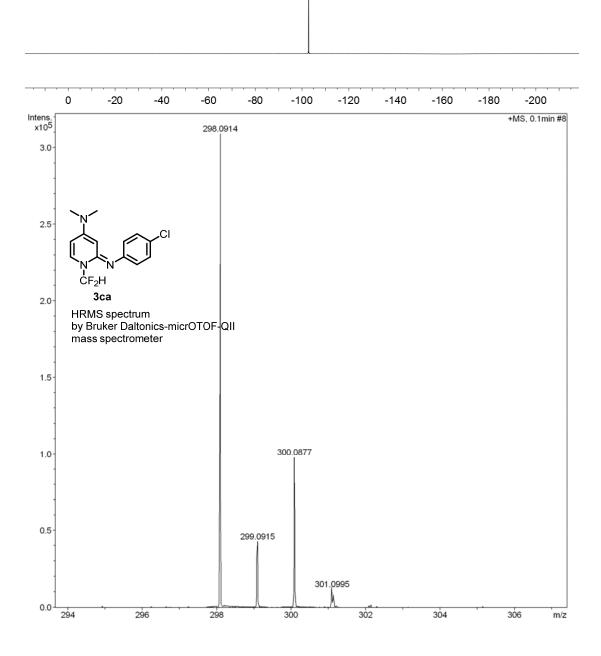


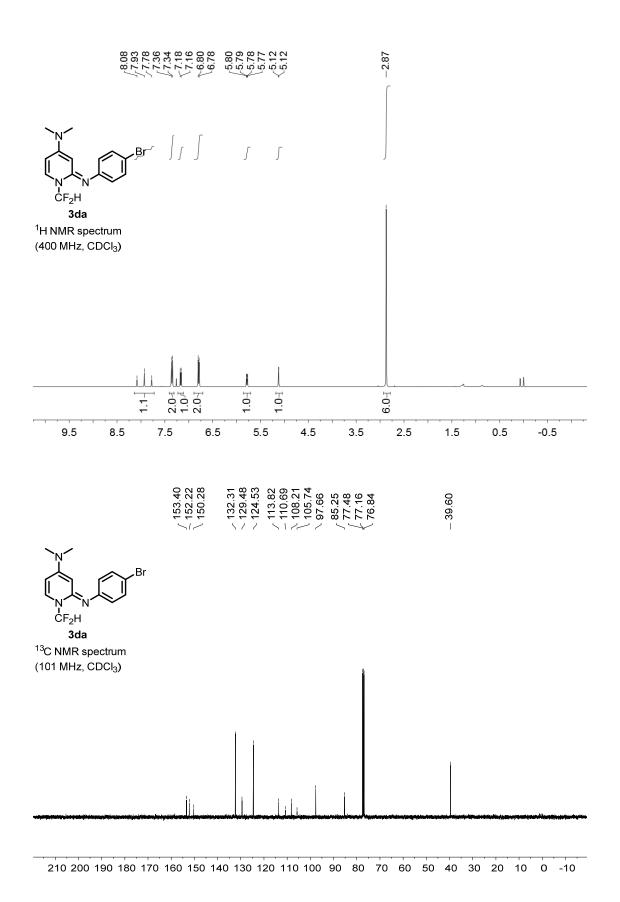


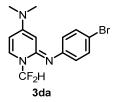


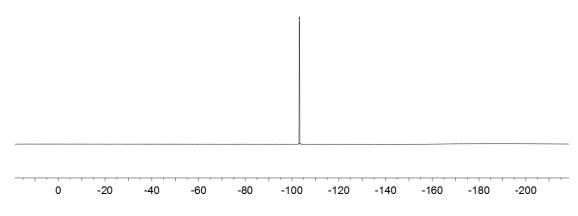
¹⁹F NMR spectrum (376 MHz, CDCl₃)

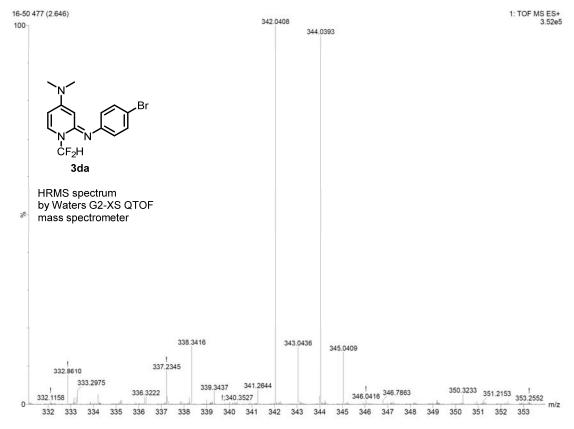


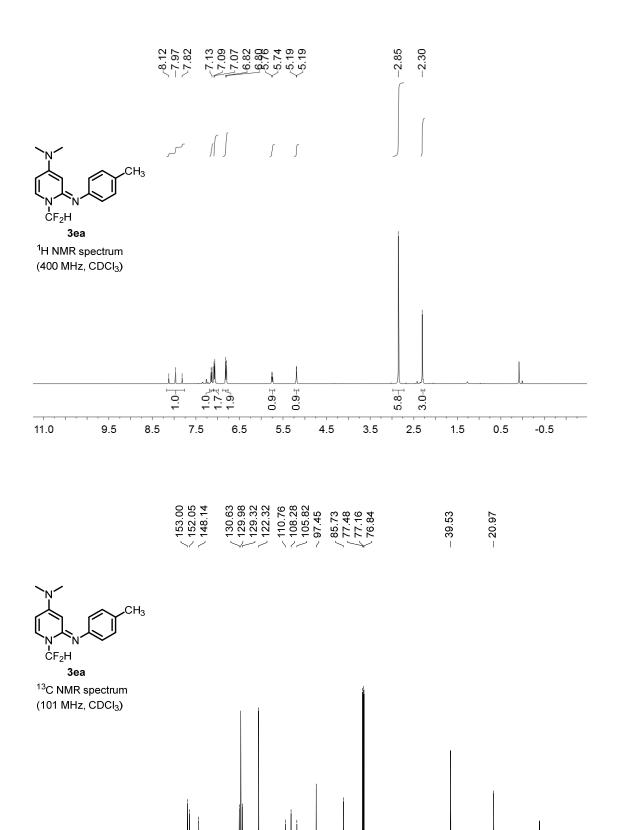


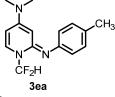


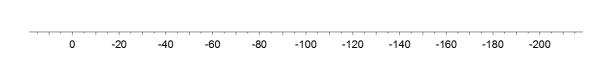


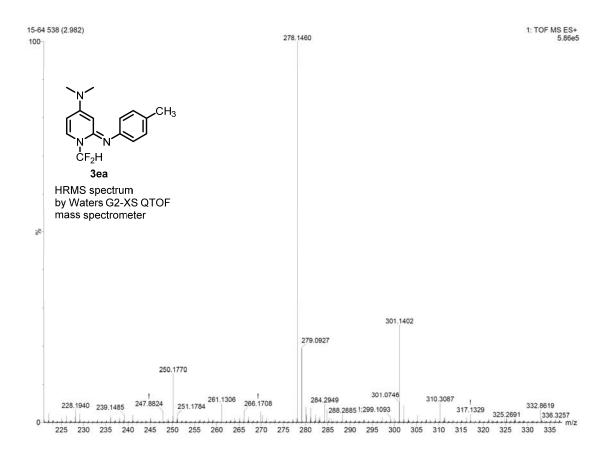


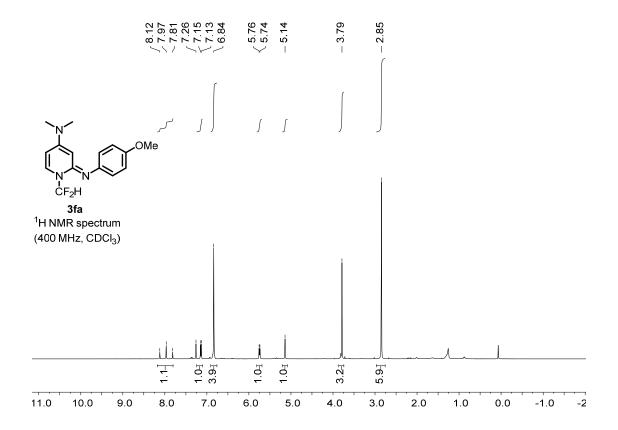


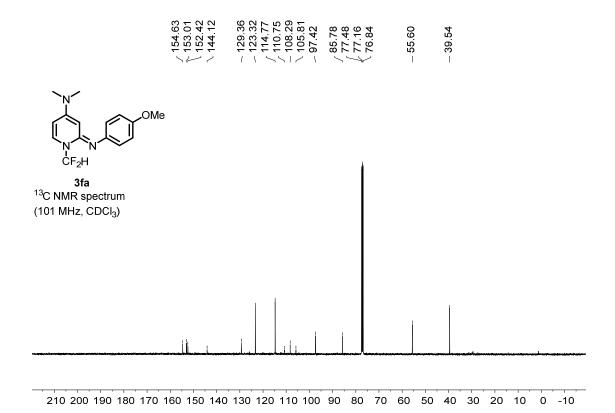


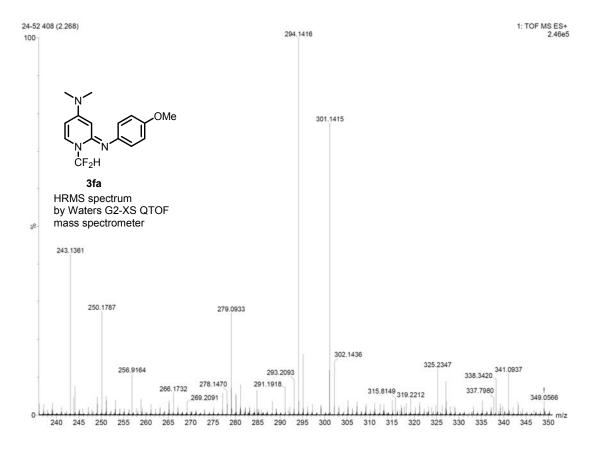


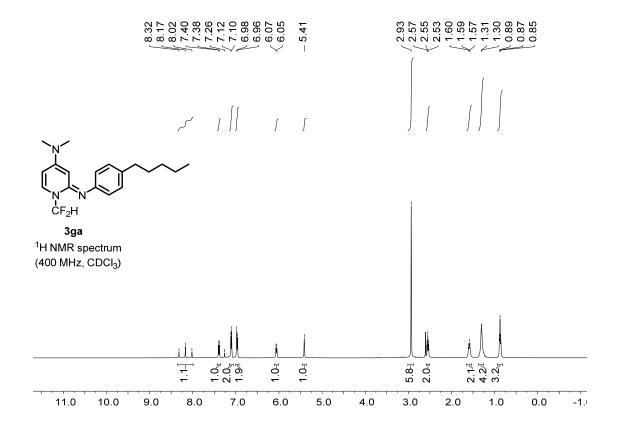


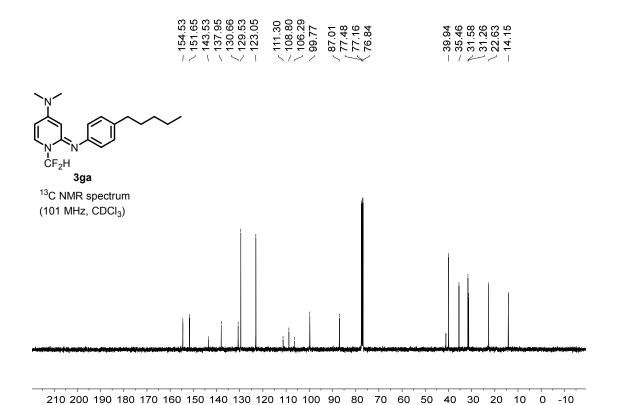



210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10

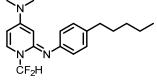


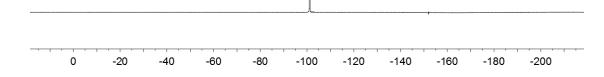


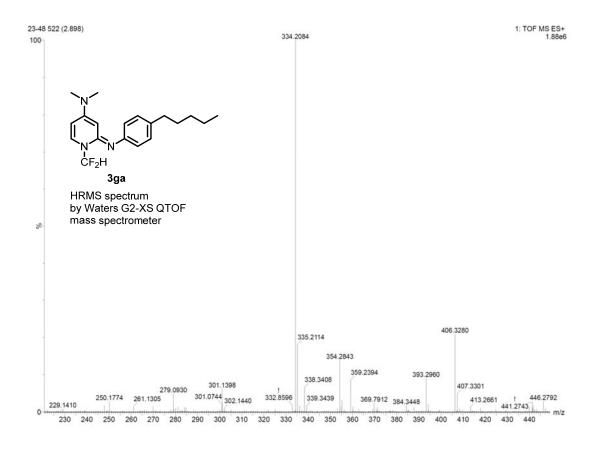


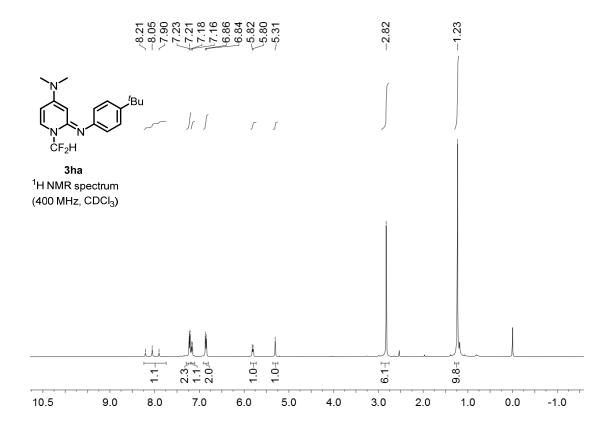


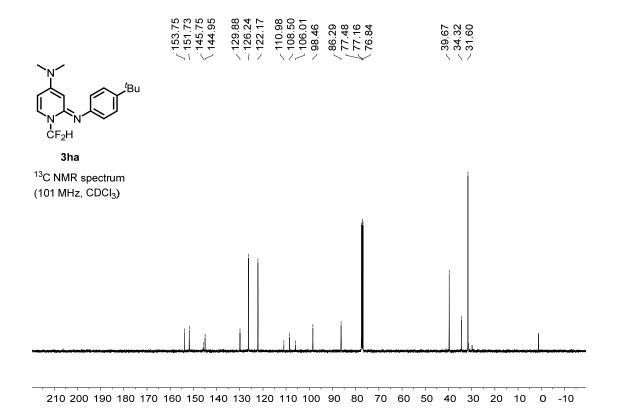
3fa



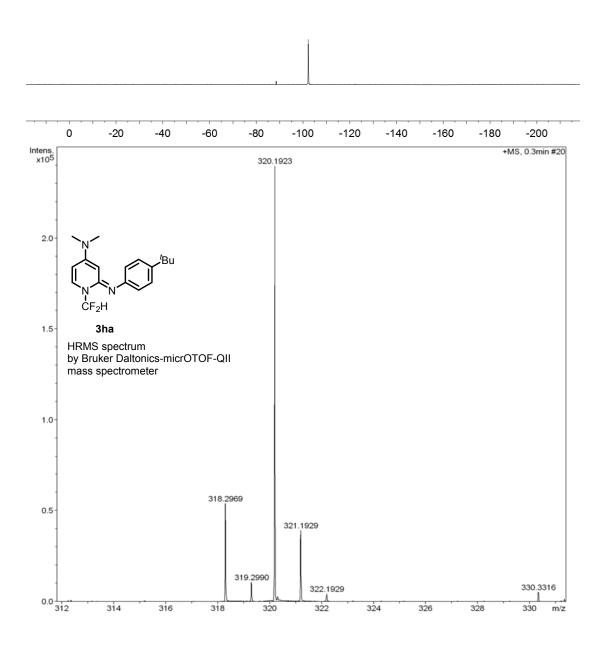


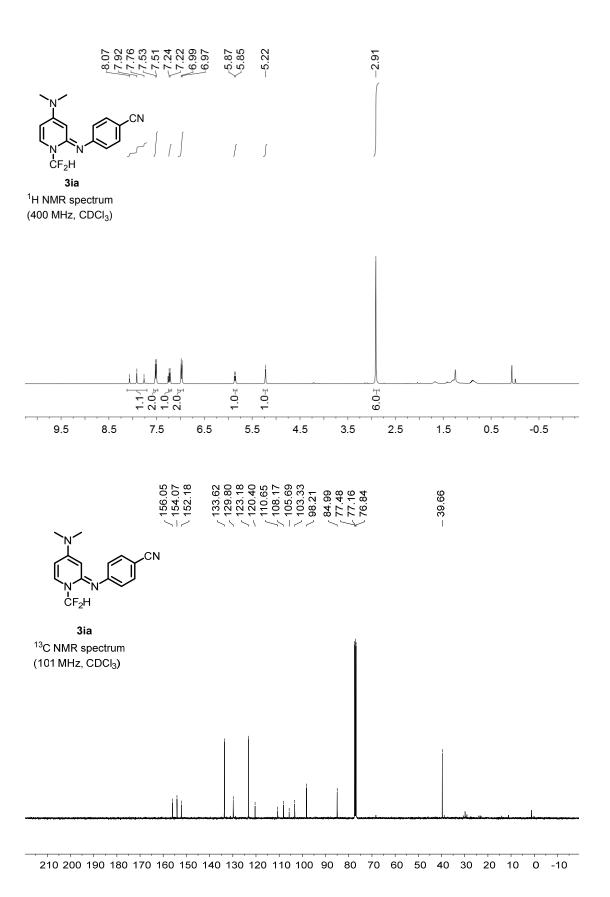


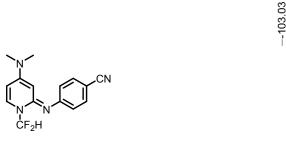


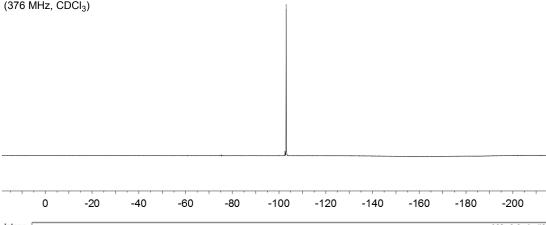

3ga

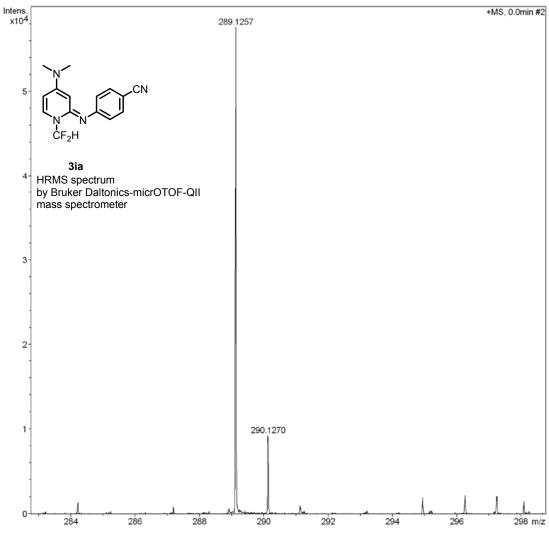
¹⁹F NMR spectrum (376 MHz, CDCl₃)

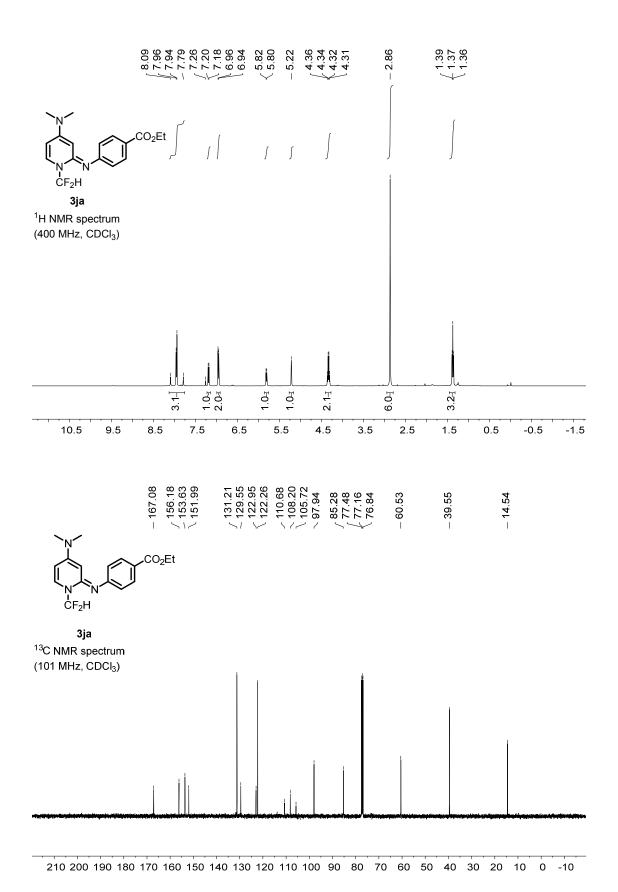


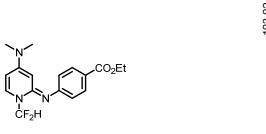




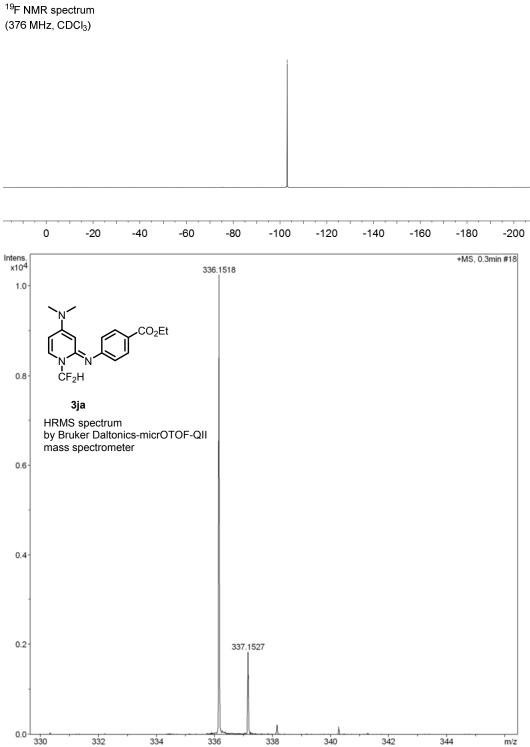

3ha

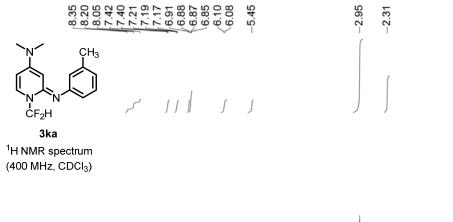


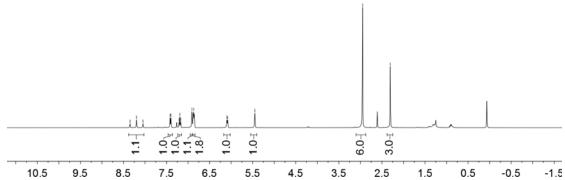


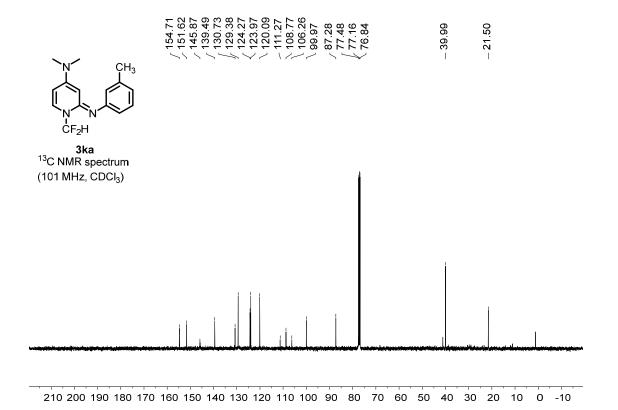


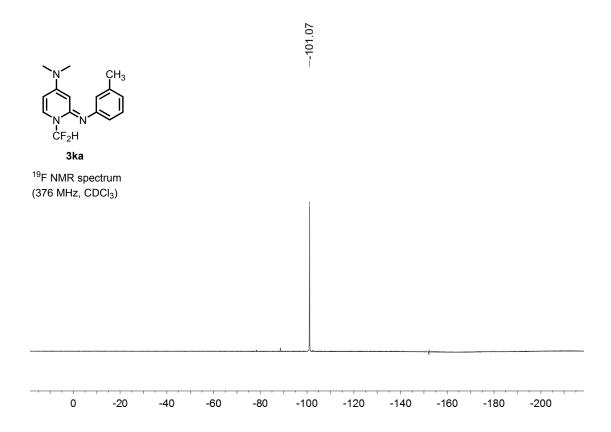
3ia ¹⁹F NMR spectrum (376 MHz, CDCl₃)

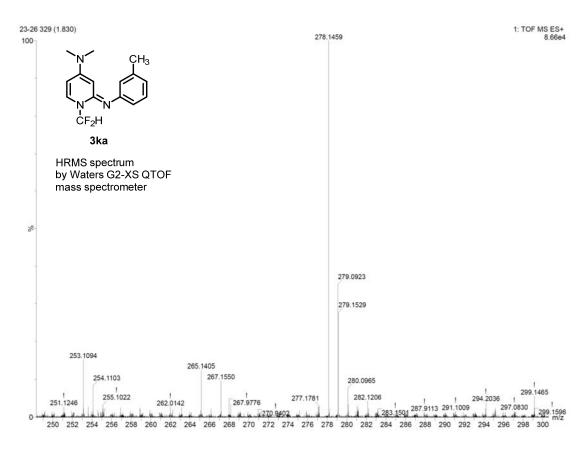


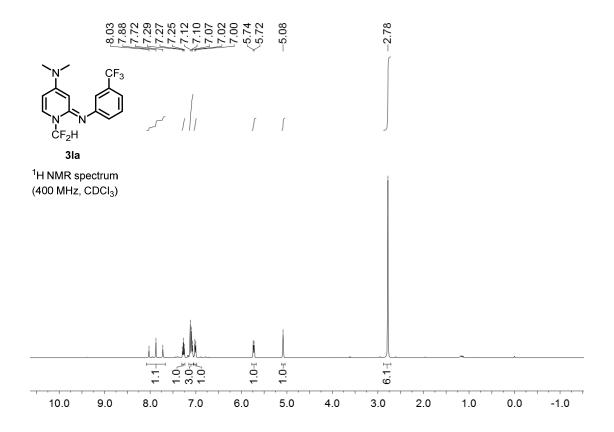


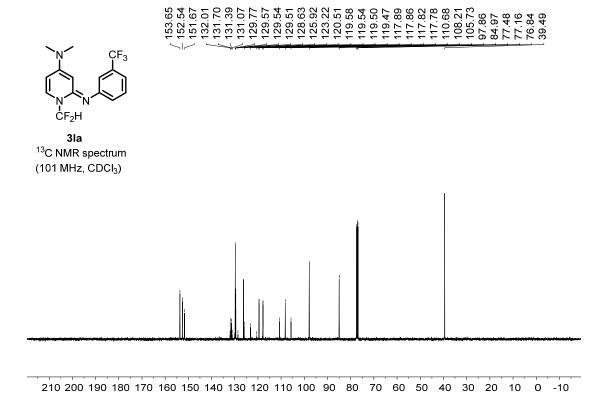


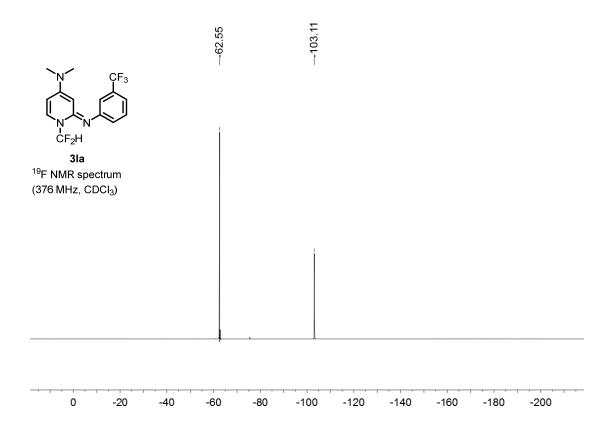


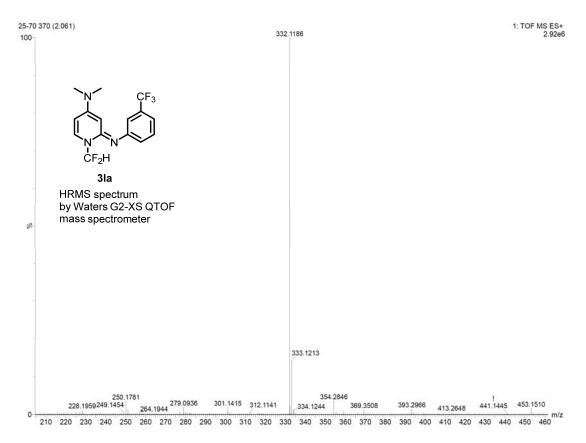

3ja ¹⁹F NMR spectrum

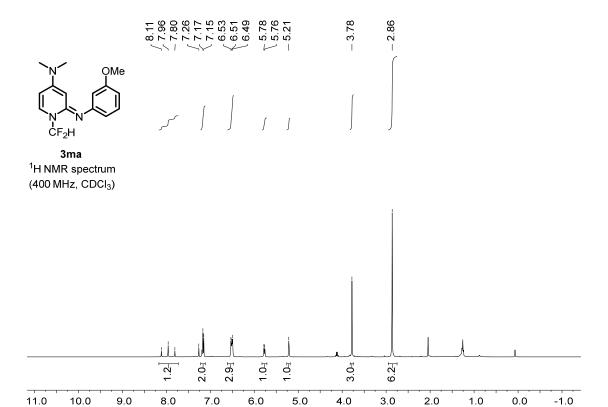


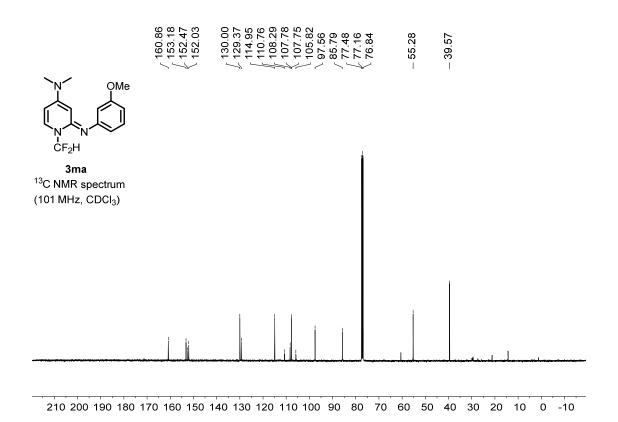


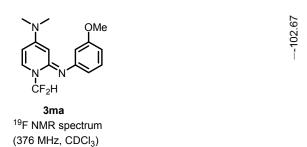


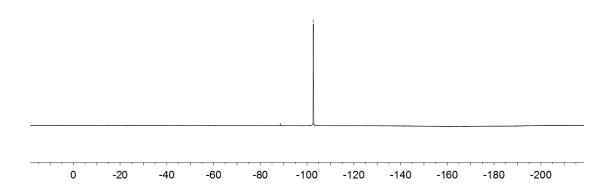


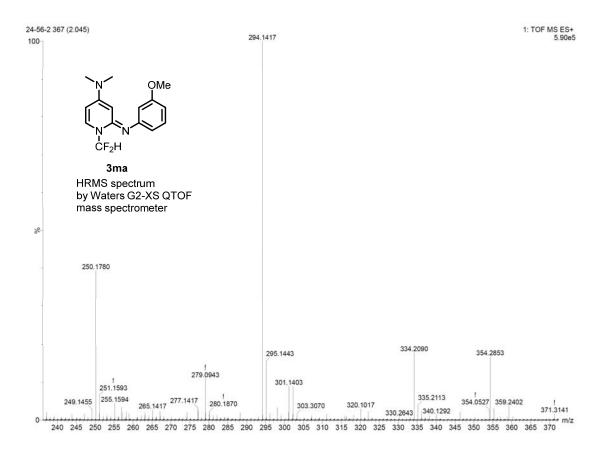


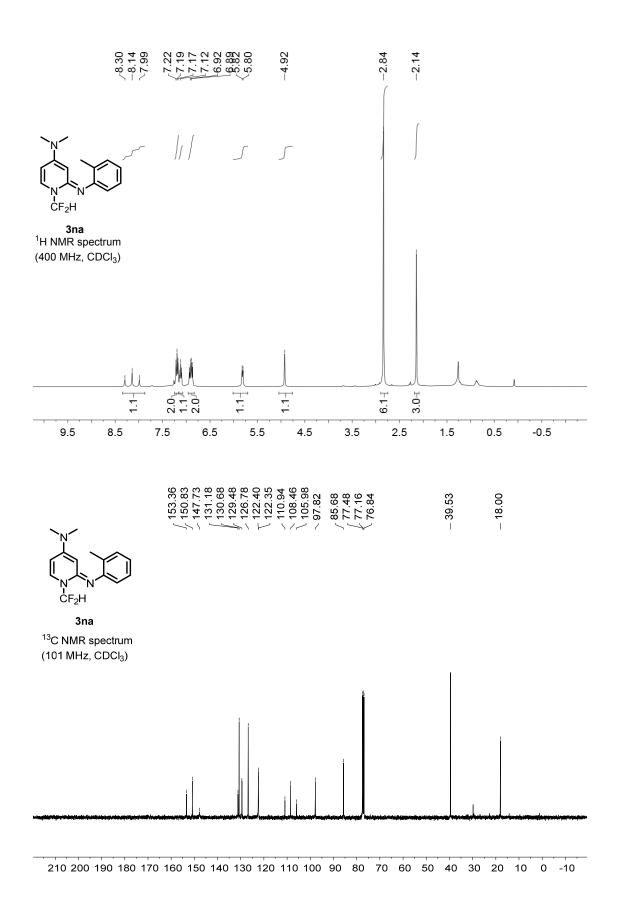


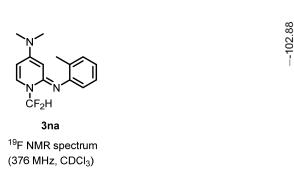


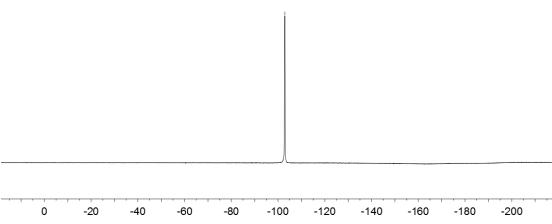


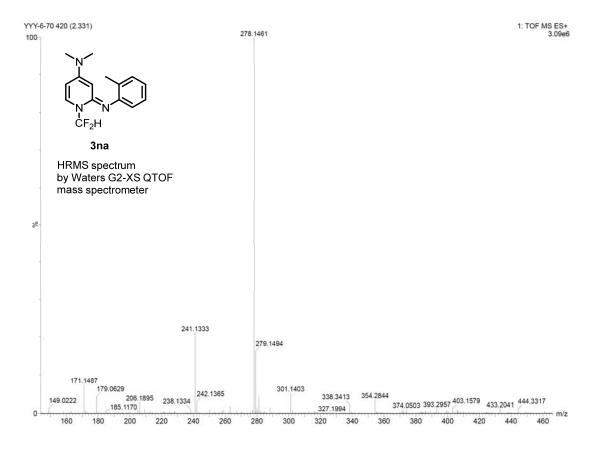


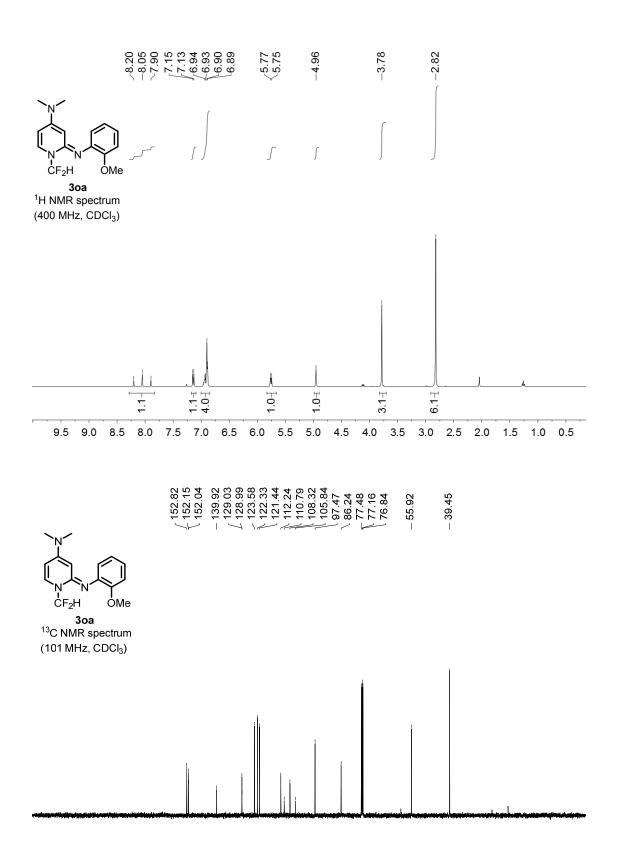


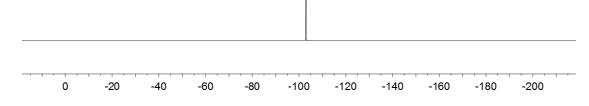


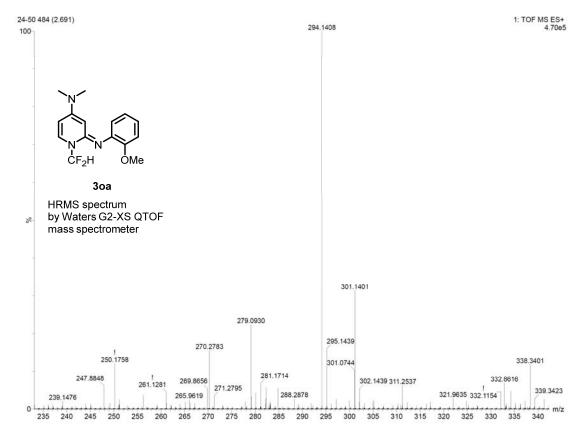


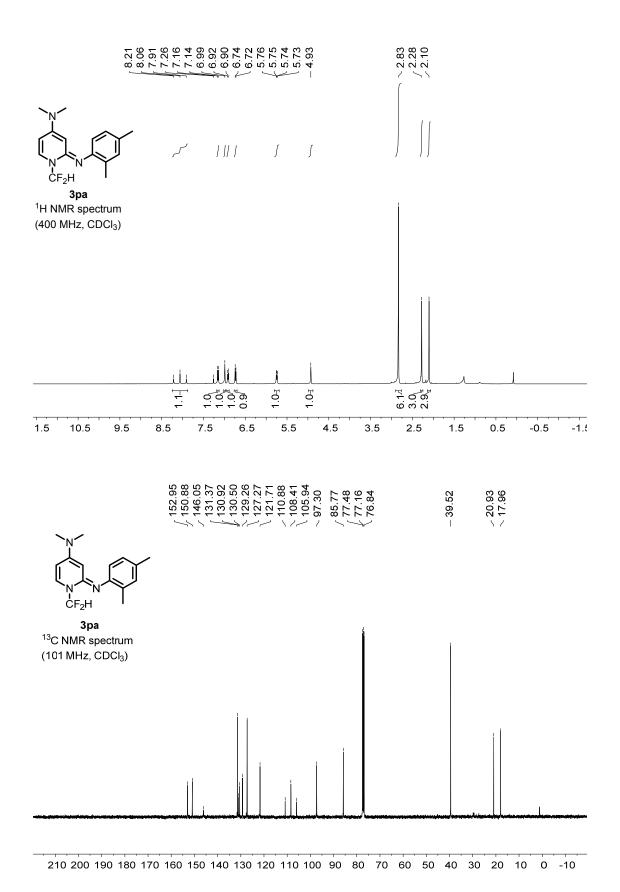


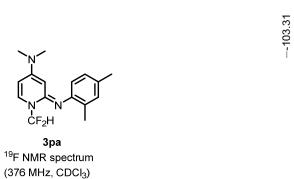


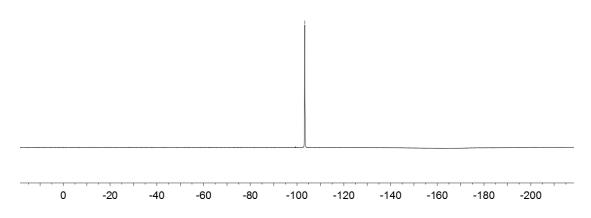


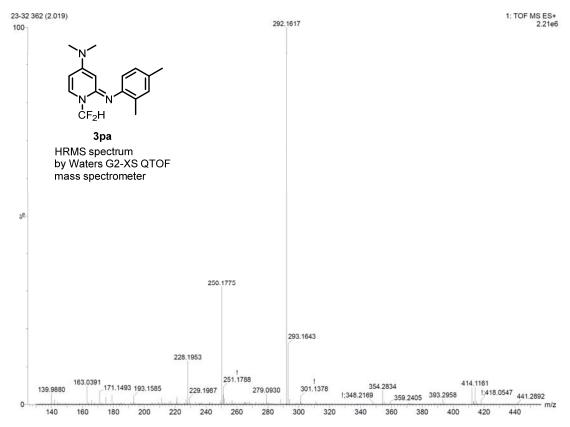


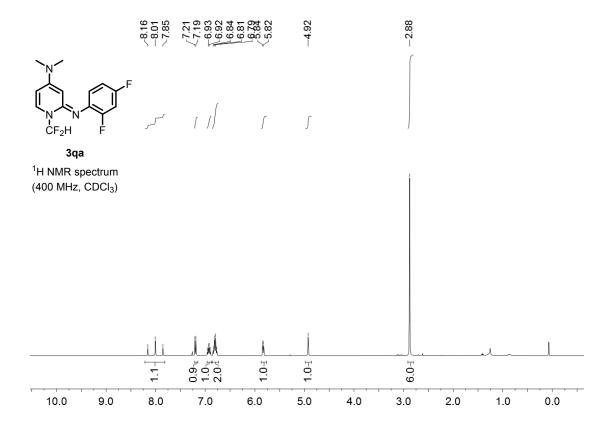


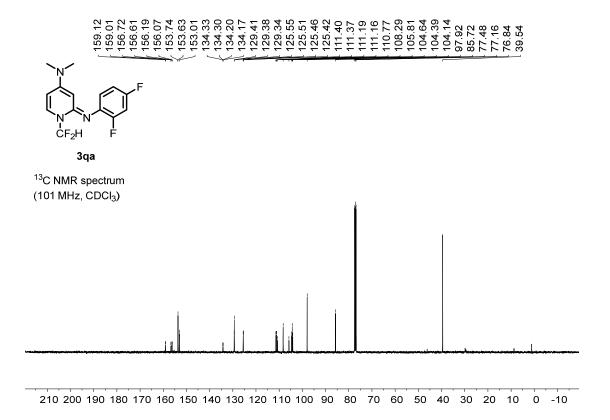

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10

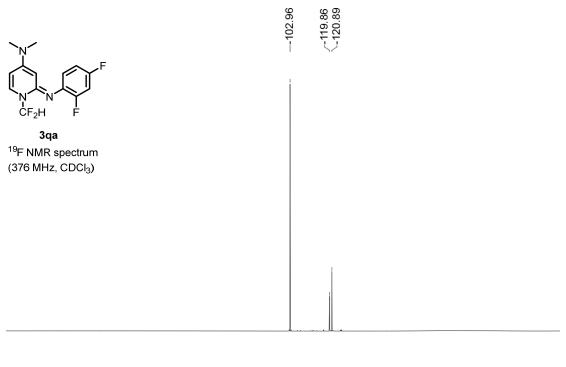


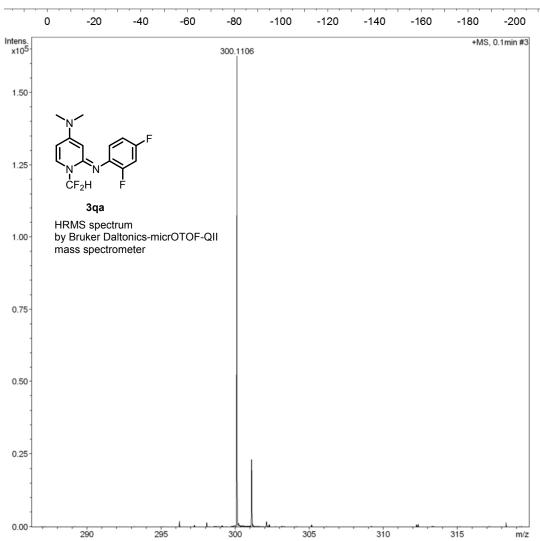

3oa

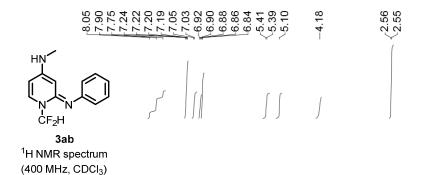


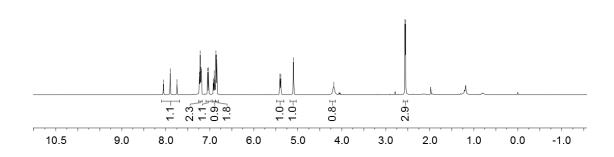


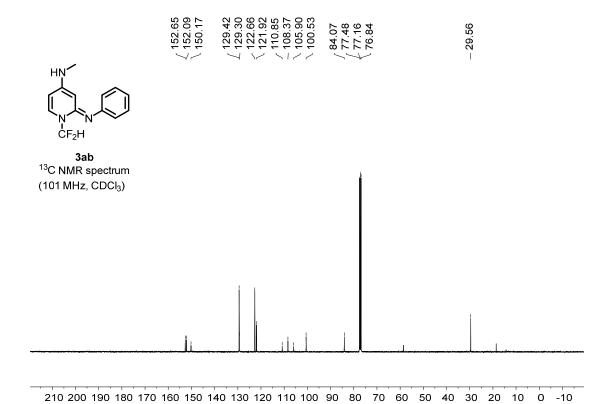


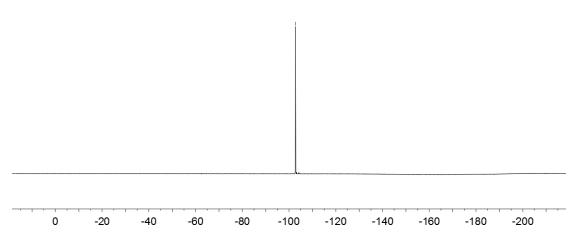


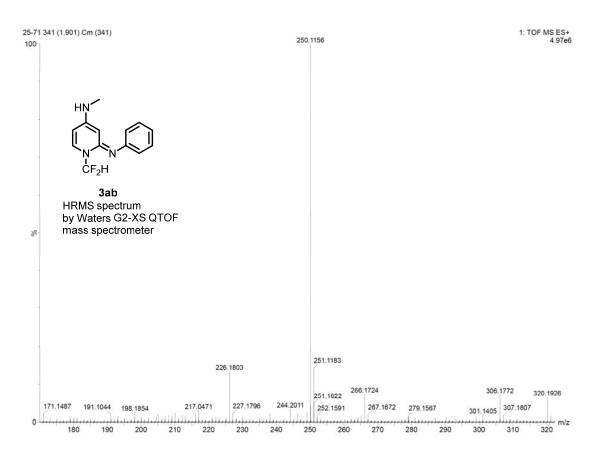


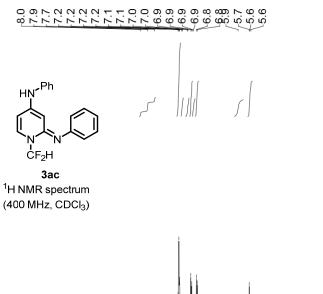


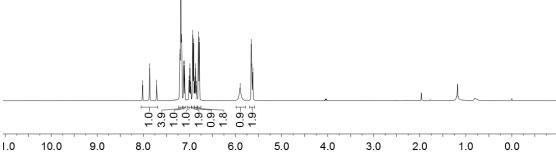


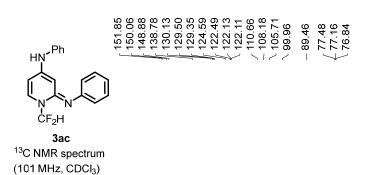


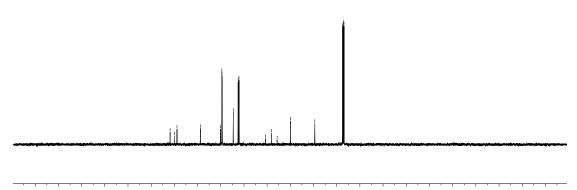


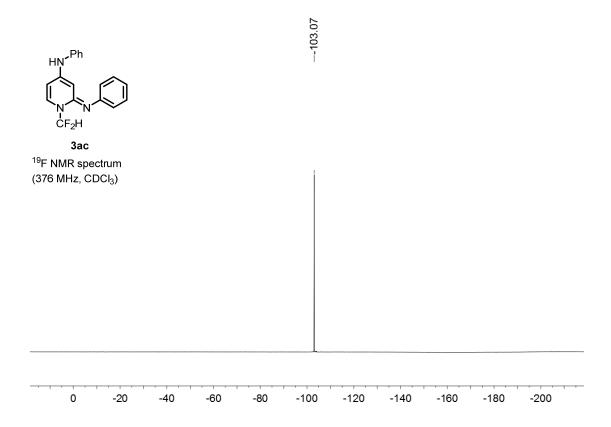


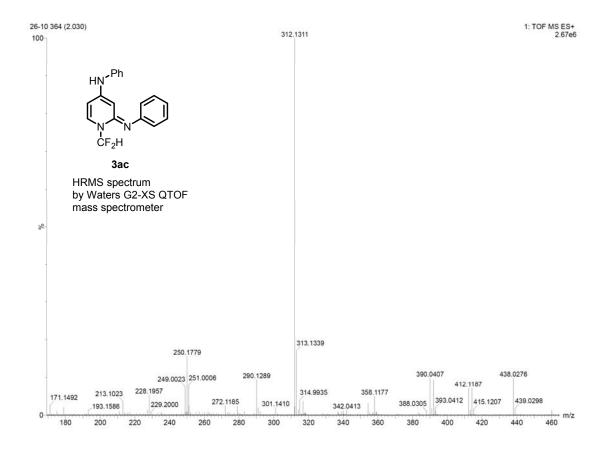


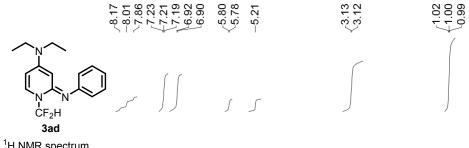


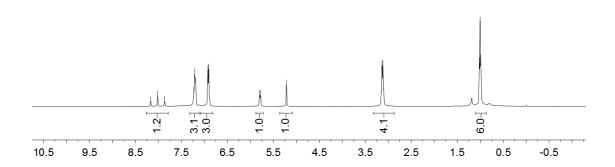

3ab¹⁹F NMR spectrum
(376 MHz, CDCl₃)

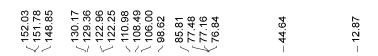


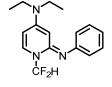


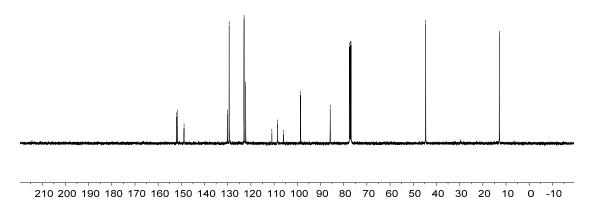


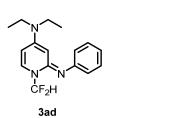


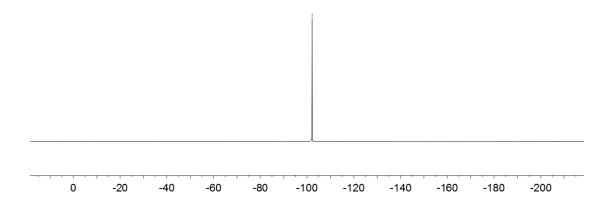


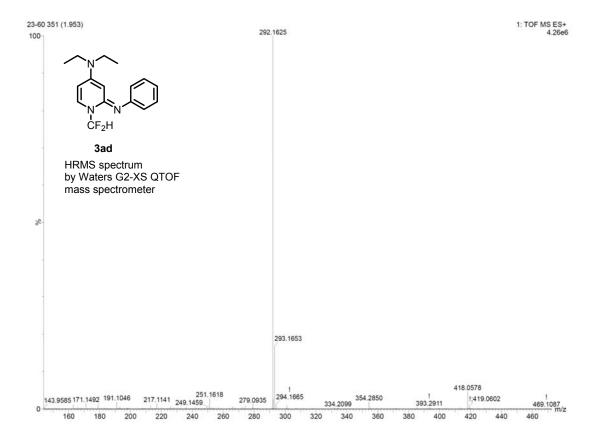

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10

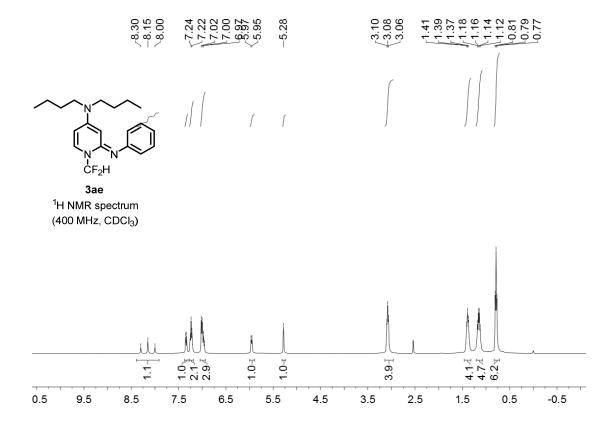


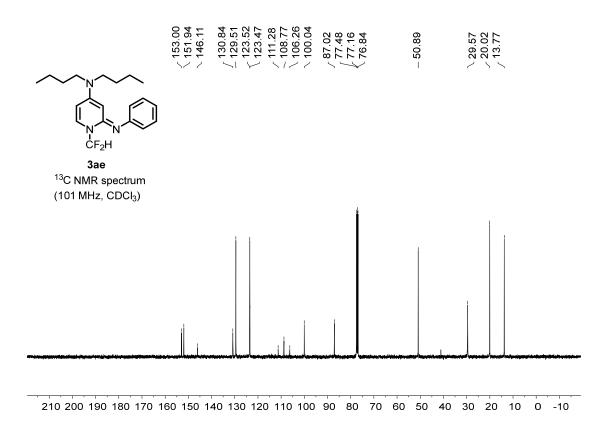


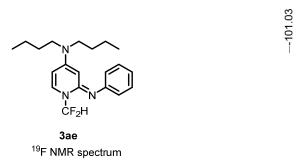


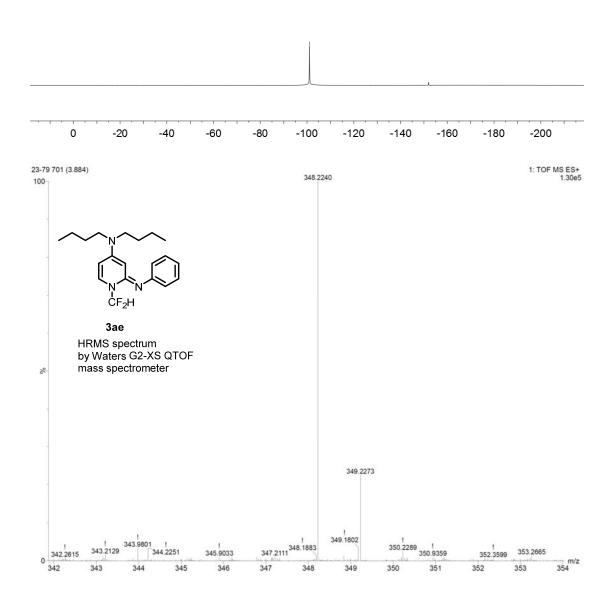


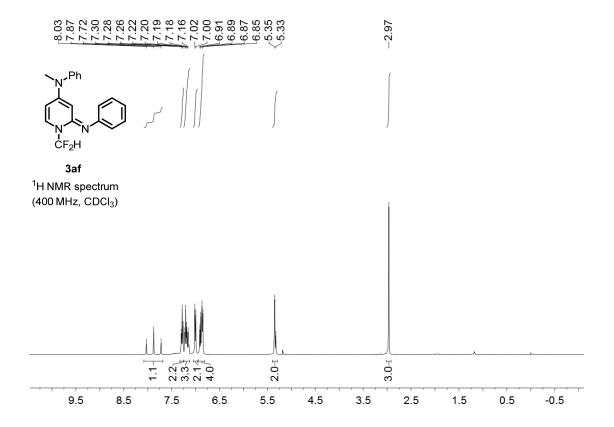

3ad¹³C NMR spectrum
(101 MHz, CDCl₃)

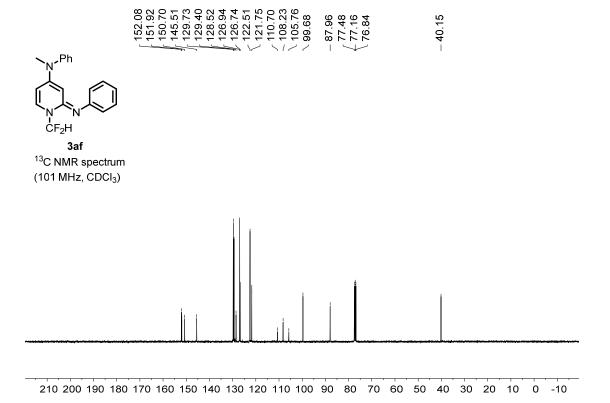




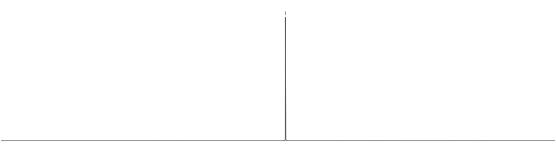


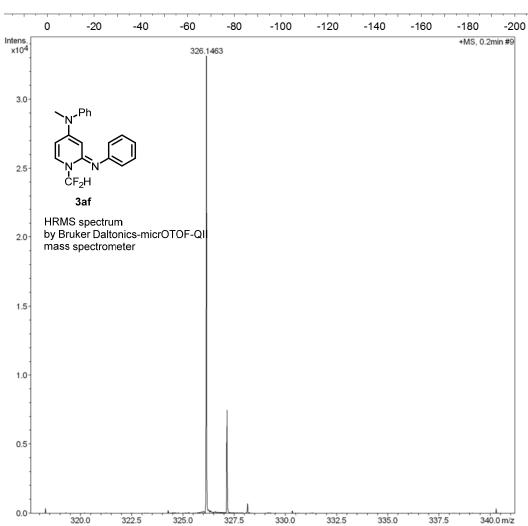


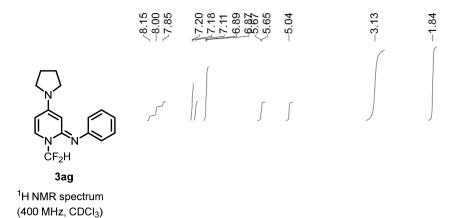


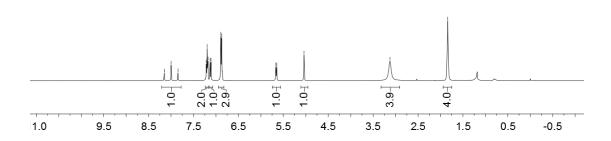


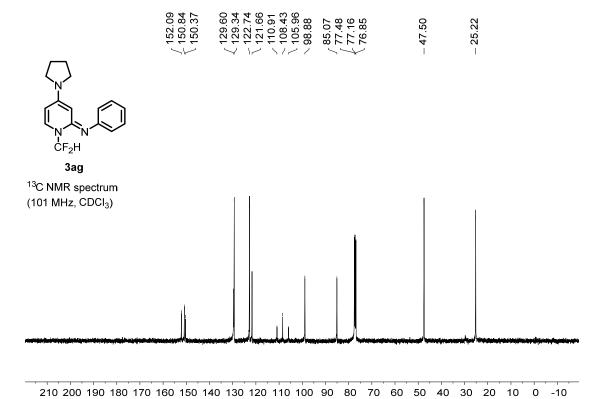
(376 MHz, CDCl₃)

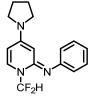


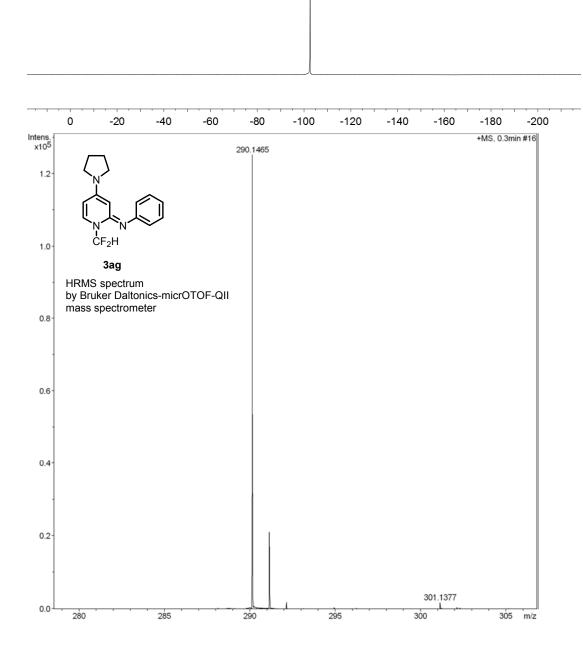


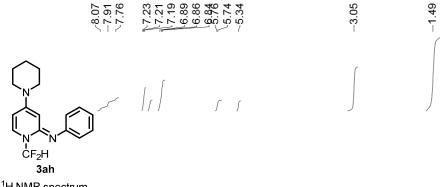


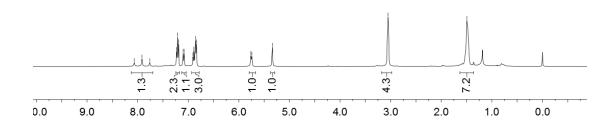


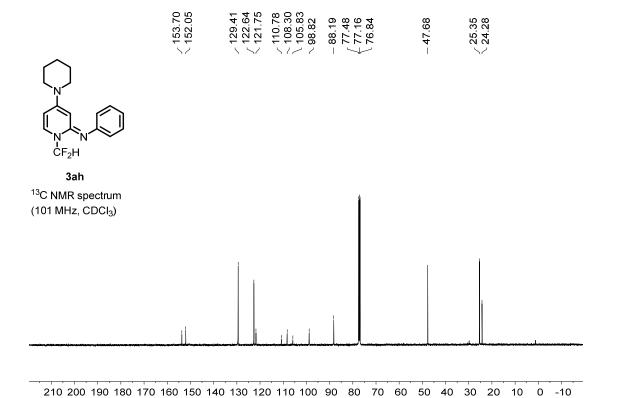

3af ¹⁹F NMR spectrum (376 MHz, CDCl₃)

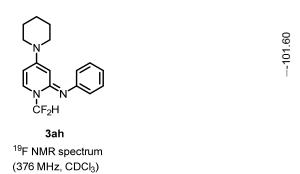


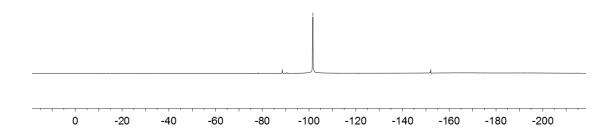


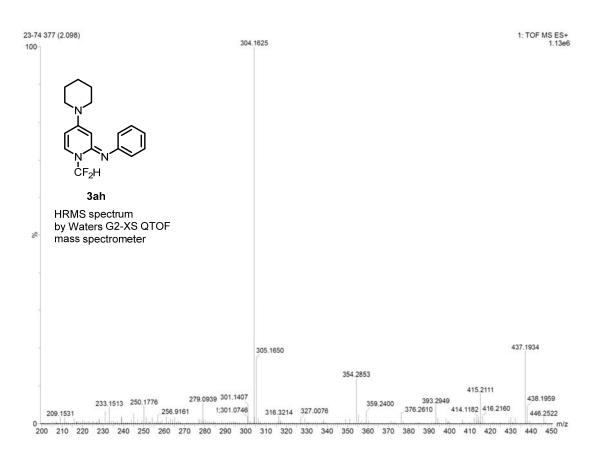


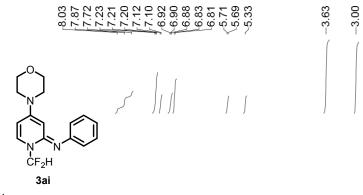


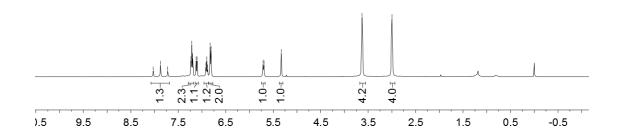


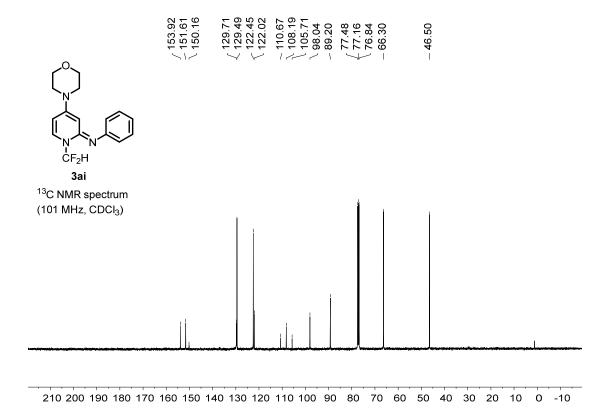

3ag

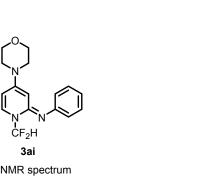


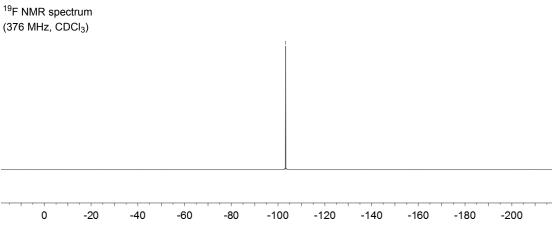


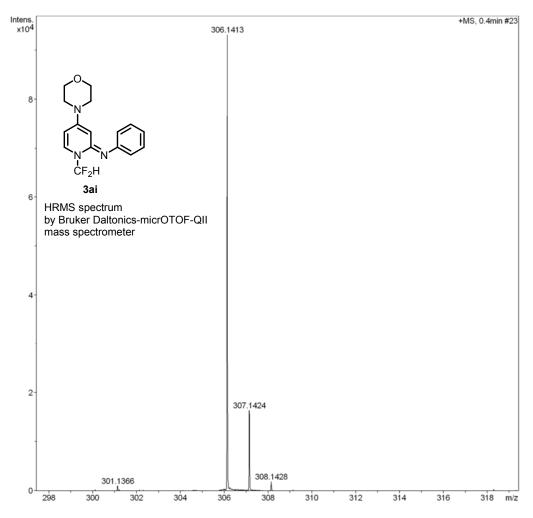


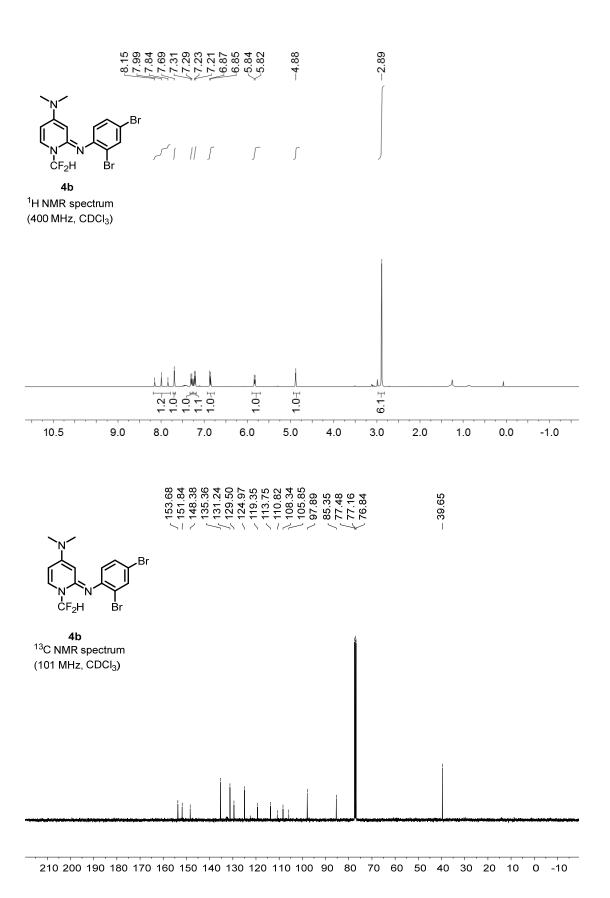


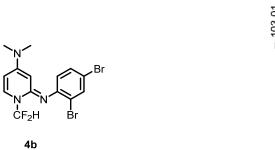


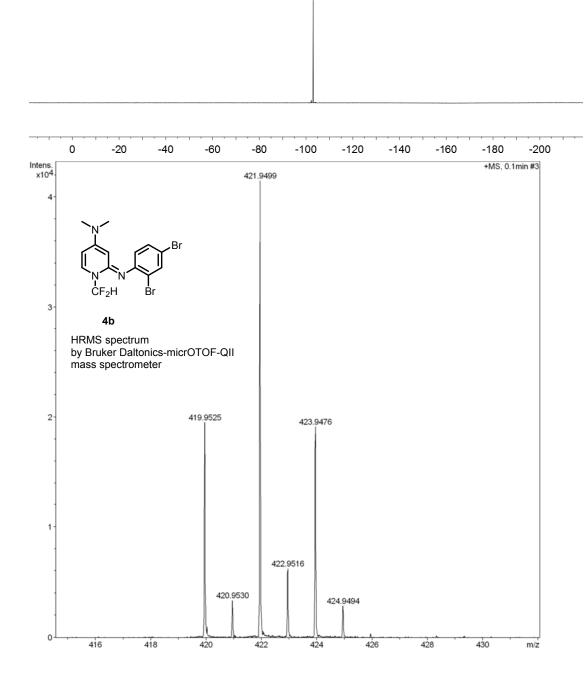


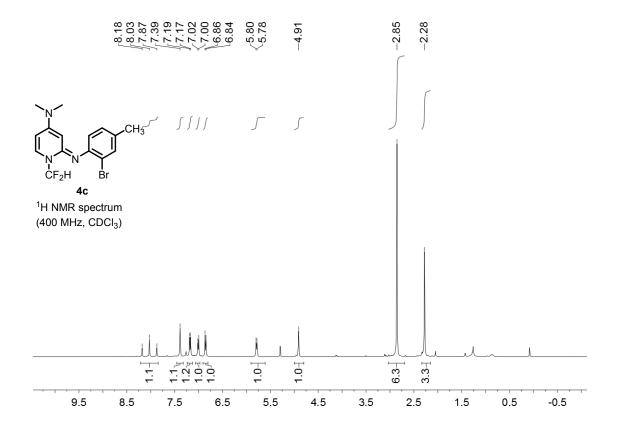


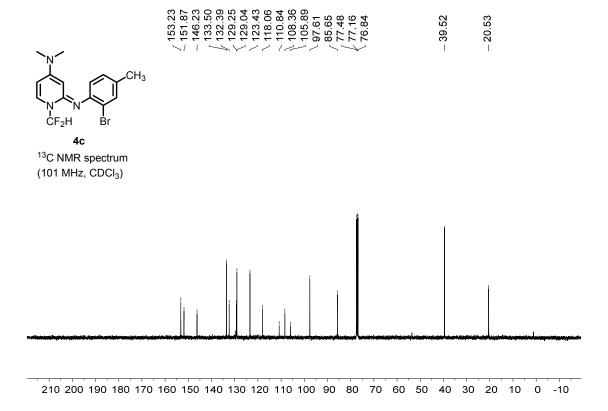


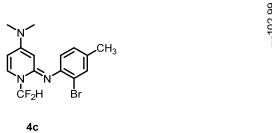


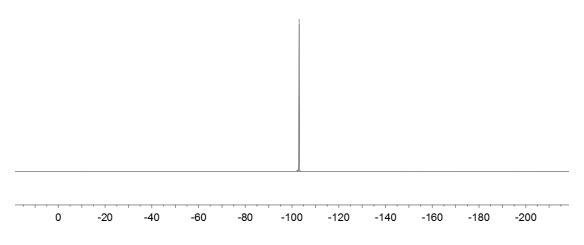


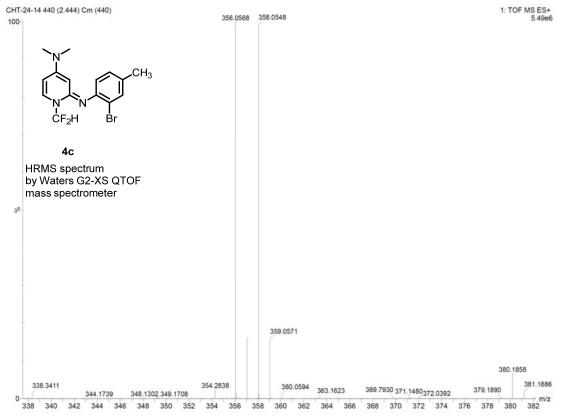


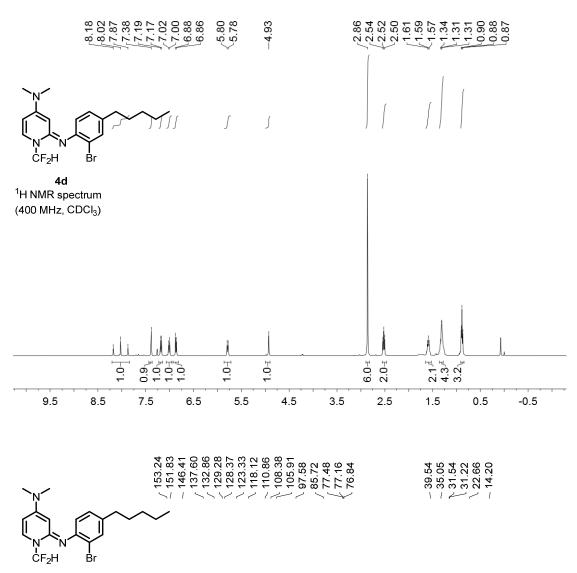


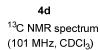


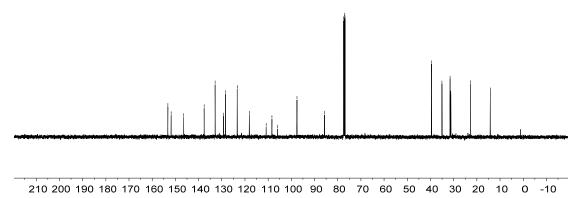


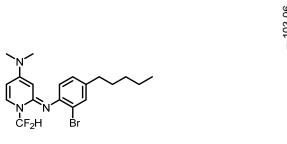


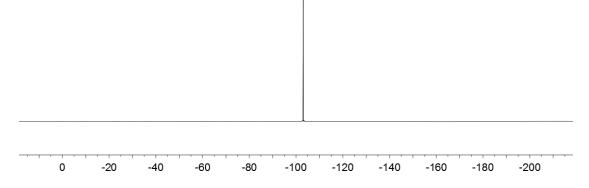


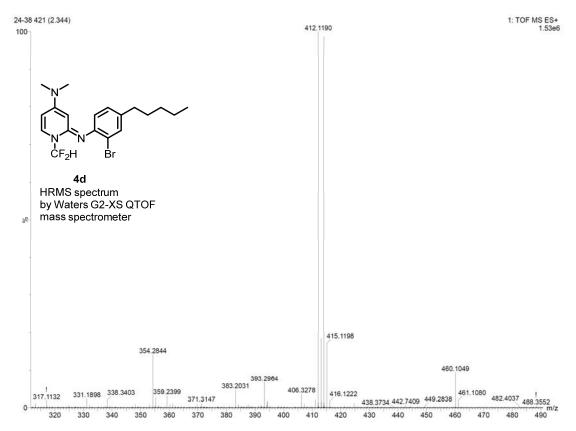


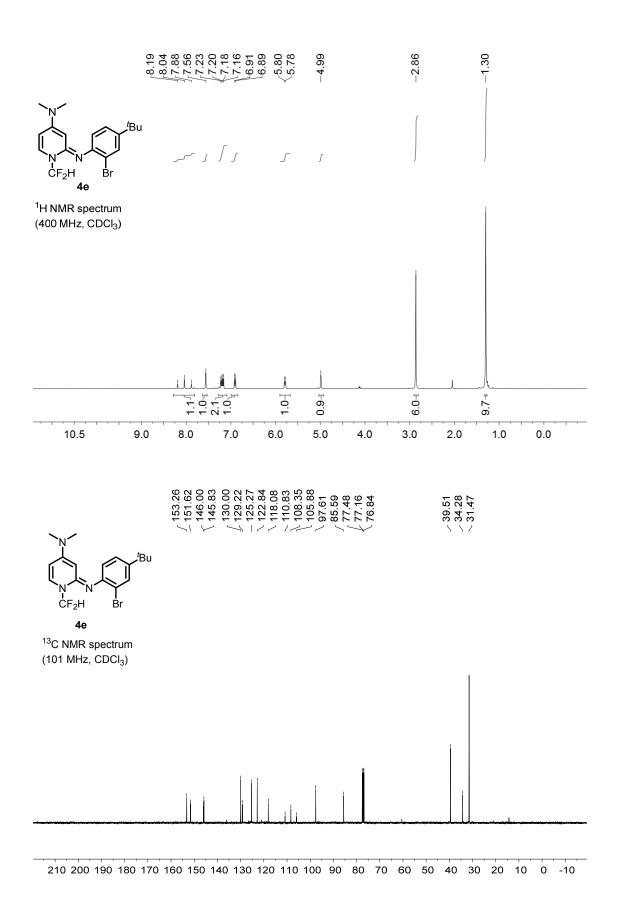


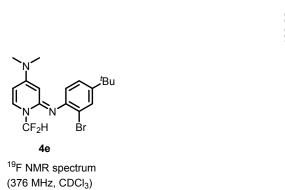


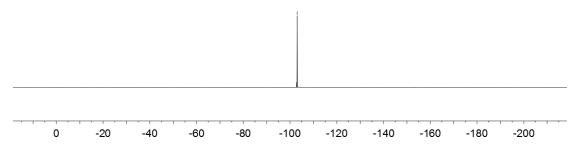


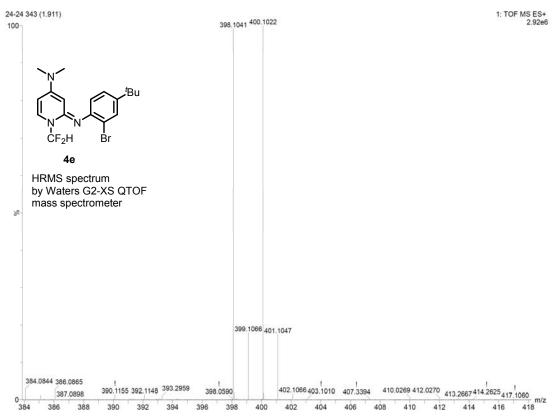


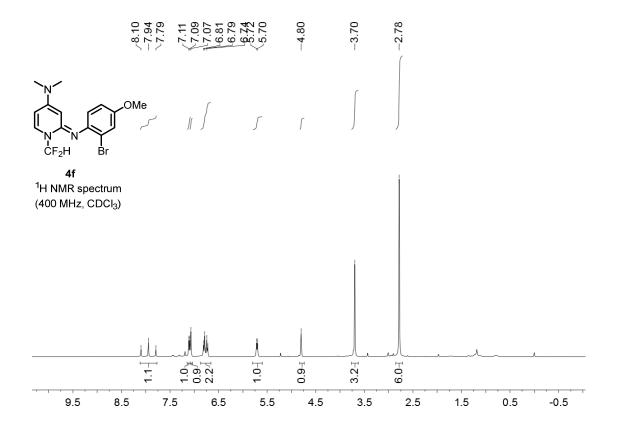


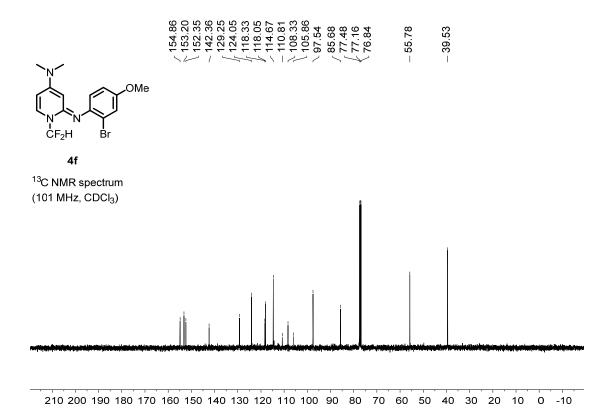


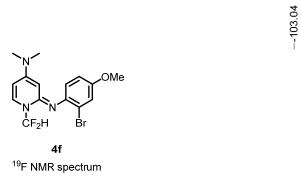


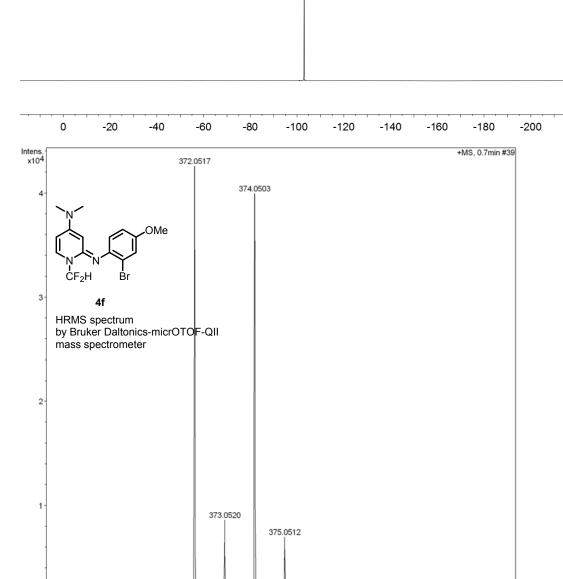

4d ¹⁹F NMR spectrum (376 MHz, CDCl₃)

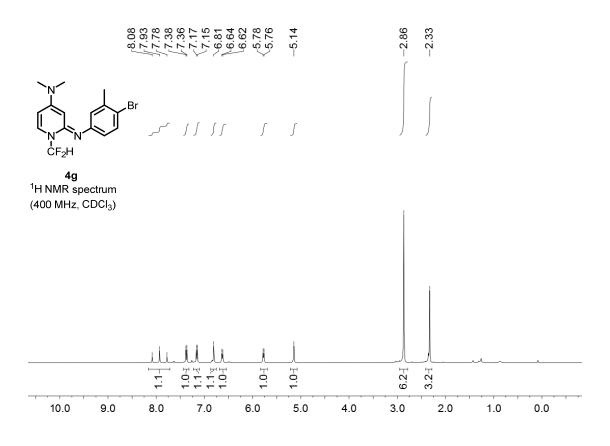


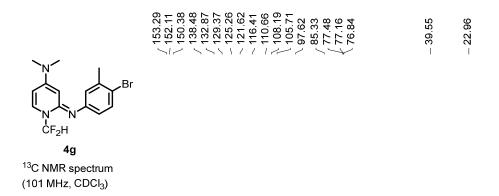


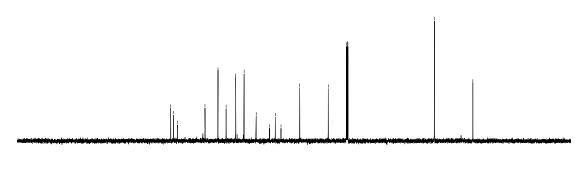


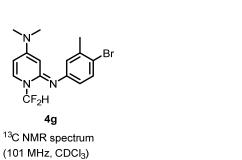


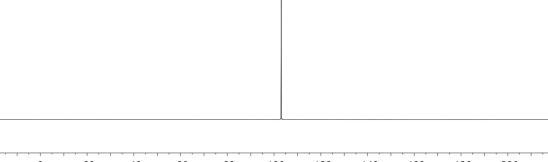


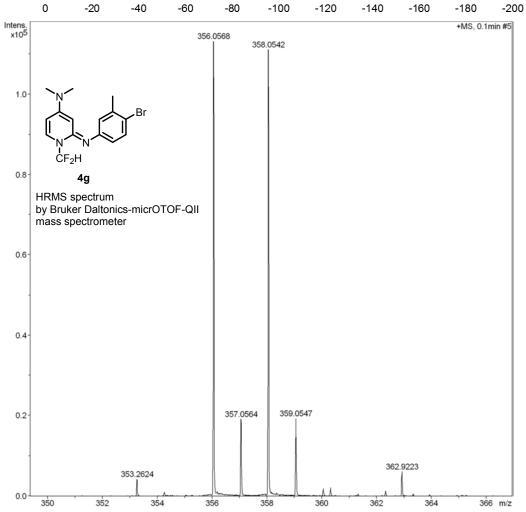


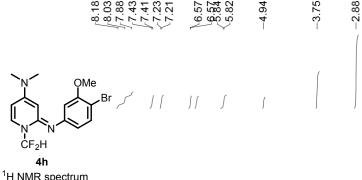


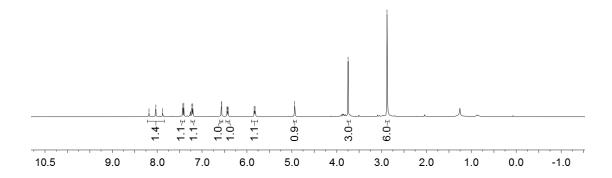

(376 MHz, CDCl₃)

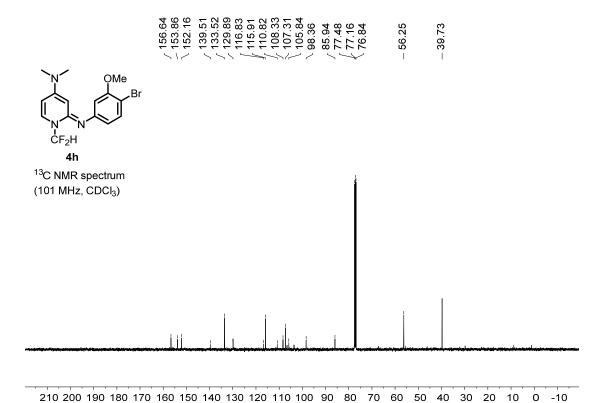

382 m/z

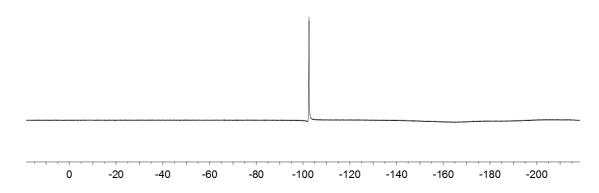


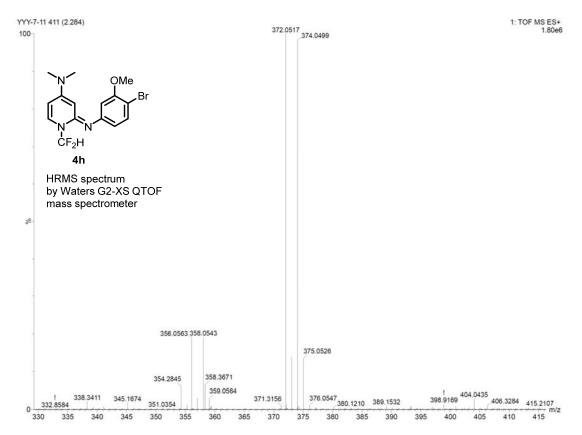


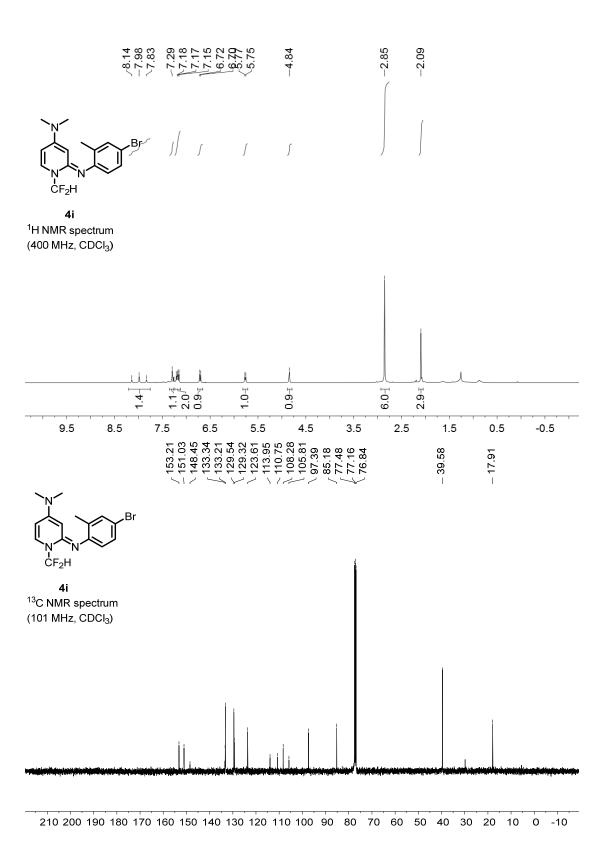


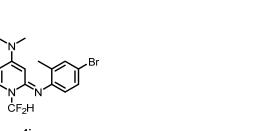

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10

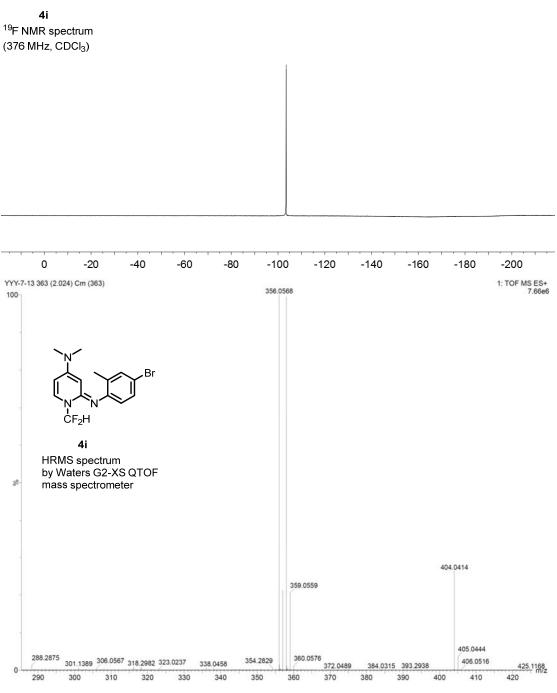


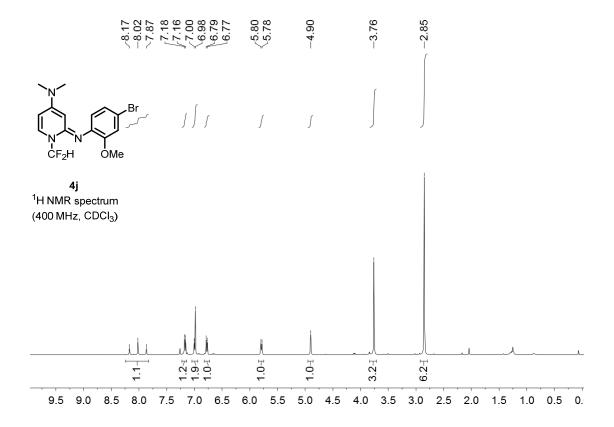


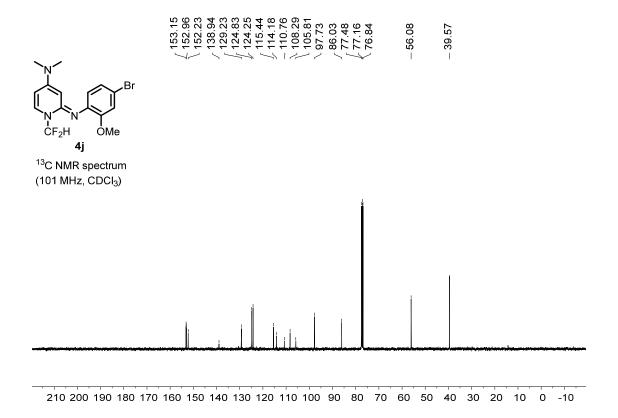


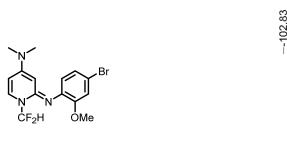


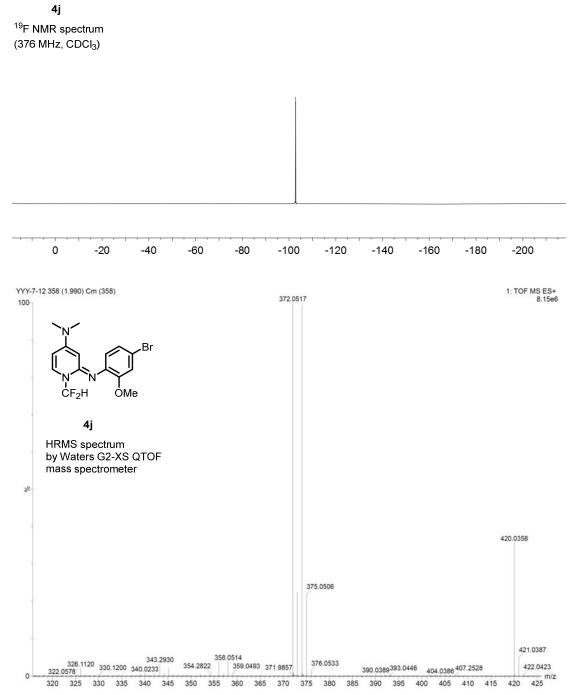


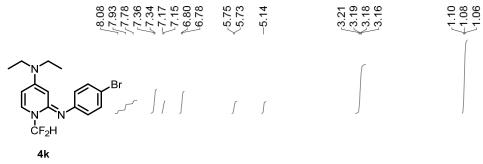


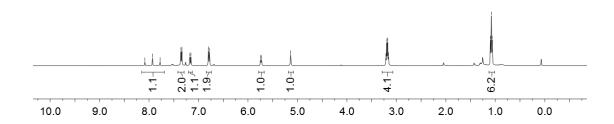


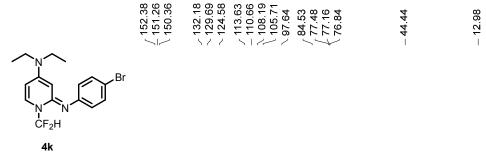


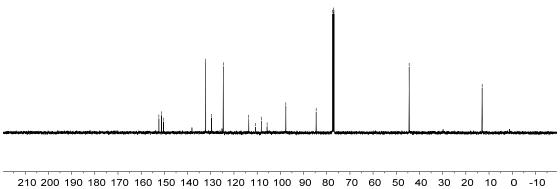


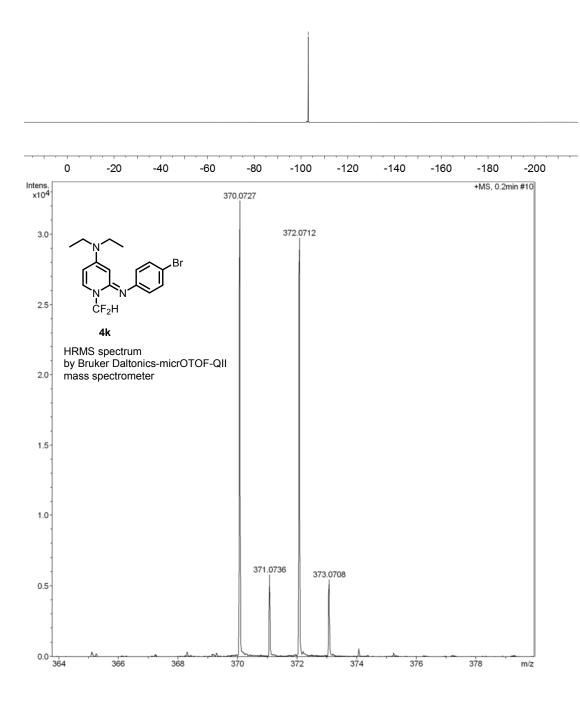

¹⁹F NMR spectrum

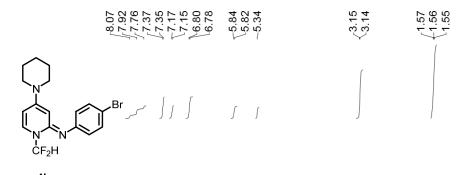


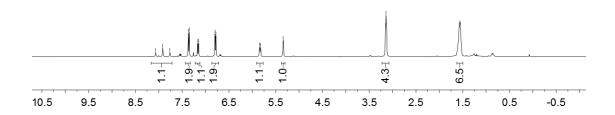


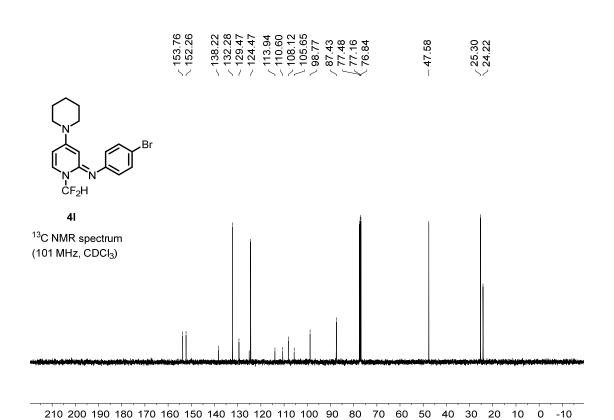


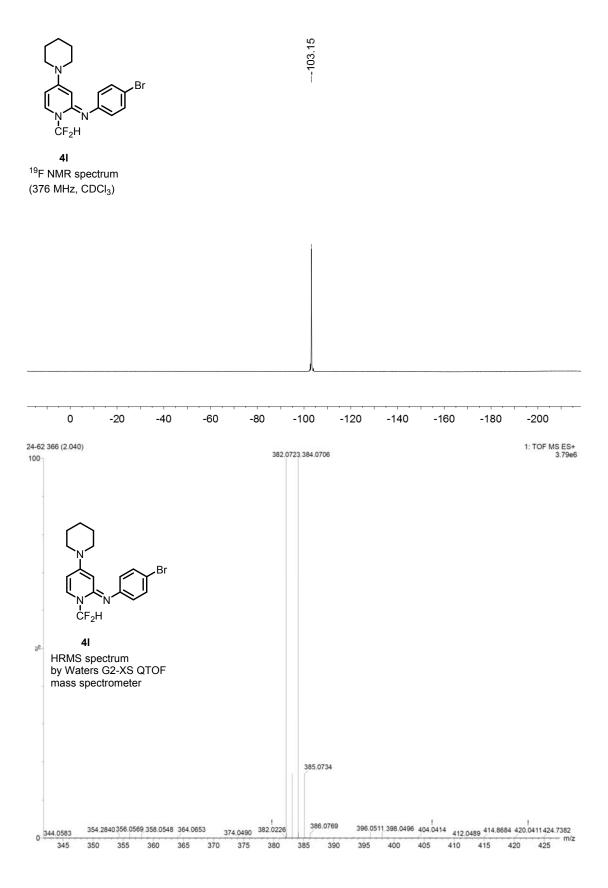


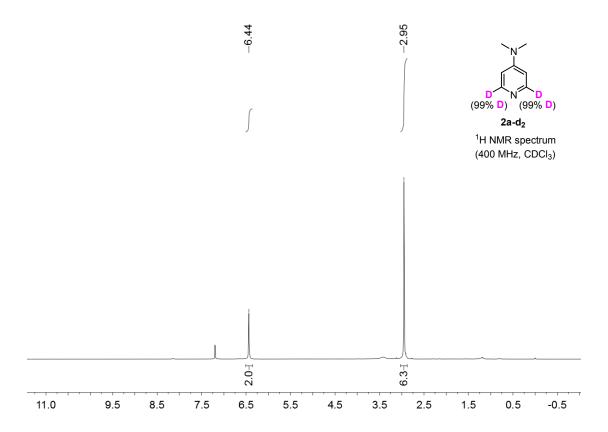


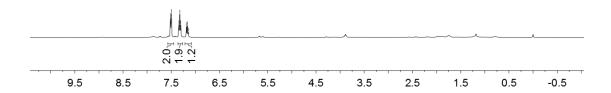


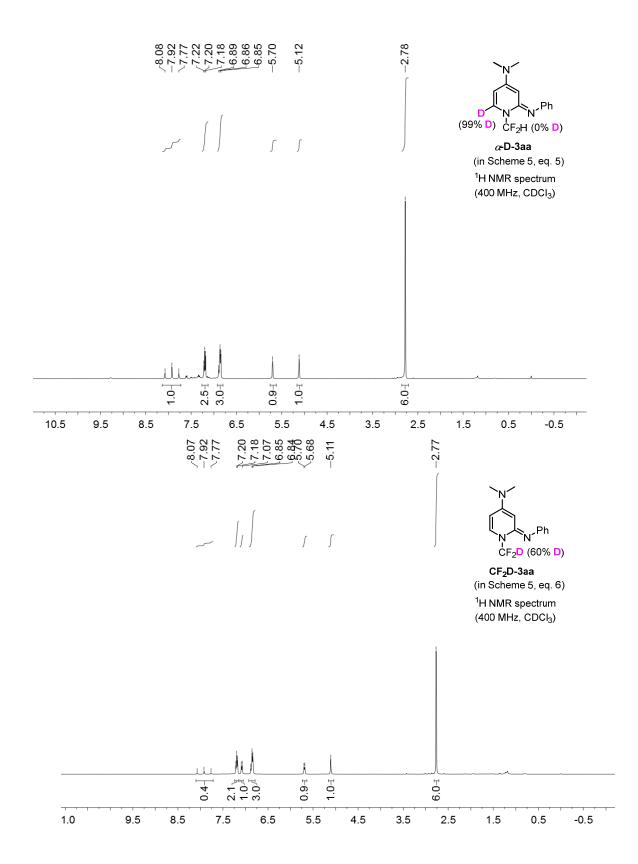

N N CF₂H

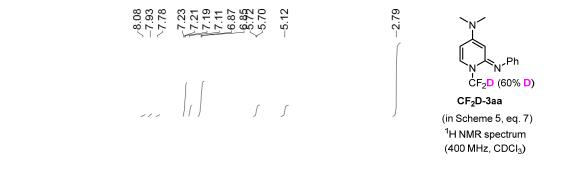

4k

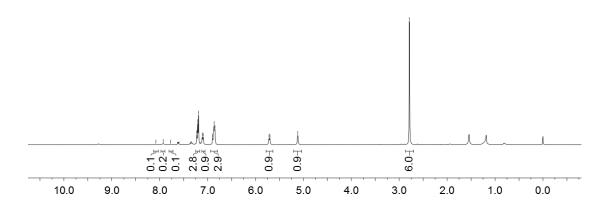


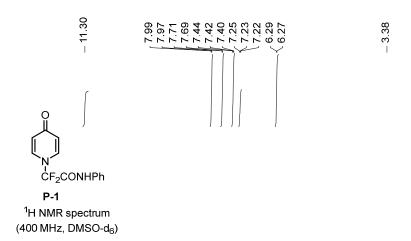

4I¹H NMR spectrum
(400 MHz, CDCl₃)

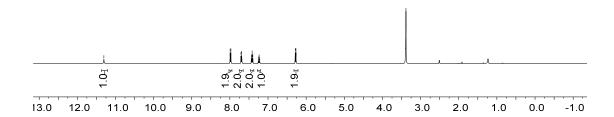


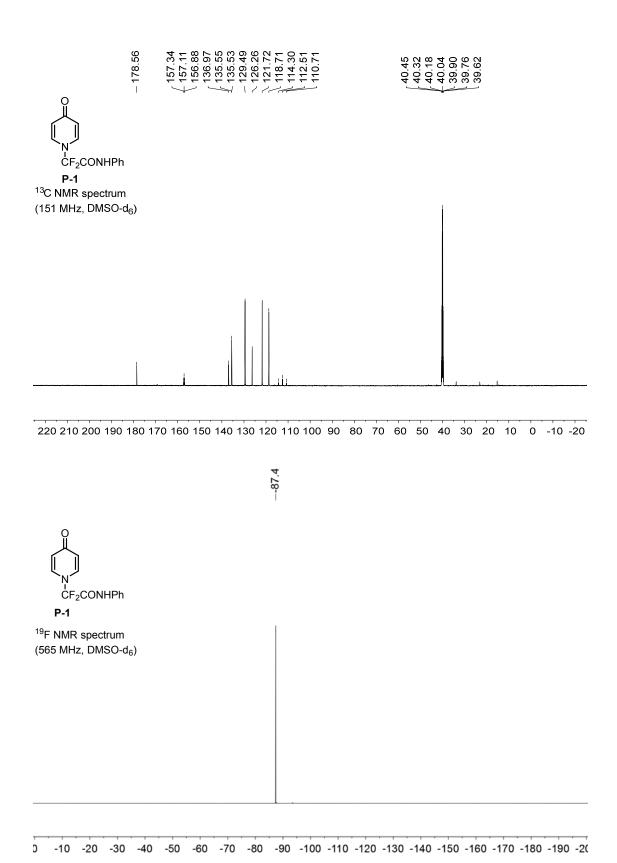


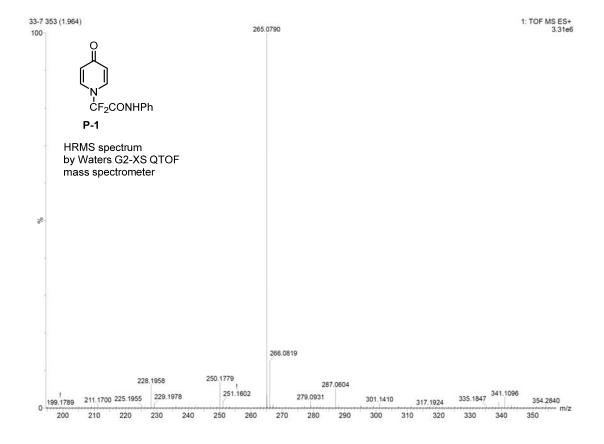

10. ¹H NMR spectra of deuterated compounds.

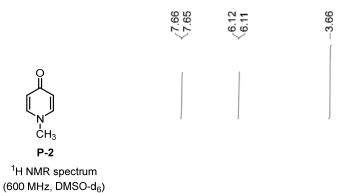











11. NMR and HRMS spectra of compounds P-1, P-2, and P-3.

