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ABSTRACT

Sutar, Soubhagya Ph.D., Purdue University, August 2020. Memory-based Hardware-
intrinsic Security Mechanisms for Device Authentication in Embedded Systems. Ma-
jor Professor: Vijay Raghunathan.

The Internet-of-Things (IoT) is one of the fastest-growing technologies in comput-

ing, revolutionizing several application domains such as wearable computing, home

automation, industrial manufacturing, etc. This rapid proliferation, however, has

given rise to a plethora of new security and privacy concerns. For example, IoT

devices frequently access sensitive and confidential information (e.g., physiological

signals), which has made them attractive targets for various security attacks. More-

over, with the hardware components in these systems sourced from manufacturers

across the globe, instances of counterfeiting and piracy have increased steadily. Se-

curity mechanisms such as device authentication and key exchange are attractive

options for alleviating these challenges.

In this dissertation, we address the challenge of enabling low-cost and low-overhead

device authentication and key exchange in off-the-shelf embedded systems. The first

part of the dissertation focuses on a hardware-intrinsic mechanism and proposes the

design of two Physically Unclonable Functions (PUFs), which leverage the memory

(DRAM, SRAM) in the system, thus, requiring minimal (or no) additional hardware

for operation. Two lightweight authentication and error-correction techniques, which

ensure robust operation under wide environmental and temporal variations, are also

presented. Experimental results obtained from prototype implementations demon-

strate the effectiveness of the design. The second part of the dissertation focuses on

the application of these techniques in real-world systems through a new end-to-end

authentication and key-exchange protocol in the context of an Implantable Medical



xv

Device (IMD) ecosystem. Prototype implementations exhibit an energy-efficient de-

sign that guards against security and privacy attacks, thereby making it suitable for

resource-constrained devices such as IMDs.
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1. INTRODUCTION

Over the past few years, the Internet-of-Things (IoT) has pervaded all aspects of

our daily lives. It has fundamentally altered the way we interact with our physical

environment, thereby revolutionizing a number of application domains such as home

automation, wearable computing, industrial manufacturing, etc. The IoT is also one

of the fastest-growing technologies across all of computing and it is expected that

there would 125 billion devices connected to it by the year 2030 [1]. However, this

rapid proliferation coupled with the increasingly connected nature of these devices

has given rise to a plethora of new security and privacy concerns, as shown in Fig. 1.1.

One such example is data theft. Though preventing it has been a challenge right from

the beginning of personal computing, the problem has assumed a completely new scale

due to the sheer number of these smart devices with the ability to access potentially

sensitive and confidential information (e.g., banking credentials, physiological signals,

etc.). Moreover, the diversity of these devices, ranging from tiny microcontrollers to

large datacenter servers, makes it near impossible to employ a standard security

solution. Another concern stems from the the cyber-physical nature of these devices,

as a result of which, security attacks have physical consequences. For example, in

2015, attackers were able to get remote access to a Jeep Cherokee and kill some of its

vital systems such as steering, braking, transmission, etc [2]. Also, there have been

numerous security vulnerabilities identified in medical devices that could be exploited

by attackers to cause serious harm to the patient [3, 4]. Finally, with the hardware

components in these systems sourced from manufacturers across the globe, instances

of counterfeiting and piracy have increased steadily. Counterfeit components not only

have serious reliability implications, but also cause tremendous revenue loss to the

electronics industry [5].
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Fig. 1.1.: Security and Privacy Concerns in the IoT

1.1 Research Contributions and Dissertation Overview

The previous section highlighted several concerns associated with the rapid growth

of the IoT in recent years. One way of addressing several of these, which the disser-

tation focuses on, is device authentication. Authentication, in general, refers to any

process by which a system verifies the identity of a user who wishes to access it. In

the context of the IoT, the user may refer to a client device trying to connect to a

network while the system is a trusted authority and may refer to the network gateway.

By ensuring that each of these devices is authentic, in other words, by performing

device authentication, a secure network can be built, as shown in Fig. 1.2.

Traditionally, device authentication has been carried out using static techniques

such as passwords, secret keys, public-key infrastructure (PKI), etc. However, these

techniques have several shortcoming such as the need for user intervention and vul-

nerability to present-day sophisticated attacks. Most importantly, a large number of

the IoT devices are low-cost in nature and lack the resources – compute, memory, en-



3

Fig. 1.2.: Building a secure IoT network through Device Authentication

ergy, etc., which are required by some of these authentication techniques. All of these

motivate us to look into alternate techniques for performing device authentication.

One such technique is based on the use of hardware-intrinsic security mechanisms

such as Physically Unclonable Functions (PUFs) [6]. PUFs exploit the random phys-

ical variations inherent to any manufacturing process to generate device-specific and

unclonable fingerprints. These unique fingerprints can be used as the basis for the

challenge-response mechanism for device authentication as well as for random num-

ber (e.g., secure key) generation. While a large variety of PUF implementations have

been proposed, this dissertation leverages memory-based PUFs due to the ubiquitous

presence of memory in virtually every embedded system. Moreover, memory-based

PUFs require minimal or no additional circuitry for their operation, giving them a

distinct advantage over other PUF implementations. Hence, towards enabling low-

cost and low-overhead device authentication in embedded systems, the dissertation

makes the following research contributions, as shown in Fig. 1.3:

• The dissertation proposes the design of an intrinsically-reconfigurable PUF

based on the refresh-pausing approach in a DRAM for device authentication

and random number generation [7, 8].
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Fig. 1.3.: Research contributions made by this dissertation

• It introduces the design of a memory-based combination PUF utilizing SRAM

and DRAM that takes a step towards multi-component authentication in an

embedded system [9].

• It explores the application of the above security mechanisms in real-world sys-

tems through a new end-to-end authentication and key-exchange protocol in

the context of an Implantable Medical Device ecosystem [10].

Next, we briefly introduce the work associated with each of the above contributions

- a detailed discussion follows in the subsequent chapters.

1.1.1 An Intrinsically-Reconfigurable DRAM PUF for Device Authenti-

cation and Random Number Generation

Chapter 3 introduces the design of an intrinsically-reconfigurable PUF [7,8] based

on the Dynamic Random Access Memory (DRAM). DRAM is used as the main

memory in a large number of modern embedded systems due to its high density and



5

low cost. As is well-known, DRAM cells must be refreshed periodically to preserve

the stored data. This need for refresh operations also makes DRAM an attractive

candidate for use as a PUF, especially for challenge-response-based authentication and

random number generation.The key idea of a DRAM PUF based on refresh pausing

is as follows (a more detailed explanation is given in Chapter 3). If data is stored in a

large (say 64KB) block of DRAM cells and refresh operations to the entire block are

paused for an extended amount of time (henceforth referred to as the refresh-pause

interval), some of the DRAM cells in the block will lose their data. How many and

which cells in the DRAM block lose their contents (for a given refresh-pause interval)

is unique to a device and can, therefore, be used as the basis for implementing a PUF.

Prior approaches to DRAM-based PUFs suffer from several shortcomings such as

low speed of authentication [11], non-applicability to commercial off-the-shelf (COTS)

devices [12], and the need for power cycling the DRAM module prior to authentica-

tion [13]. Moreover, the near static nature of the response generation mechanism in

some of the works [11, 13] makes them vulnerable to various security attacks [14].

To address these limitations, we propose a DRAM PUF, henceforth referred to as

D-PUF, based on refresh pausing that not only supports a very large number of

challenge-response pairs (CRPs) through the variation of different parameters, but

is also intrinsically reconfigurable, i.e., its challenge-response behavior can be sub-

stantially modified without the use of any additional circuitry. Hence, the PUF

can be easily implemented in most off-the-shelf systems and provides considerable

protection from various security attacks. We also use D-PUF to design a secure,

low-overhead mechanism for performing device authentication. The mechanism op-

erates robustly even in the presence of environmental and temporal variations. We

implement D-PUF and our proposed authentication mechanism in a real system using

off-the-shelf DRAM modules and evaluate it thoroughly. In particular, we demon-

strate a 4.3X-6.4X reduction in authentication time, compared to previous work.

Using controlled temperature and accelerated aging tests, we demonstrate the ro-

bustness of our authentication mechanism to temperature and aging effects. For a
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sample temperature range of 10◦C to 60◦C, we show that the mechanism achieves a

100% true-positive (successful authentication) rate and 0% false-positive rate. For a

ten-month-old DRAM module, it also ensures a 100% true-positive rate and 0% false-

positive rate. We also implement a True Random Number Generator (TRNG) using

D-PUF by exploiting the Variable Retention Time (VRT) phenomenon in DRAMs

and demonstrate that the generated random numbers pass all the tests specified in

the NIST Statistical Test Suite.

1.1.2 Memory-Based Combination PUFs for Device Authentication in

Embedded Systems

Current memory-based PUFs are constructed using a single memory component in

the device, i.e., based on a single entropy source. This means that the PUF represents

the identity of the component and not that of the system. If the component is removed

and transferred to a different system (invasive attack), the identity transfers over as

well, which is undesirable. Moreover, the use of a single memory component makes it

vulnerable to sophisticated non-invasive attacks [14]. To mitigate these concerns, it is

desirable that the PUF be dependent on multiple system components (some of which

may be more tightly integrated into the system than others), thereby performing

multi-component authentication. Recent works [15,16] have tried to address a subset of

these shortcomings. However, the choice of entropy sources used in these PUF designs

renders them unsuitable for multi-component authentication. They also require the

addition of custom hardware to the system and, hence, cannot be implemented using

Commercial-Off-The-Shelf (COTS) systems.

As presented in Chapter 4, this dissertation overcomes these limitations by propos-

ing the design of a memory-based combination PUF, henceforth referred to as C-

PUF [9]. By tightly integrating heterogeneous memory technologies, C-PUF exhibits

high entropy alongside an exponential number of CRPs, and takes the first step to-

wards multi-component authentication in an embedded device. The heterogeneous
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nature of the entropy sources (memories) used and C-PUF ’s ability to undergo intrin-

sic reconfiguration (ability to reconfigure the PUF at runtime without any additional

hardware) protects it from various security attacks. C-PUF also features a light-

weight authentication scheme to ensure robust operation (authentication) under wide

environmental and temporal variations. We implement, demonstrate, and evaluate

several fully-functional prototypes of C-PUF in a real system using two widely-used

memory technologies, Static Random Access Memories (SRAMs) and Dynamic Ran-

dom Access Memories (DRAMs). Extensive authentication tests performed across a

wide temperature range (20◦C – 55◦C) and accelerated aging (12 months) achieved

greater than 97.5% true-positive rate. The absence of any false-positives, even under

an invasive attack, further highlights the effectiveness of the overall design.

1.1.3 A Lightweight End-to-End Authentication Protocol for Implantable

Medical Devices

The past decade has witnessed a rapid growth in the use of IMDs for monitor-

ing and treating a variety of medical conditions, with their global market valuation

expected to reach $50 billion by 2024 [17]. IMDs are increasingly being equipped

with wireless interfaces [18], allowing them to communicate with an External Device

(ED) such as a doctor’s programmer or a patient’s smartphone. While this greatly

improves standard of care (allowing for post-deployment tuning of therapy as needed

and remote, real-time access to health data), it also exposes the IMD to a range of

security concerns [3, 4, 19–21] such as potential interaction with untrusted EDs and

potential leakage of confidential medical data.

Several techniques [22–30] have been proposed to address these concerns. One

such technique [28,30] leverages a trusted entity such as a Health Server (HS), which

assumes the role of an authenticator and arbitrates access to an IMD when an ED

requests it. However, there are three unaddressed challenges with this approach.

First, due to their severely limited energy budget, IMDs [18] typically utilize short-



8

range communication technologies such as Bluetooth LE and, hence, do not have

direct network connectivity with a remote HS. This is in contrast to an ED, such as

a smartphone, which can use long-range wireless technologies such as Wi-Fi, LTE,

etc., for network access. Second, involving the HS for every single authentication

session can incur significant energy overheads at the IMD, besides increasing the load

on the HS and the network. This, in turn, gives rise to the third challenge. If the

HS is not reachable over the network, the IMD and ED cannot securely communicate

with each other. Besides, some of these techniques [28, 29] require the (resource-

constrained) IMD to perform asymmetric cryptography operations resulting in high

energy overhead.

Chapter 5 presents the design of a lightweight end-to-end authentication and key-

exchange protocol [10] based on the trusted-entity approach that fully addresses each

of the aforementioned challenges. A key requirement of the proposed protocol is the

availability/generation of unique identifiers/keys and random numbers on demand.

Although other techniques such as statically-stored secret keys and pseudo-random

number generators could be utilized, we utilize a PUF to satisfy this requirement and

present its seamless integration with existing cryptography techniques in the proto-

col. The result is a robust, secure, and lightweight protocol, which protects against

various security attacks [19–21] and can be easily implemented using Commercial-

Off-The-Shelf (COTS) devices with minimal or no additional hardware resources.

It also overcomes the shortcomings associated with prior PUF-based authentication

techniques [29–32] and those of earlier trusted-entity approaches [28].

The rest of this dissertation is organized as follows. Chapter 2 serves as the

necessary background for this dissertation and also discusses prior work. Chapter 3

presents the design of the proposed DRAM PUF alongside a robust, low-overhead

mechanism for performing device authentication across temporal and environmental

variations. Chapter 4 motivates the need for multi-component authentication in an

embedded system and presents the design of the proposed memory-based combination

PUF. Next, Chapter 5 highlights the need for authentication and key-exchange in an
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IMD ecosystem and presents the design of the proposed lightweight authentication

and key-exchange protocol. Finally, Chapter 6 concludes the dissertation.
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2. BACKGROUND AND RELATED WORK

As discussed in the previous chapter, there are several challenges associated with

building a secure IoT. One way of addressing several of these challenges, which the

current dissertation focuses upon, is device authentication. In this dissertation, we

present three research works towards enabling low-cost and low-overhead device au-

thentication in embedded systems. Before moving into the details of their design, we

discuss the necessary background and related work in this chapter.

2.1 Device Authentication

Authentication can be defined as a process by which a trusted system (authen-

ticator) verifies the identity of an untrusted entity (client) before granting it access

to any data or resources. It is usually performed using a challenge-response mecha-

nism [8,33], as depicted in Fig. 2.1. The authenticator hosts a service that is restricted

to genuine clients only. Note that, in other cases, the authenticator may not host the

service itself but only arbitrate access to a server that does. To verify the identity of a

client, the authenticator first provides it with a challenge. The client then generates

a response to the challenge. Prior to this, the authenticator creates a Challenge-

Response Pair (CRP) database (Fig. 2.1) that stores all the challenges and their

expected responses from genuine clients. By comparing the current client’s response

against the one stored in the CRP database, the authenticator infers whether the

client is genuine or not. As shown, Client-1 (genuine) passes authentication and is

granted access to the service as its response (R1) to the challenge (C) matches with

the CRP database. On the contrary, the response (R2) generated by Client-2 (fake)

is different from the expected response of a genuine client, and hence Client-2 is not

authenticated.
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Fig. 2.1.: Overview of challenge-response-based authentication

In the context of the IoT, this challenge-response mechanism leads us to device

authentication. The client, here, could refer to a device trying to connect to a (private)

network while the authenticator is a trusted authority and could refer to the network

gateway. By ensuring that each of these devices is authentic, in other words, by

performing device authentication, a secure network can be built (Fig. 1.2).

2.2 Physically Unclonable Functions (PUFs)

Traditionally, device authentication has been carried out using static techniques

such as passwords, secret keys, public-key infrastructure (PKI), etc. However, these

techniques have several shortcoming such as the need for user intervention and vul-

nerability to present-day sophisticated attacks. Most importantly, a large number of

the IoT devices are low-cost in nature and lack the resources – compute, memory, en-

ergy, etc., which are required by some of these authentication techniques. All of these

motivate us to look into alternate techniques for performing device authentication.

One such technique is based on the use of hardware-intrinsic security mechanisms

such as Physically Unclonable Functions (PUFs) [6]. A PUF maps a set of challenges

to a set of responses based on random physical variations during the manufacturing

of a device (containing the PUF). As a result, the challenge-response behavior of

the PUF is highly unpredictable. Also, the fact that it is impossible to manufacture

a PUF with the same behavior as another makes it unclonable and unique. These
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features make PUF an ideal candidate for authentication and random number genera-

tion. Randomly generated secret keys are used by various cryptographic applications

such as keyed-hash message authentication code (HMAC), encryption/decryption,

etc., besides serving as unique fingerprints or signatures that can be used to identify

a device. A PUF enables the generation of secret keys on demand rather than per-

manently storing them in non-volatile memory, drastically reducing the implications

of physically invasive attacks. Device authentication can be considered an extension

of the above key-generation process but involves the challenge-response mechanism,

described earlier, to authenticate the device (client). The authenticator sends the

challenge to the device, which utilizes the PUF present inside it to respond to the

challenge.

One of the earliest works on PUFs was carried out in [34], resulting in an optical

PUF based on the scatter pattern of a laser beam. Ref. [6] introduced the concept of

silicon PUFs and provided various circuit realizations that could be integrated into an

electronic circuit. Due to this ease of integration, silicon PUFs have become extremely

popular in present day implementations. Two such examples are Ring Oscillator and

Arbiter PUFs [33] that exploit the inherent delay characteristics in IC components for

authentication and generation of secret keys. However, both these implementations

require dedicated circuitry that is added solely for the PUF operation and present an

area overhead. Memory-based PUFs, which form another type of silicon PUFs and

are utilized in this dissertation, are discussed next. Ref. [35] proposed a generic PUF

architecture targeted towards preventing modeling attacks.

2.2.1 Memory-based PUFs

Memory-based PUFs utilize the memory module (SRAM, DRAM, etc.) already

present on the IC/SoC and require minimal (or no) additional circuitry for their

operation, giving them a distinct advantage over other PUF implementations. Hence,

this dissertation utilizes two such PUFs – DRAM PUF and SRAM PUF, based on
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the refresh-pausing and power-cycling approaches, respectively. These are explained

next.

2.2.2 DRAM: Structure and PUF mechanisms

Fig. 2.2 shows the fundamental building blocks of a DRAM bit cell, namely an

access transistor (M) and capacitor (C). The bit-value is decided by the charge on the

capacitor; full charge implies ‘1’ and no charge implies ‘0’, or vice-versa. This charge

leaks over time due to several factors related to the non-ideality of the access transis-

tor and eventually results in the loss of data stored in the cell. This phenomenon is

referred to as a bit-flip (‘1’→‘0’ or ‘0’→‘1’) in DRAMs. To prevent this, the DRAM

memory-controller refreshes the cells (replenishes the charge) periodically (e.g., every

64ms). Due to process variations, the rate of leakage (or bit-flip) varies widely across

DRAMs (and within the same DRAM). This forms the basis of the refresh-pausing

approach in a DRAM PUF [7, 8, 11, 36, 37], in which refresh operations are (inten-

tionally) paused for a certain time-interval, generating unique bit-flip patterns in the

DRAM data. This data is then read out and forms the PUF’s response. Unlike the

SRAM PUF (described above), the parameters in a DRAM PUF’s challenge can be

extensively varied [8], supporting an exponential number of CRPs (Section 4.3.1).

Several DRAM PUFs have been proposed by researchers over the years. Reduction

of the write-duty cycle in a DRAM module is employed in [12] to implement a strong

PUF. However, the reduction is achieved by adding a delay generator to the write-

circuitry of the DRAM module. This not only requires very precise control over the

write signal but is also not applicable to off-the-shelf DRAMmodules. Ref. [11] utilizes

refresh pausing to generate unique identifiers and random numbers from a DRAM

module. However, it employs a constant (and large) refresh-pause interval of 256 s -

8192 s that could be considered too slow for authentication. A decay-based (or refresh-

pausing-based) DRAM PUF that can be accessed during run-time in a commodity

device is presented in [38]. However, just like [11], the lack of DRAM characterization
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in the proposed design leads to the usage of large refresh-pause intervals (120 s - 320

s) and hence, leads to slow authentication. Ref. [39] generates random numbers from

DRAM using remanence effects but requires power-cycling (power off→ power on→

read data) of the DRAM module. The power-cycling approach has also been utilized

to generate the fingerprint from the start-up values of a DRAM module [13, 40].

Modifying read access latency to generate error patterns formed the basis of the

DRAM PUF presented in [41]. Other approaches to realizing DRAM PUFs [42]

have also been developed. However, the refresh-pausing-based DRAM PUF, which

this dissertation utilizes, remains as one of the most popular and widely-adopted in

several state-of-the-art systems.

2.2.3 SRAM: Structure and PUF mechanisms

Each cell (or bit) in a Static Random Access Memory (SRAM) is arranged in

a six-transistor configuration1 consisting of cross-coupled CMOS inverters (M1–M4)

and access transistors (M5–M6), as shown in Fig. 2.3. Powering-up the SRAM causes

each cell to reach one of two states, [Q=1, Q=0] or [Q=0, Q=1], depending upon the

relative strengths of the transistors as well as noise.

1While other SRAM cells do exist, the 6-transistor cell is commonly used.
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Inherent process variations during the manufacturing process cause these strengths

to vary across SRAMs (and also within the same SRAM) leading to the data values in

every SRAM being different immediately after start-up. This forms the foundation of

an SRAM PUF [43,44] that follows the power-cycling (power off→ power on→ read

SRAM) approach to generate unique start-up values as responses. The challenge,

here, specifies the address of the block inside the SRAM from where the start-up

value is to be read as well as its size (i.e., number of bits).

A large body of work has also focused on building SRAM PUFs. Ref. [43] extracted

unique fingerprints and generated true random numbers by using the power-up state

(start-up value) of an SRAM chip. Another SRAM-based PUF was presented in [45],

which utilized error-patterns in caches resulting from supply-voltage reduction. This

approach enables run-time generation of SRAM fingerprints since it does not require

power-cycling. Ref. [46] observed variations in read current with the stored content

in an SRAM array and used them to extract unique fingerprints. Write failures

are (intentionally) introduced in an SRAM array through a programmable wordline

duty-cycle controller for generating unique responses in [47]. Ref. [48], on the other

hand, proposes writing values into a column of SRAM cells, followed by concurrent

activation of multiple wordlines. Thus, multiple cells in the column are read at the

same time, forming the PUF response. In this dissertation, we utilize the power-
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cycling-based SRAM PUF as it remains one of the most popular and widely-adopted

in several state-of-the-art systems.

2.2.4 Other Memory-based PUFs

Non-volatile memories have also been explored as potential PUF implementations.

Refs. [49,50] proposed mechanisms to extract device fingerprints from flash memories;

the latter also proposed true random number generation using a similar approach.

Ref. [51] proposed a scheme that utilizes NVM (e.g., memristor, flash, etc.) cells to

realize a PUF without using any helper data (for error correction).

2.2.5 Reconfigurable PUFs

A parallel approach to the development of strong PUFs has focused on reconfigu-

ration. Reconfigurable PUFs (rPUFs) [52, 53] have a mechanism to transform them-

selves, generating a new and unpredictable challenge-response behavior. Ref. [54]

implements a logically reconfigurable SRAM PUF for secure key storage by hashing

the start-up state of the SRAM with a stored bitstream, referred to as the logical

state.

2.2.6 Strong and Weak PUFs

PUFs have been divided into two broad categories [55] - strong PUFs and weak

PUFs. Strong PUFs [7, 8, 11, 38, 46, 48] can support a very large number of CRPs

and are well suited for authentication. On the other hand, Weak PUFs [43, 44] are

primarily used for secret key generation as they support a relatively much smaller

number of CRPs.
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2.2.7 Combination PUFs

Combining (the output of) multiple locations of one or several memory blocks

located inside an IC to derive unique keys was mentioned in a patent [15]. By us-

ing an address decoder that can permute access order across different memory lo-

cations/blocks in a potentially unknown manner, the work claims to increase the

resistance of the PUF against invasive attacks. However, no physical implementation

or test results thereof have been published yet. A similar but non-memory-based

PUF was presented in [16], which proposes combining several on-chip entropy sources

(e.g., clock sinks) in an optimized manner towards better (overall) entropy and ro-

bustness.

2.3 Authentication in Implantable Medical Devices (IMDs)

An increasing number of Implantable Medical Devices (IMDs) are equipped with

wireless interfaces [18], allowing them to communicate with an external devices such

as a doctor’s programmer or a patient’s smartphone, etc. While this greatly improves

standard of care, it also exposes the IMD to a range of security concerns [3, 4, 19–

21] such as potential interaction with untrusted devices and potential leakage of

confidential medical data. Several techniques [22–30] have been proposed to address

these concerns. We discuss some of these next.

2.3.1 Trusted-entity Approach and the IMD Ecosystem

One technique of addressing the above-mentioned concerns with IMDs [28, 30]

leverages a trusted entity such as a Health Server (HS), which assumes the role of

an authenticator. Fig. 2.4 shows an IMD ecosystem based on this trusted entity and

comprises of three (types of) entities: Implantable Medical Device (IMD), External

Device (ED), and Health Server (HS). IMD is a small device that is embedded in

a patient to monitor or treat a certain physiological condition. Typical examples of
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Fig. 2.4.: An End-to-End IMD Ecosystem

IMD include Implantable Cardioverter Defibrillator (ICD), insulin pump, and neu-

rostimulator. ED, on the other hand, is an external device that is used to program or

configure IMD (after surgical implantation) as well as process the physiological data

relayed by it for monitoring and therapy. Hence, ED is also known as a programmer

in some literature and is typically a hand-held device carried by a doctor or medical

practitioner. Note that such a device can also be carried by the patient for day-to-day

self-monitoring. The third entity in this ecosystem is HS, which serves as the trusted

entity itself. A typical example of HS is a patient database server maintained by a

healthcare provider. The HS arbitrates access to an IMD when the ED requests it.

Upon successful authentication of the ED, the HS distributes a shared key to both the

IMD and the ED. This key is used to encrypt all further communication between the

IMD and ED. Note that the trusted-entity approach is popular due to its simplified

but secure usage model and requirement of no additional devices.

2.3.2 Other Approaches to IMD Authentication

Over the years, several other approaches have also been proposed to enable authen-

tication and key exchange in IMDs. Proximity-based approaches [24] authenticate an

untrusted entity (e.g., ED) based on its proximity (or distance) from the authenti-
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cating entity (e.g., IMD). Biometric approaches [25, 26], on the other hand, adopt a

touch-to-access policy, i.e., they use a patient’s biometric or physiological values for

authentication and extraction of shared keys. Another technique to authentication

and key-exchange in IMDs uses a side-channel such as vibration [27]. A large body of

work is proxy-based, i.e., use an external (patient-carried) proxy device [26], which

is trusted and mediates communication with the IMD. Lastly, the trusted-entity ap-

proach, described earlier, is used in several works [28, 30] to arbitrate access to the

IMD and distribute shared keys. While each of the aforementioned approaches has

its advantages and disadvantages [20,22], we adopt the trusted-entity approach in the

current work due to its better security capabilities, simplified usage model (for the

patient), and the potential for seamless integration with Commercial-Off-The-Shelf

(COTS) devices.

In recent years, PUFs have been used to implement several IMD-specific [29,30] as

well as generic (not IMD-specific) authentication protocols [31,32]. Ref. [29] proposed

utilizing two PUFs, one in an intra-body IC (IMD) and one on an FPGA (ED), both

of which are matched to produce the same response. However, the proposed technique

forces the use of an FPGA and requires a cumbersome pre-deployment matching pro-

cess. Also, it uses asymmetric (public-key) cryptography, which is significantly more

expensive than symmetric key cryptography in terms of energy consumption. Ref. [30]

utilizes PUF-generated physically-obfuscated (or secret) keys stored in two IC cards,

belonging to the doctor (ED) and patient (IMD) respectively, for authentication and

key-exchange between the two entities. However, the protocol requires the services

of HS during every authentication session, which has several disadvantages such as

high overhead at the IMD and HS as well as service disruption in the event of HS’

unavailability. Additionally, both the aforementioned works need special hardware,

viz. an FPGA and an ASIC, and are not amenable to implementation on COTS de-

vices. Ref. [31] presents a survey of several generic authentication and key-exchange

protocols. These protocols are designed for a two-entity ecosystem, where the entities

can communicate directly with and authenticate each other. On the other hand, as
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shown in Fig. 2.4, the IMD ecosystem in the current work comprises of three entities,

two of which (IMD and HS) do not have any direct connectivity with each other. As

a result, these protocols are not directly applicable to the current ecosystem. Another

generic PUF-based protocol was described in Ref. [32], which performs authentication

and key-exchange between a resource-constrained prover (containing a PUF) and a

resource-rich verifier without requiring the PUF’s (prover’s) challenge-response pairs

to be stored at the verifier end. Moreover, it assumes that the verifier has direct

connectivity with the trusted-entity. On the contrary, the current ecosystem is based

on IMD (verifier) being resource-constrained while ED (prover) being resource-rich.

IMD (verifier) also does not have direct connectivity with HS (trusted-entity), and

hence, the protocol described in Ref. [32] is not applicable to the current ecosystem.
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3. AN INTRINSICALLY RECONFIGURABLE DRAM
PUF FOR DEVICE AUTHENTICATION AND RANDOM

NUMBER GENERATION

Over the past few years, researchers have taken an active interest in hardware-intrinsic

security mechanisms, and in particular, Physically Unclonable Functions (PUFs) [6].

PUFs have proved to be a secure, low-cost, and robust authentication measure against

issues of counterfeiting and information leakage. They exploit the random physi-

cal variations inherent to any manufacturing process to generate device-specific and

unclonable fingerprints. These unique fingerprints can be used as the basis for a

challenge-response mechanism for device authentication as well as for random num-

ber (e.g., secure key) generation.

While a large variety of PUF implementations have been proposed over the years,

memory-based PUFs [11, 13, 43], in particular, are an attractive candidate due to

the ubiquitous presence of memory in virtually every embedded system. Moreover,

memory-based PUFs require minimal or no additional circuitry for their operation,

giving them a distinct advantage over other PUF implementations. One such example

of a memory-based PUF, which we focus on in this chapter, is based on Dynamic

Random Access Memory (DRAM). DRAM is used as the main memory in a large

number of modern embedded systems (as illustrated in Fig. 3.1) due to its high density

and low cost. As is well-known, DRAM cells must be refreshed periodically to preserve

the stored data. This need for refresh operations also makes DRAM an attractive

candidate for use as a PUF, especially for challenge-response-based authentication

and random number generation.
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3.1 Chapter Contributions

Prior approaches to DRAM-based PUFs suffer from several shortcomings such as

low speed of operation [11], non-applicability to commercial off-the-shelf (COTS) de-

vices [12], and the need for power cycling the DRAM module [13,39]. Moreover, the

near static nature of the response-generation mechanism in some of the works [11,13]

makes them vulnerable to various security attacks [14]. To address these limitations,

we propose a DRAM PUF based on refresh pausing that not only supports a very

large number of challenge-response pairs (CRPs) through the variation of different

parameters but is also intrinsically reconfigurable, i.e., its challenge-response behavior

can be substantially modified without the use of any additional circuitry. Hence, the

PUF can be easily implemented in most off-the-shelf systems and provides consid-

erable protection from various security attacks. Specifically, we make the following

contributions [7, 8]:

• We perform a comprehensive error characterization of DRAM modules by vary-

ing different parameters (refresh-pause interval, data patterns, and tempera-

ture) to gain a deep insight into DRAM behavior. This insight allows us to

systematically select DRAM blocks that are best suited for use in a PUF.
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• We propose an intrinsically reconfigurable DRAM PUF (D-PUF), based on

refresh pausing, for device authentication and random number generation. Re-

configuration is achieved through variation of the refresh-pause interval, altering

the challenge-response behavior of the PUF and making it robust against var-

ious attacks. We also use D-PUF to design a secure, low-overhead mechanism

for performing device authentication. The mechanism operates robustly even

in the presence of environmental and temporal variations.

• We implement D-PUF and our proposed authentication mechanism in a real

system using off-the-shelf DRAM modules and evaluate it thoroughly. In partic-

ular, we demonstrate a 4.3X-6.4X reduction in authentication time, compared

to previous work. Using controlled temperature and accelerated aging tests, we

demonstrate the robustness of our authentication mechanism to temperature

and aging effects. For a sample temperature range of 10◦C to 60◦C, we show

that the mechanism achieves a 100% true-positive (successful authentication)

rate and 0% false-positive rate. For a ten-month-old DRAM module, it also

ensures a 100% true-positive rate and 0% false-positive rate.

• We implement a True Random Number Generator (TRNG) using D-PUF by

exploiting the Variable Retention Time (VRT) phenomenon in DRAMs and

demonstrate that the generated random numbers pass all the tests specified in

the NIST Statistical Test Suite.

The remainder of this chapter is organized as follows. Section 3.2 describes the mo-

tivation behind this work. Next, Section 3.3 presents the D-PUF design while Section

3.4 describes the mechanisms for authentication and random number generation using

D-PUF. Section 3.6 and Section 3.7 describe the experimental setup and present the

results of our experiments, respectively. A discussion about implementation-related

considerations is provided in Section 3.8. Finally, Section 3.9 concludes the chapter.
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3.2 Motivation

Memory-based PUFs have a distinct advantage over other PUF implementations

as they use components (SRAM, DRAM, etc.) that are inherent to most modern

embedded systems. Hence, they require minimal or no additional circuitry for their

operation and could enable energy-efficient designs for emerging IoT devices [56].

Over the past few years, SRAM-based PUFs have been widely studied and used as

security primitives for various state-of-the-art systems [43,44,47,54]. However, these

PUFs suffer from several shortcomings such as limited entropy, the requirement of

power cycling, high cost, etc., and are therefore limited to applications that require

a very few number of CRPs or random numbers. DRAM-based PUFs, with their

large address space and high density, have the potential to support a large number

of CRPs (or random numbers). However, current designs suffer from several short-

comings such as the requirement of power cycling [13, 40] and large refresh-pause

intervals [11, 38]. Moreover, weak (memory-based) PUFs are vulnerable to various

sophisticated attacks [14]. One way of guarding against such attacks is altering the

challenge-response behavior of a PUF, in other words, reconfiguring the PUF [52–54].

However, these designs require additional hardware resource (e.g., private NVM)

to achieve reconfiguration, and hence, cannot be applied to commercially available

DRAM module.

3.3 D-PUF: An Intrinsically-reconfigurable DRAM PUF

Towards addressing the shortcomings of memory-based PUFs described earlier,

we propose an intrinsically reconfigurable DRAM PUF (D-PUF) based on refresh

pausing. As described in Chapter 2, refresh pausing is a lightweight approach towards

implementing DRAM PUFs and involves stopping the refresh operations in a DRAM

module for a specified interval. In DRAMs, inter-die and intra-die variations lead to

highly variable bit-cell strengths distributed randomly across different modules as well

as within a module. During refresh pausing, these variations cause DRAM cells to leak
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charge at different rates, resulting in highly random yet unique bit-errors in the data

stored in the DRAMmodule. We exploit this randomness (entropy) to generate CRPs

(for authentication) as well as random numbers from a DRAM module. Moreover,

the existence of both nature of bit-flips, i.e., ‘1’ → ‘0’ bit-flips (true-cells) and ‘0’ →

‘1’ bit-flips (anti-cells) [57], in the same module enables us to extract more entropy

out of the PUF. D-PUF is also designed to be intrinsically reconfigurable – the choice

of refresh-pause interval as the reconfiguration parameter (described later) enables

alteration of the PUF behavior without the requirement of any additional resource.

Hence, it can be easily applied to commercially available DRAM modules in contrast

to [12, 54]. It also alleviates the problem of a large refresh-pause interval, which was

required in [11, 38], and also performs robust authentication across a comparatively

much wider operating range (temperature and aging). The refresh pausing approach

also ensures that there is no need for power cycling, unlike [13,39].

In this work, we try to realize two important functions using a DRAM PUF - (i)

authentication and (ii) random number generation. As described in Chapter 2, au-

thentication refers to any process by which a trusted entity verifies the identity of an-

other entity trying to access the former’s services. We propose a secure, low-overhead

mechanism that uses D-PUF and performs device authentication without the need for

additional cryptographic resources, which are used in traditional encrypted-password-

based methods. The authentication is also assisted by a low-complexity algorithm

for selecting the DRAM blocks in D-PUF that ensure the minimum required entropy

at the lowest refresh-pause intervals. Random number generation involves produc-

ing a sequence of numbers that cannot be predicted better than by random chance.

Random numbers find uses in various cryptographic applications such as HMAC and

encryption/decryption as well as in Monte Carlo simulations, statistical research,

etc. These functions require D-PUF to generate a response and random number, re-

spectively; we briefly describe the sequence of steps involved in these processes here.

A random binary bitstream of a particular size, referred to as challenge, is first written

onto a specified memory address in D-PUF, following which, the memory controller
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pauses the refresh operation for a pre-decided time interval, called the refresh-pause

interval. Next, the binary bitstream is read out from the same memory address and

processed for subsequent error correction using some information (helper data) al-

ready stored at the device containing the PUF. The error-corrected bitstream is then

sent out as the response. For generating a random number, the read-out raw bitstream

(without error correction) is applied to a suitable hash algorithm (e.g., SHA-256), to

produce a random binary sequence. Whenever needed, reconfiguration is carried out

by simply changing the refresh-pause interval associated with the generation of the

response or random number.

Next, we describe device authentication and random number generation using

D-PUF in detail.

3.4 Device Authentication using D-PUF

The device authentication mechanism in D-PUF is divided into three phases

- (i) characterization phase, (ii) enrollment phase, and (iii) authentication phase.

Fig. 3.5, 3.6, and 3.7 present flow diagrams of these different phases, which are ex-

plained later in detail. The dotted lines between the device (containing the PUF)

and the authenticator represent the interactions between them, while the solid lines

show the actions inside each of these entities. The characterization phase ensures

the usage of the minimum refresh-pause interval for authentication by carrying out

a coarse-grained error characterization of the DRAM module (used as the PUF) and

simultaneously guarantees that it meets the minimum required entropy. During en-

rollment phase, the PUF responds to random challenges sent by an authenticator,

generating a CRP database that is stored at the latter. It is followed by the authen-

tication phase, where responses are generated by the PUF for one or more challenges

picked from the CRP database. These responses are then compared to the ones stored

in the database; if there is an exact match or the difference is within a small threshold,

the device containing the PUF is authenticated. Note that by varying different pa-
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Fig. 3.2.: Authentication using D-PUF

rameters associated with the generation of a response, a very large number of CRPs

can be generated for carrying out challenge-response-based authentication. Hence,

D-PUF closely resembles a strong PUF. Fig. 3.2 provides a high-level overview of the

entire process.

Before delving into the details of the authentication mechanism, we define a few

terms and briefly discuss our assumptions. We also present the formats of the chal-

lenge and response used in our design below.

3.4.1 Definitions and Assumptions

• Device (D): An untrusted client device that requests authentication and contains

D-PUF. It is assumed to possess sufficient computational and memory resources

to perform error correction and store kilobytes of binary data. An example of

such a device is a smartphone.

• Reconfigurable DRAM PUF or D-PUF (P): The DRAM module that imple-

ments PUF functionality in the device D. When we mention that a response is

generated by D, it should be assumed that the same is actually generated by

D-PUF (P) present inside D.
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Fig. 3.3.: Challenge and Response Format and CRP database

• Authenticator (A): A trusted party which authenticates the device D. A is as-

sumed to have access to the CRP database and limited information about the

characteristics of P. It possesses greater computational and memory resources

than D to process and store gigabytes of data, e.g., a server.

3.4.2 Challenge and Response Message Format

In the proposed design, challenges and responses are represented as 5-tuple and

2-tuple messages respectively, as depicted in Fig. 3.3. An entry in the CRP database

comprises of a challenge message (CM ) and a golden response message (GRM ) (ex-

plained later in Section 3.4.4).

The response generated during authentication is referred to as a response message

(RM ). Id refers to the index number assigned by A to an entry in the CRP database.

Bitstream is a random binary sequence of size bytes generated by A (in a CM ) or

D (in an RM and a GRM ). Specifically, in a CM, bitstream is the data written onto

P while in an RM and a GRM, it refers to the data read from P. Address specifies

the starting memory address in P where this write or read occurs. Wrapper pattern

represents a predefined binary sequence and is explained next.

Wrapper pattern We observed that the number, position, and nature of bit-flips

in a response generated by a DRAM block in P were influenced by the peripheral

data-bits surrounding the block (Section 3.7.2). These peripheral data-bits, written
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just before the beginning and after the end of the block, are collectively referred to

as wrapper data and are specified by a wrapper pattern. The wrapper pattern is a

part of the challenge message and can be one of the several predefined types, e.g., all

1s, all 0s, checkered, etc. The challenge bitstream is padded with the corresponding

wrapper data before it is written into the block. However, the wrapper data is not

part of the response message that is sent back to A. Wrapper pattern, thus, serves as

another variable parameter for CRP generation.

3.4.3 Characterization phase

The characterization of a DRAM module (P) involves understanding its bit-flip

behavior, which is affected by numerous factors, e.g., refresh-pause interval, input-

data pattern, temperature, etc., as well as the DRAM module itself. We utilize

the characterization results to derive vital insights that enable D-PUF to have a

lower authentication overhead, compared to prior art, while meeting the specified

entropy requirements. Besides, they guide the design of a robust authentication

mechanism across a wide range of operating conditions. A step-by-step description

of the characterization methodology is given later in Section 3.6; Section 3.7.2 later

shows how the bit-flip behavior is affected by various factors (parameters) in one of

the DRAM modules.

Fig. 3.4 shows the characterization results for two DRAM modules at different

refresh-pause intervals with other parameters remaining the same. A few key obser-

vations from these results that are leveraged in the D-PUF design are given below:

1. A conservative (and fixed) refresh-pause interval [11] satisfies entropy require-

ments but can lead to slow authentication in DRAM PUFs based on refresh

pausing.

2. Given a refresh-pause interval, some blocks in the DRAM address space may

not contain the required entropy (bit-flips), making them unsuitable for PUF
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Fig. 3.4.: Variation of bit-flips across different DRAM modules

operation. For example, only some of the blocks in Module A satisfy an entropy

requirement of 250 bit-flips at 40 s refresh-pause interval, as shown in Fig. 3.4(a).

3. The variation in entropy is more pronounced across modules, making a constant

refresh-pause interval potentially unsuitable for some modules. For example, for

the same entropy requirement of 250 bit-flips, a relatively lower interval of 20 s

is suitable for Module B, as shown in Fig. 3.4(b), unlike in the case of Module

A.

4. Higher temperatures result in an exponential rise in the number of bit-flips,

which can potentially hinder the authentication process, as described later in

Section 3.7.4.

Fig. 3.5 shows the flow diagram of the proposed characterization phase where

the numbers adjacent to each rectangle specify the sequence of operations during

the phase. It starts with the generation of the characterization results (C ) of a sub-

address space (S) in the DRAM module, P (in D), as described in Section 3.6 [step 1].
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The characterization results provide insights into the number, position, and nature

of bit-flips within P. Note that these results are generated for a certain refresh-pause

interval, t. Ideally, t should be as low as possible. However, the lowest possible

refresh-pause interval may have already been used for the sub-address space (S),

and hence may not be available for use. D sends these results to the authenticator,

A, which uses it to choose the best blocks that meet the entropy requirements at

the lowest available refresh-pause interval [steps 2, 3]. Algorithm 1 describes the

proposed pseudocode for the selection of blocks [step 4]. Note that a very low refresh-

pause interval (t) may lead to none (or very few) of the blocks in a particular sub-

address space (S) meeting the entropy requirements. As the block selection (and

characterization) process is computation and time-intensive, a sufficient number of

blocks (Nmin, decided by the PUF designer) should be selected up front to create

enough CRPs without the need for re-characterizing (and re-selecting blocks) anytime

soon. Hence, in case the number of selected blocks is less than Nmin, A may request

D to provide either the characterization results for a new sub-address space (S’) at
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t or those for the same sub-address space (S) at a higher refresh-pause interval, t’

(t<t’) [step 5]. Moving to a new sub-address space (S’) while still utilizing the lower

refresh-pause interval (t) could later enable fast authentication (during the enrollment

phase). But, it could exhaust the total available address space in D quickly. Moving to

a higher interval (t’), on the contrary, could result in relatively slower authentication

but will exhaust the address space slowly. While the former approach is suitable for

PUFs that have a large address space and require fast authentication, the latter is

suitable for PUFs that have a small address space but can tolerate slow authentication.

The PUF designer can take this decision based on the available address space vs.

required authentication speed trade-off. Finally, upon fulfillment of the “minimum

number of selected blocks” criteria, A stores the information about the selected blocks

(address, size, etc.) and the associated refresh-pause interval [step 6] and then signals

D about the completion of the block selection process [steps 7, 8]. The information

stored by A is later used during the enrollment phase for generation of the CRP

database.

Block selection Algorithm 1 describes the proposed pseudocode for the selection

of blocks. Block selection at A starts by finding the bit-flip positions (represented

as ‘1’ in F i) for each of the input-data patterns followed by combining them to

generate all possible bit-flip positions (F ). Beginning with the lowest specified block-

size first, selection of blocks is carried out such that they meet the minimum entropy

requirements (Emin). Eb represents the entropy of a block b and is specified by the

number of ‘1’s in F corresponding to that block. Moreover, the selected blocks are

non-overlapping, i.e., they do not share any memory address (and bit-flips) with each

other. Though it may seem like a conservative approach, it ensures that the bit-

flip positions are not shared among any two blocks, and hence selects blocks with a

sufficient number of unique bit-flips.

Note that an attacker may be able to get some insights into the DRAM behav-

ior if he/she has access to the characterization results. As a result, it needs to be
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Algorithm 1: Pseudocode for block selection
Input: I = {I1, I2, ...., In}: Set of input data-patterns for characterization,

C = {C1, C2, ...., Cn}: Set of characterization results of a sub-address space,

S, at a refresh-pause interval, t, for different input data-patterns,

Z = {Z1, Z2, ...., Zm}: Set of specified block-sizes in increasing order,

Emin = Minimum required entropy specified in terms of number of bit-flips

Output: L = {L1, L2, ...., Lm}: Set of lists of selected blocks where Li is the

list of blocks with size Z i

1 F = φ, L = {φ} // F represents combined bit-flips for S

2 for i = 1 to n do

3 F i = C i ⊕ I i // Bitwise XOR

4 F = F + F i // Bitwise OR

5 for j = 1 to m do

6 Bj = Get_All_NonOverlapBlocks(S,Z j);

7 for k = 1 to m do

8 foreach b ∈ Bk do

9 Eb = Get_Entropy(b, F )

10 if Eb > Emin then

11 OL = Check_Overlap(b, L)

12 if OL = False then

13 Lk = Lk ∪ b

14 L = L ∪ Lk
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ensured that the characterization results are shared with the authenticator securely.

Therefore, we assume that the characterization phase occurs in a secure environ-

ment [54, 58, 59]. The characterization phase is, in fact, much less frequent than the

other two phases as it occurs only before initial deployment or in case D runs out

of address space (in P) for the PUF operation. As regards to the characterization

results, DRAM manufacturers may choose to provide them in the DRAM module

itself. These could then be directly utilized by the PUF designer, thus removing the

need to characterize again and saving valuable time/energy.

3.4.4 Enrollment Phase

The enrollment phase primarily involves the generation of the CRP database and

is also assumed to be carried out in a secure environment [54,58,59]. Fig. 3.6 presents

the flow diagram for the enrollment phase.

The device, D, starts by sending an enrollment request to the authenticator, A

[steps 1, 2]. A responds by sharing the refresh-pause interval (t, stored during the

characterization phase) with D [steps 3, 4]. Next, A constructs the challenge messages

(CM s) using the block information stored in it and sends them to D [steps 5, 6]. D

responds by sending back golden response messages (GRM s) that are generated using

the refresh pausing approach described earlier [steps 7-12]. The golden responses

together with the corresponding challenges form entries in the CRP database [steps

13, 14] against which subsequent responses are compared during the authentication

phase. The helper data, for error correction, is also generated during the enrollment

phase (described later) and is stored at D [step 11]. Note that the effects of variable

retention time (VRT) [57, 60, 61] during the generation of golden responses could

be mitigated by acquiring multiple instances of the golden responses (for the same

challenge) and taking a bit-wise intersection of the same. Section 3.5 gives a brief

explanation of VRT.



35

Send enrollment request to A

Receive refresh pause-interval 
(t)

Write challenges

Send refresh pause-interval (t)  

Generate challenge messages

Receive golden response 
messages from D

Device (D) Authenticator (A)

1

34

5

6

13

9

Send challenge messages to
D

Receive challenge messages 
from A7

Extract parameters for 
response generation8

Pause refresh for interval t10

Receive enrollment request 
from D2

Generate golden responses 
and helper data11

Send golden response 
messages to A12

Generate CRP database14

Fig. 3.6.: D-PUF Enrollment phase

Helper Data for Error Correction PUFs are governed by random physical pro-

cesses, which are affected by numerous environmental and temporal variations. Error

correction can be utilized to suppress some of these variations and enhance the relia-

bility of the response generation process. During the enrollment phase, the golden re-

sponses are used to generate some redundant information that is capable of correcting

the subsequent responses from D. This redundant information, known as helper data,

is stored at D. In our work, helper data is generated by implementing a lightweight

error correction algorithm - Hamming Encoder/Decoder in software.
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3.4.5 Authentication Phase

Actual authentication of D is assumed to happen in an insecure environment

during the authentication phase and is depicted in Fig. 3.7. It starts with a request

for authentication from the device, D, to the authenticator, A [steps 1, 2]. A responds

by selecting an entry from the stored CRP database and sending the corresponding

challenge message along with the refresh-pause interval (t) to D [steps 3, 4]. The

response message is then generated by D using the refresh pausing approach [steps

5-9], corrected for errors [step 10], and sent back to A [step 11]. Upon receiving

the response, A calculates its hamming distance (HD) from the corresponding golden

response, which is stored at the selected entry in the CRP database [steps 12-13].

This HD is then compared with the match threshold (described next) to determine

the authentication outcome that is later conveyed to D [steps 14-15].

Match threshold The existing error-correction infrastructure in D may not be

sufficient to correct all the errors in the response generated during the authentication

phase. This is more pronounced in DRAMs due to their high entropy (bit-flips) and

susceptibility to several environmental and temporal variations. In such scenarios,

an exact match of the generated response with the golden response (stored in the

CRP database) may not happen even if D is authentic. Hence, we follow a fuzzy

authentication strategy and define a match threshold (MT ), which represents the

maximum HD between the GRM bitstream and RM bitstream beyond which D is

not authenticated. Refs. [43, 58] use a similar technique for unique identification of

devices.

To set the appropriate value of MT, we refer to Fig. 3.16 that shows a probability

distribution of the HD for five different DRAM modules at three temperatures and 50

different CM s. MT is given as MT = µ + σ + τ , where µ and σ represent the mean

and standard deviation of the distribution (same-module comparisons). We include

τ to accommodate for environmental (temperature) and temporal (aging, variable

retention time, etc.) variations. This enables us to perform robust authentication
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even under high variations. Section 3.7.4 later explains all of this in detail. Note that

setting the match threshold can be done by the authenticator during the characteri-

zation phase on the basis of the characterization results, and thus involves a one-time

overhead only.

3.5 Random Number Generation using D-PUF

The overall mechanism for random number generation is divided into two phases

- (i) characterization phase and (ii) generation phase. Characterization phase is

similar to the one used in device authentication, described earlier. However, it is more

rigorous in the sense that characterization runs (Section 3.6.2) are carried out with the

same input data-patterns and refresh-pause intervals multiple times to identify non-
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deterministic (temporally random) bit-flips arising due to VRT (explained in the next

sub-section) in a DRAM module. Note that this is in contrast to authentication that

exploits deterministic (spatially random) bit-flips. To avoid confusion, we refer to the

non-deterministic bit-flips as random bit-flips and the deterministic bit-flips as just

bit-flips. As in authentication, characterization results are used to select blocks that

meet minimum entropy requirements and are suitable for random number generation.

However, entropy here refers to the number of bits that exhibit random bit-flip. In

this context, we also define flipProb, a parameter that is specified by the designer

and refers to the required probability with which a bit needs to flip in order to be

classified as one exhibiting random bit-flip. For example, across 100 runs (with same

input data-pattern and refresh-pause interval) and flipProb= 0.4, a bit is said to

exhibit random bit-flip if it flips at least 40 times with respect to the input data-bit-

value. Thus, flipProb helps to bring in some amount of guarantee that the selected

bits shall exhibit random bit-flips in future also. Finally, during the generation phase,

refresh pausing approach is used to produce the actual random number (R). However,

in contrast to authentication, there is no error correction and the read-out bitstream

is directly applied to a hash algorithm recursively to generate R of required size (Z ).

Note that hashing is utilized here to improve the randomness of the generated number.

However, the output size of the hash algorithm could be lower than Z. To address this,

one could perform the above described process (refresh pausing followed by hashing)

multiple times and concatenate the outputs to produce the final random number of

size Z. The latency of this approach could be very high if the same (one) block is only

available for use every time. A better approach is presented in Fig. 3.8. As shown, if

the size requirements are not met after first-time hashing, then the output is hashed

again and accumulated in R. This process is repeated till the size of R is greater

than or equal to Z. As hashing is much faster than performing refresh pausing, this

approach helps to reduce the latency of the generation mechanism.
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Alternatively, if there are enough bits in the block that exhibit random bit-flips,

the read-out bitstream (after refresh pausing) can be directly used as the random

number. Without loss of generality, we follow the former method in this work.

Variable retention time Variable retention time (VRT) is a DRAM-specific phe-

nomenon that leads to dynamic variation in the retention-time profile of DRAM

bit-cells. VRT causes DRAM cells to randomly switch between a high retention state

(corresponding to high retention time) and a low retention state (corresponding to

low retention time) at different points in time, as shown in Fig. 3.9. As a result, the

stream of random bit-flips, produced due to VRT, at different time instants can act

as a source of true random numbers. In the proposed work, we leverage this VRT

phenomenon in DRAM cells to form the basis for random number generation. Note

that VRT is present only in a fraction of the DRAM cells (called as VRT cells), which

are identified by characterizing the DRAM module (P). We now briefly describe the

cause behind the existence of VRT.
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Fig. 3.9.: Different retention states in a DRAM cell due to VRT

VRT in DRAMs was first demonstrated almost three decades back [62]. The

presence of traps near the gate region causes fluctuations in the gate induced drain

leakage (GIDL) current in DRAM cells. The leakage current, in other words, depends

on the extent to which these traps are occupied; a cell leaks faster if the traps are

occupied and slower if the traps are empty. The former case leads to lower retention

times while the latter leads to higher retention times [63, 64]. More importantly,

the trap occupation is random in nature and varies across time. Hence, VRT cells

exhibit different retention times at different instants. External factors such as high

temperature during the packaging process and mechanical/electrical stress have also

been shown to contribute to the VRT phenomenon.

3.6 Experimental Methodology

This section provides a brief description of the experimental methodology utilized

to validate the D-PUF design.

3.6.1 Experimental Setup

All experiments were performed using an Altera Stratix IV GX FPGA-based Tera-

sic TR4-230 development board [65], consisting of a 1GB SODIMM DDR3 DRAM.

The entire experimental setup is shown in Fig. 3.10.
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Fig. 3.10.: Experimental setup

The FPGA was programmed with a soft Nios II processor [66] along with an

Altera UniPHY DDR3 memory controller for controlling the DRAM module. This

controller provides the control signals required to pause the refresh operations. In

modern embedded systems, these refresh control signals are usually exposed to the

lower layers of the operating system. A custom slave running on the processor was

also created, which can instruct the memory controller to start and stop the refresh

operations. A total of six COTS 1GB DRAM DDR3 SODIMMs belonging to five

different manufacturers were used for the experiments. The temperature and aging

experiments were carried out by operating the DRAM modules inside the Quincy

Lab 12-140E Incubator. Note that during validation, error-correction was performed

using software running on the Nios II processor, while the authentication was done

on a local computer connected directly to the FPGA.

3.6.2 Characterization Methodology

We now describe the details of the DRAM error-characterization process, which

was performed in a number of sequential steps:



42

1. First, an input-data pattern was written throughout the selected DRAM sub-

address space. Subsequently, the DRAM was refreshed normally (at 64 ms) so

that 100% data is retained.

2. Next, the custom slave (implemented on the FPGA) disabled the refresh opera-

tions and waited for the specified refresh-pause interval, which was maintained

by a precise timer controlled directly by the FPGA hardware.

3. The data from the DRAMwas then read out, and normal refresh operations were

restored. The acquired data was compared with the input-data to determine

the number, position, and nature of bit-flips.

4. This process was repeated for different data patterns (e.g., all ‘1’s, all ‘0’s,

checkered pattern (alternate ‘0’s and ‘1’s), etc.) as well as different refresh-

pause intervals (20 s, 30 s, 40 s, 60 s, 80 s, and 90 s) and temperatures (20◦C,

30◦C, and 40◦C).

In a real system, we envision that a fixed segment of the DRAM (say 5%) will be

dedicated for PUF functionality so that the DRAM can be shared simultaneously with

other tasks running on the device. For generic DDR DRAMs, this segment can be

selected either randomly or by an initial lightweight characterization process, where

the PUF section will be refreshed at a much higher refresh interval than the rest of

the module. The Partial Array Self-Refresh functionality [67] in LPDDRs inherently

supports this feature and can refresh a portion of the DRAM at a different interval

than the standard 64 ms.

3.7 Experimental Results

This section presents the results obtained from experiments conducted to validate

our work. The results relevant to device authentication are presented first followed

by those for random number generation.
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3.7.1 Device Authentication

This section broadly consists of four subsections. First, we show the effects of vari-

ation of different parameters (refresh-pause interval, block-size, and wrapper pattern)

on the number of bit-flips in one of the DRAM modules. An analysis of the results

obtained provides useful insights for setting design parameters associated with the

proposed authentication mechanism. Second, a uniqueness analysis of the responses

obtained from different DRAM modules as well as from different blocks belonging

to the same DRAM module is presented that shows the effectiveness of D-PUF for

authentication. Third, we analyze the robustness of our proposed authentication

mechanism under temperature variations using five DRAM modules. This subsection

is further divided into two parts. In the first part, we present the authentication

results from the DRAM modules using a naive approach that utilizes a static match

threshold (MT ) technique with inadequate error correction. It motivates the adop-

tion of a dynamic approach towards setting MT and the need for adequate error

correction, both of which are presented in the second part. Results show that the

latter approach is much more effective under temperature variations and substan-

tially increases the operating range - 10◦C to 60◦C. The last subsection analyzes the

robustness of the authentication methodology under aging effects.

3.7.2 Effects of Parameter Variations

We characterized 512 memory blocks in a DRAM module using the process de-

scribed in Section 3.6.2. The results are presented in Fig. 3.11, 3.12, and 3.13.

Table 3.1 provides a summary of the parameter values used for each characterization.

Variation of bit-flips with refresh-pause interval As described in the previous

sections, reconfigurability is achieved in the presented design by modifying the refresh-

pause interval. Fig. 3.11(a) and 3.11(b) show the variation of bit-flips with refresh-

pause interval across 512 blocks in a DRAM module. Fig. 3.11(a) depicts the number
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Table 3.1.: Parameter values used in our evaluation

Figure Refresh-Pause int. Size Address Wrapper Pattern

Fig. 3.11 Varied 128 KB 0x38000000 – · · · All ‘0’s

Fig. 3.12 60 s Varied 0x38000000 – · · · All ‘0’s

Fig. 3.13 60 s 128 KB 0x38000000 – · · · Varied

of bit-flips across different blocks while Fig. 3.11(b) shows the number of blocks having

a particular number of bit-flips. Assuming a minimum required entropy of 400 bit-

flips, it can be clearly seen that a refresh-pause interval of 20 s is unsuitable for PUF

operation. On the other hand, an interval of 60 s generates entropy in excess of 1200

bit-flips across all the blocks while 40 s does it across some of the blocks, hence, both

are suitable refresh-pause intervals. The entropy variation across suitable intervals is

quite high, thus, reinforcing our intuition for the use of refresh-pause interval as the

parameter for reconfiguration. Moreover, Fig. 3.11 provides us the minimum interval

(for the given DRAM module) that meets the entropy requirements. As compared to

Ref. [11], which uses a refresh-pause interval of 256 s for a minimum required entropy

of 512 bit-flips, our choice of the minimum interval (60 s) reduces the authentication

time by 4.3X (256/60=4.3) while meeting the same entropy requirement. Note that

the minimum interval may vary from one module to another, e.g., meeting the same

entropy requirement in some of the other modules required a minimum interval of 40

s, thus, further reducing the authentication time by 6.4X (256/40=6.4).

Variation of bit-flips with block-size Blocks of different sizes starting at the

same address can contain widely varying bit-flips. Fig. 3.12(a) and (b) show the

variation of bit-flips with block-size across 512 blocks in a DRAM module. The

block-size, which is a part of the challenge message, can be varied to generate more

CRPs for authentication. Also, for a relatively resilient (to bit-flips) DRAM module,

a designer may need to use higher block-sizes at a given refresh-pause interval to meet
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the minimum entropy requirements. For example, an entropy of 1000 bit-flips is met

by all 128 KB blocks and some 64 KB blocks but by none of the 32 KB blocks, as

shown in Fig. 3.12. Characterization provides us with valuable insights for choosing

the minimum block-size for a given interval.

Variation of bit-flips with wrapper pattern An interesting observation in the

characterization results is the variation of bit-flips in a block with the wrapper data

(or pattern) surrounding the block. Fig. 3.13 shows the variation of bit-flips with

wrapper pattern across 512 blocks in a DRAM module. Wrapper pattern serves as an
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Fig. 3.14.: Unique responses generated from different DRAM modules1

additional parameter that can be varied to extract more entropy (and more CRPs)

from a DRAM module. However, not all blocks respond to the variation in wrapper

pattern, as is evident in the first half of Fig. 3.13(a). Thus, a careful block-specific

utilization of this parameter is required. An off-shoot of this analysis is the revelation

of the pattern that generates maximum bit-flips (all ‘0’s here), enhancing the entropy

of the block.

3.7.3 Uniqueness Analysis

To demonstrate the uniqueness offered by D-PUF, we generated response bit-

streams (or fingerprints) from five different DRAM modules using the same refresh-

pause interval and other parameters. This is shown in Fig. 3.14, where different

colors represent the degree of variation in the number and position of bit-flips in the

generated bitstreams. A dark (blue) color implies a small number of bit-flips in the

corresponding location within a block. Fig. 3.15 gives a pictorial representation of the

different responses generated using the same refresh-pause interval and other param-

eters (except address) from different blocks belonging to a single DRAM module. It

can be seen that the responses are not only unique across different modules but also

across different blocks within a module. This goes to show the viability of D-PUF for

authentication.

1Address = 0x8000000, Size = 128 KB, Wrapper pattern = All ‘0’s, Refresh-pause int. = 90 s;

Average HD = 216, Minimum HD = 113
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Fig. 3.15.: Unique responses generated from the same DRAM Module2

3.7.4 Robustness Analysis: Authentication under Varying Operating Con-

ditions

The reproducibility of responses (to the same challenge) under varying operating

conditions such as temperature and aging is important to PUF operation and is

referred to as robustness. We quantify robustness as the average HD resulting from the

comparisons between golden responses and the responses generated by D-PUF during

authentication. These comparisons are referred to as same-module comparisons. Also,

to demonstrate the uniqueness of responses generated from different DRAM modules,

we compared the golden response generated by one module (for a particular challenge)

with the corresponding responses (for the same challenge) generated by all the other

modules during authentication. We refer to such comparisons as different-module

comparisons. While same-module comparisons produce the true-positive (genuine

authentication) rate, different-module comparisons give an estimate of the probable

false-positive (false authentication) rate.

We performed a robustness analysis of D-PUF under varying environmental and

temporal conditions and present our results below. The relative frequency refers to

the fraction of total comparisons, either same-module or different-module, that yields

a particular HD.

2Module 4; Size = 128 KB, Wrapper pattern = All ‘0’s, Refresh-pause interval = 60 s; Average

HD = 503, Minimum HD = 486
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Fig. 3.16.: Robustness across different temperatures (naive approach)

A. Robustness under temperature variations Fig. 3.16 shows the relative fre-

quency versus HD corresponding to 50 different challenges, each applied to five differ-

ent DRAM modules at three different temperatures. The depicted results correspond

to the naive approach comprising static MT and inadequate error correction, both of

which are explained in the following paragraphs. The golden responses were generated

at 20◦C (during enrollment phase) while the responses for authentication were gen-

erated at 20◦C, 30◦C, and 40◦C (during authentication phase). A total of 250 same-

module comparisons and 1000 different-module comparisons were made altogether for

the five modules. As shown, the maximum HD for same-module comparisons was less

than 27 at 30◦C but rose exponentially at 40◦C. Setting an MT of 27 authenticated

all the five modules at 30◦C for every challenge. However, at 40◦C this led to a num-
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ber of false-negatives. Hence, the design utilizing the naive approach is robust under

a temperature variation of ±10◦C. Note that this temperature range also depends

on the error-correction algorithm utilized, which happens to be (31,26) Hamming

Encoder/Decoder in our case. Beyond this range, either re-enrollment needs to be

performed at the new temperature and/or a more powerful error-correction algorithm

needs to be used. The HD margin between the same-module comparisons and the

different-module comparisons re-emphasizes the uniqueness of the responses gener-

ated by the different modules. The margin also plays an important role in setting the

appropriate value for MT at a particular temperature, as is described below.

Setting match threshold (MT) Section 3.4.5 defines µ, σ, and τ that are used

for determining MT. µ and σ correspond to the temperature at which enrollment

happens (20◦C in our case), as shown in Fig. 3.16(a). At 20◦C, µ + σ was observed

to be ∼ 2. τ represents the maximum allowable HD between responses (golden

responses and responses during authentication) due to temperature variations only

and guarantees that authentication is carried out with a high true-positive rate but,

more importantly, 0% false-positive rate. In the naive approach, we consider τ to be

a fraction of the average (over the five representative DRAM modules) minimum bit-

flips observed in a block at the enrollment temperature and set it at 25% of the same.

Hence, the MT equals 27 (= 2 + 25) for an average minimum entropy of 100 bit-flips

observed at 20◦C. This value of τ , in turn, allows us to determine the temperature

range within which the CRP database generated at a particular temperature is valid.

For the choice of (31,26) Hamming Encoder/Decoder, this temperature range came

out to be close to ±10◦C when averaged over five different modules, as depicted in

Fig. 3.16. This enabled us to use the same CRP database (generated at 20◦C) for

30◦C too, achieving a 100% true-positive rate while also ensuring 0% false-positive

rate. However, aggressively setting the τ value for incorporating higher temperature

ranges may lead to false positives during authentication, as shown in Fig. 3.16(c),

and should be avoided.
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From the previous discussion, it can be concluded that enrollment at 20◦C will en-

able successful authentication at any temperature between 10◦C and 30◦C. However,

D-PUF may be expected to operate across a much wider temperature range, e.g., 10◦C

to 60◦C. Hence, re-enrollment was performed at 50◦C to cater to the remaining tem-

perature range (40◦C to 60◦C). Authentication was carried out at 50◦C and 60◦C;

the results (from same-module comparisons) for module 4 are shown in Fig. 3.17. As

in the previous authentication experiment, we also subjected the other four DRAM

modules to the same challenges and compared their responses with the corresponding

golden responses of module 4 at each of the two temperatures (different-module com-

parisons). Following the same approach towards setting MT, µ + σ came out to be

40 for 50◦C while τ was calculated to be equal to 1300 for 60◦C (average number of

bit-flips observed at 50◦C across the representative modules was 5200). Hence, MT

equals 40 and 1340 for 50◦C and 60◦C, respectively. Using these values of MT gen-

erated a true-positive rate of 97% at 50◦C. However, at 60◦C, the true-positive rate

was 0%. In fact, even if the MT value were substantially higher, it would have been

impossible to achieve more than 3% true-positive rate at 60◦C due to the merging

of same-module and different-module comparison HDs, as shown in Fig. 3.17. This

motivates the need for adequate error correction, which is described next.

Adequate error correction Temperature variations cause the number of bit-flips

in a DRAMmodule to change exponentially. When enrollment and authentication are

carried out at different temperatures, this phenomenon poses a particularly serious

problem; the response generated at the authentication temperature is substantially

different from the golden response generated at the enrollment temperature. If the

difference is greater than MT, the authentication outcome is false, even for an authen-

tic module. Error correction comes to the rescue in such a case and suppresses some

of the difference. Ideally, for an authentic module, error correction should bring down

the difference to below MT so that it is successfully authenticated. But, as shown

in Fig. 3.17, the error correction ((31,26) Hamming Encoder/Decoder) in module 4
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Fig. 3.17.: Inadequate error correction

is not adequate to bring the same-module comparisons HD to below 1340 (MT ) at

60◦C, thus, generating a true-positive rate as low as 0%. However, the same error

correction worked very well at lower authentication temperatures (20◦C and 30◦C).

This is because the number of bit-flips at lower authentication temperatures is sub-

stantially smaller than that at higher temperatures (50◦C and 60◦C). As a result, the

difference between the golden response and response during authentication, which

the error correction needs to suppress, is also small. Note that the error correction

should be adequate to handle differences across the complete operating range. In

this work, we call the error correction adequate if it can bring down the difference

to less than a certain percentage (error percentage, set by the designer) of the total

bit-flips observed at the highest authentication temperature. Alternatively, instead of

having adequate error correction, one may just increase the MT value to improve the

true-positive rate at higher authentication temperatures; but, this will also generate

false-positives and is, hence, unacceptable. So, a relatively lower value of MT should

be used which, in turn, is enabled by adequate error correction. To show the ben-

efits of adequate error correction, we repeated the authentication experiment with
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Fig. 3.18.: Adequate error correction with static MT

module 4 by setting error percentage equal to 5% and selecting (15,11) Hamming

Encoder/Decoder for error correction, accordingly. Fig. 3.18 shows the distribution

of same-module and different-module comparisons HD. With the same MT values,

we achieve a true-positive rate of 100% at 50◦C but still, a relatively low 30% at

60◦C. Further improving the true-positive rate requires setting the match threshold

dynamically with temperature, as explained in the following paragraph.

Dynamically setting match threshold Till now, MT was set statically, based

on the average number of bit-flips observed in a few representative modules at the

enrollment temperature. In other words, the MT value was invariable to the actual

authentication temperature. However, this can lead to very low true-positive rates at

some temperatures even with adequate error correction, as was shown in Fig. 3.18.

This motivated us to employ a dynamic approach towards setting MT, where τ (in

MT ) is a function of the number of bit-flips at the current authentication temperature

rather than the enrollment temperature. Moreover, for a given module, instead of

the average bit-flips observed across different representative modules, the τ value

is now based on the bit-flips observed in only that module. To understand this
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clearly, assume that adequate error correction is already in place and is capable

of bringing down the differences (between golden responses and responses during

authentication) to less than P% (error percentage) of the total bit-flips observed at

the highest authentication temperature. Also, for a given enrollment temperature

(TE), assume that the authentication temperature (TA) can only vary from TE-10◦C

to TE+10◦C. In the dynamic approach, for a given block in a module, we set the τ

value (τ 1) to (P + 2)% of the total bit-flips observed in the block at TE-10◦C for the

temperature range [TE-10◦C, TE). Similarly, we set the τ value (τ 2) to (P + 4)% of

the total bit-flips observed in the block at TE+10◦C for the temperature range (TE,

TE+10◦C]. Note that the percentage values (2% and 4%) were set empirically from

experimental observations. Moreover, when TA = TE, we also define τ 0 and set it to

P% of the total bit-flips observed in the block at TE. This is done to counter the

exponentially increasing number of random bit-flips (due to VRT, Section 3.5) with

temperature. As before, the final MT values at different temperatures are generated

by adding the τ values with the corresponding µ and σ values (the latter two are a

function of the module and the enrollment temperature).

We show the benefits of this new approach in Fig. 3.19. Note that each of the

modules was subjected to the same challenges and at the same temperatures as the

previous authentication experiment. In addition, authentication at 40◦C was also

performed. We used a (15,11) Hamming Encoder/Decoder for error correction that

is capable of bringing the difference to less than 6% (error percentage) of the total

bit-flips at the highest authentication temperature (60◦C) across every module. Ac-

cordingly, τ 0, τ 1, and τ 2 were set to be 6%, 8%, and 10%, respectively, of the total

bit-flips observed at the corresponding temperatures (50◦C, 40◦C, and 60◦C, respec-

tively). Note that error correction can also be a function of the module; a module

that exhibits small number of bit-flips need not utilize very powerful error correction.

To simplify our experimentation methodology, we utilized the same error correction

across all the modules. As an example, the MT values at different temperatures have

been marked for module 4 in Fig. 3.19. The dynamic approach toward setting MT,
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coupled with adequate error correction, enabled us to achieve a 100% true-positive

rate without any false-positives at higher authentication temperatures for every mod-

ule. Experiments also showed that this approach is equally effective for authentication

at relatively lower temperatures as we achieved 100% true-positive rate without any

false-positives at 10◦C, 20◦C, and 30◦C. Thus, the operating range of D-PUF for

device authentication is substantially improved using the dynamic approach.

B. Robustness under aging DRAM cells undergo wear and tear over time, and

this could adversely affect the authentication process. Thermal stress accelerates the

wear rate and could be intentionally applied to a DRAM module to approximate

the wear and tear that would happen naturally over a long period (of time). We

use this technique to approximate ten months of wear and tear (or aging) in one of

the DRAM modules by subjecting it to a temperature of 85◦C for 48 hours. The

Arrhenius equation [68], typically used for predicting reliability/failure rates, is then

used to calculate the acceleration factor (AF ) resulting from the applied thermal

stress. As per the Arrhenius equation,

AF = e

(
Ea

k

(
1
T use

−
1

T stress

))
(3.1)

where,

AF = Acceleration Factor

Ea = Thermal Activation Energy (value used = 0.7 eV [69])

k = Boltzmann’s Constant (8.63 x 10-5 eV/K)

T use = Use Temperature (value used = 293 K (20◦C))

T stress = Stress Temperature (value used = 358 K (85◦C))

Using these values, AF was calculated to be 152. Since the thermal stress was

applied for 48 hours, this translates to 7296 (152×48) hours or ten months of natural

aging (at 20◦C).

Fig. 3.20 gives the relative frequency (of same-module comparisons) versus HD

before and after aging of a DRAM module for 50 different challenges and at a constant
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Fig. 3.20.: Robustness under aging

temperature of 20◦C. Aging does not affect the bit-flip behavior of DRAM modules

much, and this allowed us to use a static approach similar to what was used earlier

to address temperature variations. We define τ with respect to aging (τA) and set

the MT equal to 10. Note that the enrollment was done at 20◦C before the aging

process was carried out. As shown, aging seemed to generate much smaller HD as

compared to temperature variations. Setting an MT of 10 was enough to successfully

authenticate the module for every challenge.

3.7.5 True Random Number Generation

As described in Section 3.5, we exploit the random bit-flips in DRAM cells, caused

due to VRT, for generation of true random numbers. Fig. 3.21 shows the variation of

random bit-flips with refresh-pause interval and temperature across 256 blocks in a

DRAM module. Each of the blocks is 128 KB in size and was subjected to a checkered

(alternating 0 and 1) input bitstream and a checkered wrapper pattern. To generate

each graph, sixteen runs (spread over 24 hours) were carried out across each of the

blocks using the refresh pausing approach. The number of random bit-flips in each

block was then calculated by comparing the read out bitstream from different runs.

Note that the bitstream was directly read out from the DRAM after the specified

refresh-pause interval, i.e., it does not undergo any hashing. The value of flipProb

was set to 0.5, i.e., a bit was said to exhibit random bit-flip if it flipped at least
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Fig. 3.21.: Variation of random bit-flips with refresh-pause interval and temperature

eight times (across the sixteen runs) with respect to the input bit-value. As shown

in Fig. 3.21, the number of random bit-flips varies across different blocks, hence,

selecting suitable blocks using the characterization results is an important step for

random number generation using D-PUF. Also, at 20◦C, increasing the refresh-pause

interval from 40 s to 60 s increases the number of random bit-flips for blocks 1-160,

however, blocks 161-256 remain unaffected. This interesting observation stresses the

importance of the characterization process. Specifically, one should avoid performing

reconfiguration by changing the refresh-pause interval (reconfiguration parameter)

from 40 s to 60 s for blocks 161-256; it does not substantially alter the random bit-

flip behavior in these blocks. Fig. 3.21 also shows the effect of temperature on the

number of random bit-flips. As expected, moving from 20◦C to 60◦C (with all pa-

rameters remaining constant) increased the number of random bit-flips by ∼20 times.

The high dependence of bit-flip (both random and deterministic) behavior on temper-

ature, though an impediment for device authentication, works favorably for random
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Fig. 3.22.: Inter-run HD across 16 runs spread over 24 hours

number generation. Hence, when operating at high temperatures, a relatively lower

refresh-pause interval can be used to generate a random number, thus, substantially

increasing the throughput of the random number generator.

To highlight this randomness, in Fig. 3.22, we show the inter-run HD of the read-

out bitstreams (generated in the previous experiment) for three different blocks with

40 s refresh-pause interval and at 20◦C temperature. This gives an approximate

measure of the difference in bit-flips that can be expected across two iterations of the

random number generation process. For every block, the bit-stream in each run is

compared against that of every other run. This generates an average value and range,

in terms of HD, which are represented by a line and various vertical bars, respectively,

in Fig. 3.22. The minimum inter-run HD is ∼25 in each block, i.e., there are at least

25 bits that flip randomly across any two runs. Note that this minimum difference

depends on the parameter values used, temperature as well as the block (and the

DRAM module) itself.

The TRNG (in D-PUF) was verified using the NIST Statistical Test Suite [70].

National Institute of Standards and Technology (NIST) specifies a set of 15 statistical

tests that are useful in evaluating the randomness of arbitrarily long binary sequences,

produced by software or hardware generators. As described earlier, we first generate a

random bitstream from a block using the refresh pausing approach and subsequently

hash the bitstream to produce the random number. We utilize SHA-256 for hashing
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Fig. 3.23.: NIST Statistical Test Suite results

in our design, thus generating a 256-bit random number in every iteration. Alterna-

tively, other hashing algorithms could also be used. For generating the bit-streams,

we used a 4 MB block (selected through characterization) in a sample DRAM module

and subjected it to a checkered input bitstream, checkered wrapper pattern, and 40

s refresh-pause interval. The temperature was set at 20◦C. In the NIST Test Suite,

the minimum length of each sequence to be tested varies with the individual tests;

longer sequences generate more statistically accurate results. Hence, we generated 40

sequences that are each 1,007,616-bits long and satisfy the length requirements for

every test. A sequence consisted of 123 iterations of the refresh pausing operation.

Each iteration, in turn, consisted of 8192 bits and was generated using the method

shown earlier in Fig. 3.8. The generated bits from each iteration were finally con-

catenated to form one full sequence. Note that while all the iterations in a particular

sequence were executed immediately one after the another, the 40 sequences were

not generated consecutively; the time-gap between generating one sequence and the
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next was varied from hours to days. Fig. 3.23 summarizes the test outcomes of the

40 sequences. The first column, P-VALUE, shows the uniformity of the P-values [70]

calculated in each test across the 40 sequences. A P-VALUE greater than or equal

to 0.0001 represents uniform distribution, and the test is considered to be passed.

The second column, PROPORTION, specifies the ratio of the number of sequences

that pass the individual test to the total number of sequences. If this ratio is greater

than or equal to the threshold value specified at the bottom of Fig. 3.23, then the

test is passed. Note that some of these tests consist of multiple sub-tests, each of

which is passed by the TRNG in D-PUF. However, due to space constraints, we only

show a representative subset of the results. The third column, STATISTICAL TEST,

specifies the individual test being applied. In summary, the numbers generated by

D-PUF using the refresh pausing approach are truly random in nature and pass all

the tests specified by NIST.

3.8 Discussions

This section briefly discusses some additional design aspects of D-PUF.

3.8.1 Attack Scenarios and Assumptions

Before describing our attacker model, we state our assumptions for D-PUF (P).

First, the responses generated by P are assumed to be unpredictable, and P itself

is unclonable. The randomness in bit-flips coupled with the reconfigurability of P

validate this assumption. Second, the characterization results of P are only shared

with the authenticator in a secure environment and are inaccessible to an external

entity.

We envision three major types of attack that could be mounted on P – snooping-

based, physical invasion-based, and replay attacks. The most probable type, i.e.,

snooping-based attack, happens when an attacker learns a subset of the CRPs cor-

responding to a particular block and refresh-pause interval, by passively listening to
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the communication between D and A during the authentication phase. The attacker

could then employ sophisticated techniques such as machine learning [14] to predict

the behavior of P. However, the probability of success for such an attack is very

low due to the following reasons. First, if a different block is used for subsequent

authentications, it is near impossible for an attacker to predict the response of the

block based on the response of a known one due to random yet unique bit-flips across

different blocks (Fig. 3.15). Second, if the PUF is reconfigured, it becomes even more

difficult to predict the behavior of P. To explain this, we refer to Fig. 3.11. Suppose,

passive snooping allows the attacker to have complete information about the number,

position, and nature of all the bit-flips in a certain block (128 KB size) in P for the

40 s refresh-pause interval. The same block when used during another authentication

phase, employing 60 s interval, would generate ∼1400 new bit-flips. So, the proba-

bility of predicting the correct response is extremely low (close to 1
128×1024×8C1400

),

given the limited number of times the attacker can request authentication. Third,

even if the same block is continued to be used for authentication, such an attack could

be prevented by generating (and using) challenges (Section 3.8.3) that utilize some

minimum unique entropy (or bit-flips).

The second type of attack requires a highly-skilled and well-equipped attacker.

Through physically invasive means, he/she can access the DRAM module in D and

characterize it to learn about all the possible bit-flips in the module. However, such

an attack is unlikely due to the following reasons. First, the attacker needs to possess

the DRAM module for a sufficiently long period of time to be able to characterize it

exhaustively. In the worst-case scenario, he may be able to characterize a portion of

the DRAM for a few values of the parameters. But, the PUF can be easily reconfigured

preventing the attacker from predicting the DRAM behavior completely. Second,

though the attacker may extract the helper data (usually stored in the public NVM

of D) that leaks some information about the expected response, it is unusable as each

challenge (and the corresponding response and helper data) is used only once during

authentication.
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Finally, replay attacks cannot be mounted on a PUF as a CRP is never used twice

during authentication.

3.8.2 Mitigation of Authentication Latency

Sometimes, D-PUF may not be able to generate the response for a challenge in-

stantaneously due to a high refresh-pause interval or non-availability of a sub-address

space (due to the sharing of DRAM among multiple applications). One potential way

of mitigating this latency is by piggybacking future challenges with the current one

and caching the corresponding responses within D, which could be then sent during

the next authentication cycle.

3.8.3 Generation of Challenge Bit-Stream

The randomly generated challenge may contain a bitstream such that none of the

bits flip during response generation. For example, a DRAM block containing only

true-cells (‘1’ → ‘0’ bit-flips), when subjected to a challenge bitstream containing

all 0s, would generate a response bitstream, which is same as that of the challenge.

To prevent this, the challenge bitstream can be constructed with the help of the

characterization results obtained prior to enrollment. By putting ‘1’ and ‘0’ at

the true-cell and anti-cell positions respectively in a challenge bitstream, the inherent

entropy of the module can be properly utilized.

3.8.4 Block Selection: Solution Space and Optimal Solution

In the characterization phase, Algorithm 1 is used to select blocks that meet the

entropy requirements, as specified by the PUF designer. Note that the selected blocks

could be of varying sizes (Z1, Z2, etc.) and hence, the solution space could be very

large. Here, the solution refers to any list of non-overlapping blocks (could be of vary-

ing sizes), each of which satisfies the entropy requirement. Though the sizes of blocks
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in a solution do not affect the authentication outcome, a solution consisting of mostly

large blocks will incur much higher operational overhead as compared to one con-

sisting of relatively smaller blocks. A large block requires longer challenge/response

messages, thus increasing the CRP database size (stored at the authenticator) as well

as the message transmission time between the device and the authenticator. The

energy expended by the device to generate each response will also increase due to

write/read operations happening over a large block. Hence, Algorithm 1 tries to find

an optimal solution, i.e., a list of non-overlapping blocks that are as small as possible

and each of which satisfies the entropy requirement. Accordingly, blocks of smallest

sizes are selected first before moving on to larger blocks. In addition to having low

operational overhead, an optimal solution selects the maximum number of blocks as

compared to any suboptimal solution, thus providing more flexibility to the designer

for varying the different parameters associated with the response-generation process.

This is also important since the fulfillment of the “selection of a minimum number of

blocks (Nmin)” criteria is necessary for the characterization phase to end successfully.

3.9 Conclusion

In this chapter, we proposed an intrinsically reconfigurable DRAM PUF based

on refresh pausing and also presented a secure, low-overhead mechanism that uses

the PUF for device authentication. We validated our work on a real system using

off-the-shelf DRAM modules and evaluated it thoroughly. The overall design per-

formed robustly under various environmental and temporal variations and achieved

a 4.3X-6.4X reduction in authentication time, compared to prior work. The DRAM

PUF was also used as a true random number generator and was verified using the

NIST Statistical Test Suite. We envision that our work will pave the way for the wide

adoption of DRAM PUFs into a large number of modern embedded systems.
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4. MEMORY-BASED COMBINATION PUFS FOR
DEVICE AUTHENTICATION IN EMBEDDED SYSTEMS

Current memory-based PUFs are constructed using a single memory component in

the device, i.e., based on a single entropy source. This means that the PUF repre-

sents the identity of the component and not that of the system. If the component is

removed and transferred to a different system (invasive attack), the identity transfers

over as well, which is undesirable. Moreover, the use of a single memory compo-

nent makes it vulnerable to sophisticated non-invasive attacks [14]. To mitigate these

concerns, it is desirable that the PUF be dependent on multiple system components

(some of which may be more tightly integrated into the system than others), thereby

performing multi-component authentication. For example, Fig. 4.1 shows several IoT

devices containing multiple memory technologies or components. Besides using a

single entropy source, several memory-based PUFs also suffer from other shortcom-

ings such as low entropy [11, 49] and limited number of Challenge-Response Pairs

(CRPs) [43,44,49].

4.1 Chapter Contributions

Recent works [15,16] have tried to address a subset of the above-mentioned short-

comings. However, the choice of entropy sources used in these PUF designs renders

them unsuitable for multi-component authentication. They also require the addi-

tion of custom hardware to the system and, hence, cannot be implemented using

Commercial-Off-The-Shelf (COTS) systems. In this work, we overcome these lim-

itations by proposing the design of a memory-based combination PUF, henceforth

referred to as C-PUF . By tightly integrating heterogeneous memory technologies,

C-PUF exhibits high entropy alongside an exponential number of CRPs, and takes
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Fig. 4.1.: Examples of IoT devices containing multiple memory technologies

the first step towards multi-component authentication in an embedded device. The

heterogeneous nature of the entropy sources (memories) used and C-PUF ’s ability

to undergo intrinsic reconfiguration (ability to reconfigure the PUF at runtime with-

out any additional hardware) protects it from various security attacks. C-PUF also

features a light-weight authentication scheme to ensure robust operation (authenti-

cation) under wide environmental and temporal variations. Specifically, we make the

following contributions [9] :

• We propose the concept and design of a memory-based combination PUF (C-

PUF) that tightly integrates heterogeneous memory technologies to construct

a PUF. C-PUF (i) takes a step towards multi-component authentication, (ii)

exhibits high entropy and supports a large number of CRPs, (iii) is intrinsically

reconfigurable, and (iv) requires minimal or no additional (custom) hardware,

hence, can be easily implemented on a COTS device.

• As a key enabler for authentication using C-PUF , we propose a lightweight

scheme that ensures its robust operation under environmental and temporal

variations. We also propose two lightweight algorithms that assist the authen-

tication scheme in performing error correction in the generated responses.
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• We implement, demonstrate, and evaluate several fully-functional prototypes

of C-PUF in a real system using two widely-used memory technologies, Static

Random Access Memories (SRAMs) and Dynamic Random Access Memories

(DRAMs). Extensive authentication tests performed across a wide temperature

range (20◦C – 55◦C) and accelerated aging (12 months) achieved greater than

97.5% true-positive rate. The absence of any false-positives, even under an

invasive attack, further highlights the effectiveness of the overall design.

The rest of this chapter is organized as follows. Section 4.2 describes the motiva-

tion behind the work. Next, Section 4.3 presents the details of C-PUF’s design and

also discusses the proposed lightweight authentication scheme. Section 4.4 describes

the experimental setup while Section 4.5 shows the results of the experiments that

were performed to validate the design. Section 4.6 discusses potential attack scenarios

and additional design aspects of C-PUF . Finally, Section 4.7 concludes the chapter.

4.2 Motivation

Memory-based PUFs require minimal or no additional hardware for their operation

as they use components that are already present in most modern embedded systems.

As a result, they can be easily implemented on COTS devices, and hence present a

distinct advantage over other PUF implementations. However, current memory-based

PUFs suffer from several shortcomings, as described below.

4.2.1 Identity based on a Single Component

Current memory-based PUFs use a single memory component (or technology) in

their construction, in other words, they are based on a single entropy source (in the

system). This means that a PUF represents the identity of the component and not

that of the system. Note that some of these components are often loosely integrated

into the system (e.g., using a removable/replaceable DRAM SODIMM). As shown
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Fig. 4.2.: Authentication using – (a) a Single Component and (b) Multiple Compo-

nents in a system

in Fig. 4.2(a), an invasive attack may involve (removal and) transfer of one such

component to a (different) counterfeit system, transferring the identity as well, and

resulting in a successful authentication of the counterfeit system. Moreover, the

use of a single memory component in the PUF makes it vulnerable to increasingly

sophisticated non-invasive attacks [14,71].

One way of addressing this shortcoming is through the utilization (or combination)

of multiple entropy sources. For example, Ref. [15] mentions a patent that combines

(the output of) multiple locations of one or several memory blocks located inside

an IC to derive unique keys. By using an address decoder that can permute access

order across different memory locations/blocks in a potentially unknown manner, the

work claims to increase the resistance of the PUF against invasive attacks. A similar
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but non-memory-based PUF was presented in [16], which proposes combining several

on-chip entropy sources (e.g., clock sinks) in an optimized manner towards better

(overall) entropy and robustness. However, these work have their own drawbacks, as

described in the next section.

4.2.2 Low Entropy and Few Challenge-Response Pairs (CRPs)

To highlight the next shortcoming, we introduce two metrics – entropy and num-

ber of CRPs. In the present context of a PUF, entropy [72] manifests itself in the

form of – uniqueness and unpredictability. Uniqueness gives a measure of the extent

by which one PUF’s behavior (response) differs from another (of the same type). Un-

predictability, on the other hand, represents the probability of incorrectly predicting

the behavior of a PUF. Hence, a PUF with high entropy has both high unique-

ness and unpredictability. The second metric, number of CRPs, represents the total

number of Challenge-Response Pairs supported by a PUF. As mentioned earlier,

strong PUFs support a large number of CRPs, which makes them well-suited for

challenge-response-based authentication. Fig. 4.3 depicts a qualitative comparison of

current memory-based PUFs, which were described in the previous section, as per
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these metrics; a quantitative comparison is presented in Section 4.5.1. As shown,

the (power-cycling-based) SRAM PUF [43, 44] exhibits high entropy but supports a

small number of CRPs due to the existence of very few variable parameters (in its

challenge-response mechanism) as well the small extent to which these parameters

could be varied because of an SRAM’s usually small address-space. Thus, the ap-

plicability of the SRAM PUF to challenge-response-based authentication is severely

limited. On the other hand, the (refresh-pausing-based) DRAM PUF, presented in

Chapter 3 and prior work [11], employs a challenge-response mechanism involving sev-

eral widely-variable parameters, supporting a large number of CRPs. However, for

practical refresh-pause intervals (Section 4.3.1), the entropy (specifically, uniqueness)

exhibited by it is much lower than the SRAM PUF. PUFs based on flash memo-

ries [49], on the other hand, suffer from both low entropy and support for few CRPs.

These shortcomings in current memory-based PUFs motivate the design of C-

PUF , which is explained next.

4.3 C-PUF: A Memory-based Combination PUF

C-PUF aims to address the shortcomings of current memory-based PUFs while

performing challenge-response-based authentication in a device. Hence, one of the

primary motivators behind its design is to (tightly) combine different heterogeneous

(memory) components to achieve multi-component authentication in an overall sys-

tem, as depicted in Fig. 4.2(b). Although there are several choices for these compo-

nents, we utilized two widely-used memory technologies, SRAM and DRAM, in our

prototype implementations. The rationale behind this choice stems from the following

observation – an SRAM is usually tightly integrated with the processor and located

on the same chip/die, whereas a DRAM is usually more loosely integrated (e.g., as

an external SODIMM). As a result, using these memories enables C-PUF to authen-

ticate both an on-chip (SRAM) and off-chip (DRAM) component, thereby taking a

key step towards multi-component authentication in a system. Moreover, the spatial
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distribution (on-chip and off-chip) of the heterogeneous entropy sources (memories)

substantially improves C-PUF’s ability to resist invasive attacks [73]. Note that an

SRAM PUF utilizes the power-cycling approach to generate start-up values as re-

sponses. On the other hand, a DRAM PUF’s responses comprise of unique bit-flip

patterns generated through the refresh-pausing approach. Instead of simply using

them in a standalone manner, in C-PUF , we tightly integrate these two approaches,

as shown in Fig. 4.4. This integration allows the (challenge-response) behavior of one

entropy source to influence that of the other in an unpredictable manner, creating an

extremely-complex overall behavior that can provide substantial resistance to C-PUF

against non-invasive attacks [14,71]. Note that the power-cycling and refresh-pausing

approaches to SRAM and DRAM PUFs, respectively, were chosen (in the prototype

implementations) due to their popularity and wide-adoption in several state-of-the-

art systems. The C-PUF design and the associated authentication scheme are flexible

enough to incorporate other approaches as well [40, 41, 46–48]. In addition to multi-

component authentication, the proposed design also enables C-PUF to exhibit high

entropy and support an exponential number of CRPs (Fig. 4.3), making it particu-

larly suitable for challenge-response-based authentication. Most importantly, all this

is achieved while incorporating minimal or no additional hardware, and hence the

design can be easily implemented on a COTS device.

As will be clear shortly, the C-PUF design utilizes some of the components of

D-PUF (Chapter 3), which leveraged the refresh-pausing approach in a DRAM for

authentication and random-number generation. C-PUF builds upon D-PUF but

goes further by introducing the concept of and taking a step towards realizing multi-

component authentication. It also introduces two key-modifications in the DRAM

Error Correction stage (compared to D-PUF) – (i) tailoring the (strength of the)

DRAM error-correction according to the specific operating point (Table. 4.5) and (ii)

introduction of a new parameter, BMax, to protect against a certain kind of attack that

could be mounted on a system containing DRAM in the form a removable/replaceable

SODIMM.
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As mentioned earlier, the idea of utilizing or combining multiple entropy sources

has been explored earlier. For example, Ref. [15] combines (the output of) multiple

locations of one or several memory blocks located inside an IC to derive unique keys.

However, no physical implementation or test results thereof have been published

yet. A similar but non-memory-based PUF was presented in [16], which proposes

combining several on-chip entropy sources (e.g., clock sinks) in an optimized man-

ner towards better (overall) entropy and robustness. In comparison to these works,

the design space for C-PUF is much wider as it aims to combine both on-chip and

off-chip entropy sources towards realizing multi-component authentication in an em-

bedded system. We also propose and validate a low-overhead authentication scheme

as part of the C-PUF design that ensures robust operation across a wide range of

operating conditions. Most importantly, unlike previous work, all this is achieved

while incorporating minimal or no additional hardware, enabling easy integration of

C-PUF into a COTS system.

We now present the design of C-PUF in detail, beginning with its challenge-

response mechanism.

4.3.1 Challenge-Response Mechanism

C-PUF employs a challenge-response mechanism that utilizes both SRAM power-

cycling and DRAM refresh-pausing. Fig. 4.4 presents the complete sequence of op-

erations associated with this mechanism as well as the formats of the challenge and

response. Note that while some parameters in the challenge are SRAM-specific, oth-

ers are DRAM-specific except Id, which represents a unique identifier assigned to

a challenge and its corresponding response. These operations are now explained in

detail.

[1] First, the authenticator sends a challenge to C-PUF in the proper format, as

depicted in Fig. 4.4.
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[2] The SRAM undergoes power-cycling to generate a start-up value of Size_S bits

from a block beginning at address Addr_S.

[3] The start-up value is then corrected for bit-errors in the SRAM Error Correc-

tion stage with respect to a previously generated golden (or expected) start-up

value, as described in detail in Section 4.3.2. The information required for

this correction is contained in the Error-correction data field of the challenge

and is generated (prior to this) during the enrollment phase (explained later

in Section 4.3.4). Note that Error-correction data contains information for

both SRAM and DRAM error correction. The SRAM/DRAM Error Correc-

tion stages are responsible for generating their respective error-correction data

as well as performing actual error correction; this shall become clearer in the

following paragraphs.

[4] The XOR stage repeatedly applies the (bit-wise) mathematical operation – xor

to the corrected start-up value (CV ), generated in the previous stage, and

Bitstream_C ; Bitstream_C is a random binary sequence of Size_D bytes and

is xor-ed across its entire length with CV.

[5] The xor-ed value then moves to the HASH stage, where it is broken down into

equally-sized chunks (e.g., 32 bytes), each of which undergoes a mathematical

hash operation using SHA-256. The output from each chunk is concatenated

together to form the complete hash-ed value (HV ). Hashing helps to mask the

SRAM start-up value and adds another layer of protection against attacks.

[6] HV is applied to the DRAM alongside other parameters viz. Addr_D, Size_D,

Wrapper pattern, and Refresh-pause interval, to undergo refresh-pausing; we

follow a similar methodology as described in [8] in this stage. Specifically,

the HV (of Size_D bits) along with the peripheral data, specified by Wrapper

pattern, is first written onto a block in the DRAM, whose location is specified by

Addr_D.Wrapper pattern is an interesting parameter that was introduced in [8].
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It specifies the peripheral data-bits that are written just before the beginning

and after the end of the DRAM block, and influences the bit-flip patterns or

responses from the DRAM. It can be one of several predefined types, e.g., all

‘1’s, all ‘0’s, checkered, etc. Next, refresh operations to the DRAM are paused

for a certain amount of time viz. Refresh-pause interval, followed by reading of

the data (from the same block) containing the bit-flip patterns.

[7] The readout data undergoes error correction in the DRAM Error Correction

stage to account for the bit-errors caused during the DRAM’s response gen-

eration. Similar to SRAM error correction, the information required for this

correction is also contained in the Error correction data field of the challenge

and is generated (prior to this) during the enrollment phase.

[8] The error-corrected DRAM response, Bitstream_R, along with the identifier,

Id, comprises the (final) C-PUF response that is sent back to the authenticator.

As evident, the SRAM and DRAM Error Correction stages play a pivotal role in

C-PUF’s challenge-response mechanism. We describe these in detail over the next

two subsections.

4.3.2 SRAM Error Correction

SRAM start-up values are affected by environmental and temporal variations,

which could hinder C-PUF’s ability to perform authentication successfully. To demon-

strate the impact of one such variation viz. temperature, we generated start-up values

from eight different blocks (32 Bytes in size) each belonging to two different SRAMs

and at three different temperatures - 20◦C, 40◦C, and 55◦C. Fig. 4.5 shows the differ-

ence, in terms of Hamming Distance (HD), between the start-up values generated at

the three temperatures for each of the blocks. The 20◦C vs 20◦C comparison involves

two different start-up values generated at the same 20◦C temperature. It can be seen

that the difference is as high as 113 bits (~44%) between the start-up values gener-
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Fig. 4.5.: Variations in SRAM startup values with temperature

ated at 20◦C and 55◦C for the block numbered 4 in SRAM-1. Hence, temperature

variations adversely affect the SRAM’s ability to reproduce the same values, which

is crucial to performing successful authentication across a wide temperature range.

Moreover, the proposed design utilizes a mathematical hash (SHA-256) function to

scramble the SRAM start-up values and, hence, even a single bit-error could result in

a completely different bitstream being subsequently applied to the DRAM (step [6])

in Fig. 4.4). Therefore, the start-up values need to undergo perfect error-correction,

i.e., all bit-errors must be corrected before moving on the next-stage (XOR). To

keep the SRAM/DRAM error-correction infrastructure simple, we utilize one of the

most widely-used error-correction codes in memories viz. Hamming Encoder/Decoder

(HED). However, we observed that (even n=7, k=4) HED was not sufficiently strong

to achieve perfect error-correction in some of the SRAMs across a wide temperature

range. Hence, we complement HED with our proposed error-correction scheme, which

utilizes minimal computational and storage resources. Specifically, the start-up values

from SRAM first undergo error-correction using HED (with n=15, k=11), followed
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Algorithm 2: Generation of SRAM Error-correction Data
Input: V exp = Golden (expected) start-up value from SRAM,

N = Number of bits in a segment

Output: D = Error correction data

1 D = φ

2 S = Get_All_NonOverlapSegments(V exp)

3 foreach s ∈ S do

4 repBits = 0

5 if Num_Ones(s) ≥ Num_Zeros(s) then

6 repBits = 1

7 repSegs = 0

8 for i = 1 to N do

9 repSegs = (repSegs << 1) | repBits;

10 Ds = repSegs ⊕ s

11 D = D ∪Ds

by the proposed scheme. The scheme (explained next) comprises of two algorithms,

Algorithm 2 and Algorithm 3, that deal with the generation of error-correction data

and performing actual error correction, respectively. Empirical analysis showed that

the scheme can correct (N −1)/2 bits in every N bits (N is an odd integer). We used

N = 7 in our experiments, and hence achieved a maximum fixable error-percentage

of 42.8%. Note that other error-correction schemes could also be utilized; this is

orthogonal to the core idea of this work.

4.3.2.1 Generation of SRAM Error-correction Data

Algorithm 2 is utilized by the SRAM Error Correction stage to generate the

data that is subsequently used for correcting errors in the SRAM start-up values.

Note that the error correction data is always generated with respect to the golden

(expected) start-up value. Algorithm 2 starts by dividing the golden start-up value

into smaller segments; a segment comprises of a fixed number of bits, N (= 7, used
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Algorithm 3: SRAM Error Correction and Generation of Repre-

sentative Start-up Value
Input: V err = Erroneous start-up value from SRAM (after Hamming Encoder/Decoder

correction) to be corrected and converted to V rep,

N = Number of bits in a segment,

D = Error correction data generated from expected (golden) start-up value

Output: V rep = Representative start-up value

1 V rep = φ

2 S = Get_All_NonOverlapSegments(V err)

3 foreach s ∈ S do

4 corrSegs = Ds ⊕ s

5 repBits = 0

6 if Num_Ones(corSegs) ≥ Num_Zeros(corSegs) then

7 repBits = 1

8 V rep = V rep ∪ repBits

here). Each segment is then assigned a representative bit-value depending upon the

relative number of one-bits and zero-bits in the segment. The representative bit-

value is then expanded to form representative segment; the latter is xor-ed with the

segment to generate the correction data for that particular segment. This data from

each segment is subsequently combined to form the final error correction data.

4.3.2.2 SRAM Error Correction and Generation of Representative Start-

up Value

Algorithm 3 is also utilized by the SRAM Error Correction stage and uses the data

generated earlier (Algorithm 2) to perform error correction in SRAM start-up values.

It starts by dividing the erroneous start-up value (after HED correction) into smaller

segments of the same size as in Algorithm 2 (N = 7 bits). Each segment is then xor-

ed with its respective correction data to generate the corrected segment. The relative

number of one-bits and zero-bits in a corrected segment decides its representative bit-
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value. All the representative bit-values are then combined to form the representative

start-up value of the SRAM. Note that this representative start-up value is what

we refer to as the corrected start-up value (response) of the SRAM throughout the

chapter; it is propagated to the XOR stage, as shown in Fig. 4.4 (step [4]).

4.3.3 DRAM Error Correction

DRAMs are highly susceptible to environmental and temporal variations. To

demonstrate the impact of one such variation viz. temperature, we generated DRAM

responses from eight different blocks (128 KB in size) each belonging to two different

DRAMs and at three different temperatures - 20◦C, 40◦C, and 55◦C. Note that all the

DRAM-specific parameters in the challenge were kept constant except for Addr_D,

which was varied as per the block. Fig. 4.6 shows the difference, in terms of HD,

between the responses generated at the three temperatures for each of the blocks.

The 20◦C vs 20◦C comparison is not shown here as the corresponding HD values are

very close to zero. It can be seen that the difference is as high as 5200 bits between

the responses generated at 20◦C and 55◦C for the block numbered 2 in DRAM-1.

Thus, the DRAM responses need to be corrected for bit-errors before being sent out

to the authenticator as the final response (step [7] in Fig. 4.4). However, unlike the

SRAM, perfect error correction is not required as we employ a fuzzy authentication

strategy (described in detail in Section 4.3.4) at the authenticator end to determine

the outcome of the authentication process. Hence, we utilize just the Hamming

Encoder/Decoder (HED) for DRAM error correction in our design. The strength

(specified by <n,k>) of the HED utilized depends upon the particular DRAM module

as well as environmental factors; this is described in detail in the following subsection.

Next, we present the proposed scheme that is utilized for performing authentica-

tion using C-PUF . An important step associated with this scheme is the setting of

appropriate Match Threshold value, which determines the (authentication) outcome

at the authenticator’s end. This is also described in detail in the following subsection.
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Fig. 4.6.: Variations in DRAM responses with temperature

4.3.4 Device Authentication using C-PUF

Two distinct phases are associated with the proposed authentication scheme in-

volving C-PUF – enrollment phase and authentication phase, as shown in Figs. 4.7

and 4.8, respectively. Both phases utilize the same challenge-response mechanism

(described earlier in Section 4.3.1) for response generation but differ in their objec-

tives. The enrollment phase primarily deals with the generation of the CRP database

by subjecting C-PUF to different challenges and recording the generated responses.

These responses serve as the golden responses (or expected responses); C-PUF needs

to reproduce them later in order to be successfully authenticated. Also, during this

phase, data for subsequent error correction is derived from the golden start-up values

of the SRAM as well the golden responses from the DRAM.

Next, actual authentication of C-PUF happens during the authentication phase,

where it is subjected to the same challenges and is expected to reproduce the golden

responses. Also, the error-correction data, generated during the enrollment phase,

is used here to correct the bit-errors in the SRAM start-up values and the DRAM
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Fig. 4.7.: Flowchart showing the enrollment phase in C-PUF

responses. Finally, the corrected DRAM response is sent to the authenticator, which

employs the proposed authentication scheme (based on a fuzzy strategy [8]) to deter-

mine the outcome of the authentication process. At the core of this scheme is Match

Threshold (MT ), which represents the maximum Hamming Distance (HD) by which

a response generated during the authentication phase can differ from the golden re-

sponse, and still result in successful authentication. This is particularly relevant in a

memory-based PUF since it is affected by environmental and temporal variations and,

hence, an exact match of the responses may not happen even if the PUF is genuine.

Accordingly, C-PUF is successfully authenticated only if this HD is less than or equal

to the MT value. Note that C-PUF may be expected to operate across a wide range

of conditions, e.g., temperature, aging, etc. Hence, given an operating range, there

are usually multiple points where C-PUF undergoes the enrollment phase; we refer

to these as the enrollment points (EPs). For example, for temperature, we set the EPs

at 30◦C and 50◦C for a sample operating range of [20◦C, 55◦C]. Similarly, the specific

points where C-PUF could possibly undergo the authentication phase are referred

to as the authentication points (APs); the set of all APs comprises the (complete)
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Fig. 4.8.: Flowchart showing the authentication phase in C-PUF

operating range. An important question, however, needs to be answered – which EP

should be chosen for an AP during response comparisons at the authenticator? We

answer this by mapping a set of APs to each EP. In the current implementation of

C-PUF , all the APs in the range – [20◦C, 40◦C] and (40◦C, 55◦C] are mapped to EP

= 30◦C and 50◦C, respectively. Hence, a response generated during authentication

at AP = 55◦C should be compared with the corresponding golden response generated

at EP = 50◦C to determine the authentication outcome. As mentioned earlier, Match

Threshold plays a key role in determining this outcome; we describe the mechanism

behind setting its value in the following subsection.

Note that, due to the exponentially large CRP space of C-PUF , it could be infea-

sible to store all the CRPs at the authenticator. Hence, we propose that enrollment

is performed for a (small) subset of the total CRPs at a time and stored in the

CRP database at the authenticator. Once all the challenges in the subset are used-

up (for authentication), the C-PUF could undergo enrollment again, generating a

new subset. Note that the size (number of CRPs) of the subset could be specified
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by the user/authenticator depending upon several factors such as the frequency of

authentication, storage space available at the authenticator, etc.

4.3.4.1 Setting the Match Threshold (MT) value

In a practical scenario, the operating conditions during the authentication phase

could be very different from that of the enrollment phase. As a result, the responses

generated during authentication could widely differ (beyond the MT value) from the

corresponding golden responses even after undergoing error correction. This could

lead to failed authentication for a genuine C-PUF device. Hence, setting the appro-

priate MT value is an extremely important step in the C-PUF design cycle. It should

be set such that the resulting HD from the response comparisons is less than or equal

to it for the genuine device. Hence, in the proposed design, MT is a function of

the operating conditions during authentication, e.g., temperature, aging, etc. More-

over, the bit-flip behavior varies substantially across different DRAMs under these

operating conditions, as was depicted in Fig. 4.6 for two such modules at different

temperatures. Note that, in the C-PUF design, it is the DRAM’s response that serves

as the final response and undergoes comparison with the golden response. Hence, MT

is also a function of the DRAM module present inside C-PUF .

Setting theMT value begins with choosing the appropriate DRAM error-correction

(strength, specified by <n,k> for HED). Specifically, for a given range of operating

conditions, we need to choose the error-correction to be employed at each of the

enrollment points (EPs). To do this, C-PUF is first made to go through the enroll-

ment phase at an EP using a set of sample challenges (details in Section 4.3.4.2).

This is followed by the authentication phase at the corresponding APs. The initial

difference (without DRAM error correction), DInit, between the responses during au-

thentication and the corresponding golden responses is recorded for each AP. Next,
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Fig. 4.9.: Flowchart showing setting of Match Threshold

the error-correction is set such that it is strong enough to bring this difference to less

than P% of DInit for every AP; P is an user-specified parameter. So, for each AP,

DCorr <= P
100 ∗ DInit (4.1)

In the current design, the P value was set at 10. Finally, the MT value at the AP is

calculated as,

MT = ceil( P
100 ∗ DInit) (4.2)
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ceil() rounds up the value to the nearest higher integer. The whole process is repeated

till all the EPs are covered. Fig. 4.9 depicts the complete process of setting the MT

value in the form of a flowchart. Table. 4.5 and Table. 4.6 (in Section 4.5), list the

error-correction (strengths) and MT values for several C-PUF instances at different

sample APs. As shown for PUF-1, we choose HED with a strength of <31,26> for EP

= 30◦C, which caters to AP = 20◦C, 30◦C, and 40◦C. On the other hand, EP = 50◦C,

which caters to AP = 50◦C and 55◦C, utilizes HED with a strength of <15,11>. Note

that a set of APs could use the same MT value, for example, all APs in the range

[20◦C, 25◦C] could use the MT value corresponding to AP = 20◦C.

Another important parameter in the C-PUF authentication methodology is max-

imum corrected bits or BMax, specified inside square brackets in Table. 4.6. BMax sets

an upper limit on the maximum number of bits that are corrected in the response

generated from the DRAM in the DRAM Error Correction stage (step [6] in Fig. 4.4)

during authentication. For each AP,

BMax = DInit (4.3)

Note that BMax information is contained in the Error-correction data field of the

challenge, which is sent to C-PUF during authentication. This parameter is intro-

duced to protect against a certain kind of attack that, we envision, could be mounted

on a C-PUF device containing DRAM in the form a removable/replaceable SODIMM.

Assuming an attacker has physical access to the device, he/she may be able to replace

the DRAM SODIMM with a counterfeit one. During authentication, the DRAM Er-

ror Correction data, without the knowledge of the underlying counterfeit DRAM,

would try to correct the response of the counterfeit DRAM and bring it closer to the

genuine response. Without an upper bound on the maximum number of corrected

bits, the HD between the responses could go below the specified MT value, resulting

in successful authentication. To prevent such a scenario, C-PUF restricts the error

correction to the value specified in BMax. In an actual setting, a red flag could be trig-

gered by the device whenever the number of corrected bits reaches BMax, prompting

the authenticator to take action, e.g., re-initiate authentication. Note that, similar
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to MT, BMax takes into account the behavior of the (genuine) DRAM module as well

the current operating conditions. A case-study involving the envisioned attack is

presented through experiments in Section 4.5.4.

4.3.4.2 DRAM Error Characterization

The previous section presented the methodology for setting the appropriate DRAM

error-correction as well as MT, both of which require a good understanding of the

DRAM (bit-flip) behavior under different operating conditions. We achieve this by

performing DRAM error characterization, which was introduced in Chapter 3. It in-

volves an iterative process where the DRAM is subjected to a set of sample challenges

under different operating conditions and made to undergo refresh-pausing to generate

the responses. The sample challenges are constructed by varying the different param-

eters/factors that affect a DRAM, e.g., Bitstream_C, refresh-pause interval, wrapper

pattern, etc.. Table 4.1 presents the values of these parameters and operating con-

ditions. An analysis of the generated responses follows, giving us vital insights into

the DRAM’s behavior. Note that DRAM error characterization presents a one-time

overhead only since it needs to be performed once by the designer. Apart from these

benefits, it also helps to identify the minimum refresh-pause intervals for a DRAM

module (or a particular block) that meet the entropy requirements. This, in turn,

helps to ensure low operational latency in the design.

Next, we present a design feature of C-PUF that imparts substantial protection

against security attacks.

4.3.5 Intrinsic Reconfigurability

Reconfigurability refers to the ability of a PUF to undergo reconfiguration, i.e.,

modify its challenge-response behavior. The new behavior, which is unpredictable

and cannot be modeled based on the knowledge of the behavior prior to reconfigura-

tion, can substantially enhance the PUF’s ability to resist various attacks [14,71,73].
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The proposed design achieves reconfigurability in C-PUF intrinsically, i.e., without

using any additional resource, unlike [54]. It specifies two modes of reconfiguration

in C-PUF – SRAM reconfiguration and DRAM reconfiguration. SRAM reconfigu-

ration involves changing Addr_S in the challenge-response mechanism, generating

(new) start-up values from a different block in the SRAM. DRAM reconfiguration,

on the other hand, modifies the Refresh-pause interval, generating new bit-flip pat-

terns from the same DRAM block. Hence, by entering one or both reconfiguration

modes, C-PUF can undergo reconfiguration intrinsically and start behaving as a new

PUF, as shown through experimental results in Section 4.5.5. Note that (unlike other

parameters) the reconfiguration knobs, Addr_S and Refresh-pause interval, need not

vary across different challenges (or authentication runs) except when there is a need

for reconfiguration. Also, since the SRAM address space is usually small and could

be easily exhausted, we envision that C-PUF would undergo more DRAM reconfig-

urations than SRAM reconfigurations, as depicted in Section 4.5.5.

4.4 Experimental Setup

This section provides a brief description of the experimental setup used to validate

the C-PUF design. It consists of two Terasic TR4-230 development boards [65], each

containing an Altera Stratix IV GX FPGA, 2 MB SRAM, and 1 GB DDR3 DRAM

SODIMM. The SRAM is soldered into the boards and cannot be replaced, unlike

the DRAM. Hence, to emulate multiple (five) C-PUF instances, we also used the 16

KB SRAMs in three TI MSP4305438A micro-controllers. Altogether, a total of five

C-PUF instances were constructed for validation, each consisting of an SRAM and a

DDR3 DRAM SODIMM. As shown in Table 4.2, the SRAMs belonged to two different

manufactures while the DRAMs were procured from three different manufacturers.

Experiments pertaining to varying operating conditions viz. temperature and aging,

were performed by operating the TR4-230 development boards inside the Quincy Lab

12-140E Incubator. Fig. 4.10 shows the complete experimental setup.
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Fig. 4.10.: Experimental Setup

The FPGA was programmed with a soft Nios II processor [66] along with an Altera

UniPHY DDR3 memory controller for controlling the DRAM. A custom slave running

on the processor was also created, which can instruct the memory controller to pause

the DRAM refresh operations. To prevent interference to other running applications

(on the device), one could utilize the Partial Array Self-Refresh functionality available

in LPDDR DRAMs, which allows selective modification (increase) of the refresh-

pause interval for a portion of the DRAM (used by C-PUF) [67]. Alternatively,

techniques such as selective DRAM refresh and memory ballooning [38] could also be

utilized. Similarly, for PUF-1 and PUF-2 that use the SRAM on the TR-230 board,

the start-up values were generated by power-cycling the whole board. Alternatively,

one could either adopt the mechanism described in [45] that does not require power-

cycling to generate start-up values or utilize power-gating techniques targeting only

the SRAM. For the remaining PUFs, PUF-3 – PUF-5, the SRAM start-up values were

generated on a different platform and subsequently transferred to the TR-230 board

in real-time. Also, in these proof-of-concept implementations, the operations in the

SRAM/DRAM Error Correction, XOR, and the HASH stages were carried out using
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software (or firmware) executing on the Nios II processor. Alternatively, dedicated

on-chip hardware such as a cryptographic engine, ECC for memories, etc., could be

utilized either as already-available units or by adding them to the system. Note that

the generic architecture of C-PUF , described in this chapter, is independent of any

specific implementation.

4.4.1 Implementation Overhead and Performance

The C-PUF instances, described above, utilized off-the-shelf (memory) mod-

ules already present in an embedded system. Moreover, the various operations

– SRAM/DRAM Error Correction, XOR, and the HASH stages were carried out

using software (or firmware) executing on the Nios II processor. Hence, there is no ad-

ditional HW overhead in the current implementation. However, there is some latency

overhead, which we present in the form of authentication response time. The latter,

which could be used as a performance metric, represents the time taken by C-PUF to

generate an authentication decision, i.e., the time interval between the application of

a challenge and the generation of the (final) response during an authentication phase

(Section 4.3.4). There are three primary contributors to the authentication response

time. The first one is SRAM power-cycling, which is used to generate the startup

values. This process is very fast and takes only a few milliseconds. The second one

comprises the various operations performed using software, viz. SRAM/DRAM Error

Correction, XOR, and the HASH. The total execution time for these is in the order

of a few hundred milliseconds. The third contributor, which most affects the au-

thentication response time, is DRAM refresh-pausing. This process is relatively much

slower (~seconds), as shown through the refresh-pause interval parameter values in

Table. 4.3. Therefore, in the current implementation, the authentication response time

is primarily the refresh-pause interval (value) used in the challenge. As described in

Section 4.3.4.2, DRAM error characterization can identify the minimum refresh-pause
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intervals for a DRAM module (or block) that meet the entropy requirements. This

could help to ensure low authentication response time in the design.

4.5 Results

This section presents the results obtained from experiments conducted to validate

our work. It is broadly divided into five subsections. In the first two, we analyze

the C-PUF design in the light of entropy and number of CRPs, while also comparing

it with SRAM and DRAM PUFs. Next, the robustness of the design is showcased

through exhaustive authentication tests pertaining to wide temperature variations

and aging effects. Thereafter, we emulate an invasive attack on C-PUF and analyze

its ability to resist the same. Finally, we present a sample timeline of C-PUF’s

operation to highlight intrinsic reconfigurability in its design. Table 4.3 provides a

summary of the parameter values (in challenges) used in the different experiments.

4.5.1 Entropy Analysis

As described earlier (Section 4.2), entropy manifests itself in the from of uniqueness

and unpredictability. Hence, we analyze C-PUF in the light of these two qualities and

compare it with an SRAM PUF and a DRAM PUF.

4.5.1.1 Uniqueness Analysis

The ability of a PUF in generating unique responses (or fingerprints) forms the

very foundation of challenge-response-based authentication. In the present work, we

quantify uniqueness for a PUF as the percentage of bits that are different in the

PUF’s response when compared to another (same-type) PUF’s response.

To demonstrate the uniqueness of the responses generated by the proposed de-

sign, five C-PUF instances (PUF-1 – PUF-5) were each subjected to ten different

challenges at 20◦C. Table 4.3 provides a summary of the parameter values used in the
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challenges. Note that, unlike during DRAM error characterization, the Bitstream_C

field in the challenges consisted of a random sequence of bits, generated using a

pseudo-random number generator. Next, for every challenge, the responses (128 KB)

generated by one instance was compared against the ones generated by every other

instance. Fig. 4.11(a) shows the range and average uniqueness resulting from these

comparisons for each of the instances. As described in Section 4.3, C-PUF generates

the responses by xor-ing (in XOR stage) and hash-ing (in HASH stage) the start-up

value of the SRAM and subsequently applying it to the DRAM. Hence, one may

argue that the uniqueness of the responses generated by C-PUF is contributed by

the hash (SHA-256) operation only and the not by the rest of the design. Hence,

we generated the responses both with and without the hash operation, as depicted

in Fig. 4.11(a). Note that, with the hash operation, response generation follows the

generic flow described earlier in Section 4.3. As shown, a high average uniqueness

value of 50% (524,288 bits) was obtained for each of the instances, which shows that

the instances truly exhibit unique behavior. Due to limited spread of the minimum

and maximum values, the range is not shown for this case. Next, without the hash

operation, the responses were generated by skipping the HASH stage altogether, i.e.,

by directly applying the xor-ed start-up value of the SRAM to the DRAM; the resul-

tant comparisons are also shown in Fig. 4.11(a). The average value of 25% (337,600

bits) across the instances highlights the uniqueness inherently provided by the C-

PUF design. This uniqueness can be visually perceived through Fig. 4.12 that gives

a pictorial representation of the responses generated by the C-PUF instances (with

the hash operation) when subjected to the same (one) challenge; each response is a

fingerprint of the device containing the instance.

To further showcase the enhanced uniqueness provided by C-PUF , we also com-

pared it with that of an SRAM PUF and DRAM PUF. Using the same memory mod-

ules (present in the C-PUF instances), five SRAM PUFs and DRAM PUFs (each)

were constructed. Next, these were subjected to the same ten challenges (at 20◦C),

followed by a similar comparison of the generated responses. Note that the DRAM-
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Fig. 4.11.: Uniqueness Analysis for ten different challenges

specific parameters in the challenges were ignored when generating responses from an

SRAM PUF and vice-versa. Also, the response size for an SRAM PUF and DRAM

PUF was 32 B and 128 KB, respectively, which is the same as was generated by the

respective memory modules in a C-PUF instance. As described earlier, SRAM PUFs

exhibit high uniqueness, which is evident in Fig. 4.11(b) with an average unique-
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Fig. 4.12.: Responses (fingerprints) from different C-PUF instances

ness value of 49%. On the contrary, the uniqueness exhibited by DRAM PUFs is

comparatively much lower (by more than three orders of magnitude), as depicted in

Fig. 4.11(c). Hence, for uniqueness, C-PUF closely resembles an SRAM PUF but

substantially improves over a DRAM PUF.

4.5.1.2 Unpredictability Analysis

In the present work, we quantify unpredictability as the probability of incorrectly

predicting a PUF’s response to an unknown challenge with the knowledge of a certain

number of (previously-used) CRPs. Ref. [74] captured this notion by investigating

the extent of change in the responses when the corresponding challenges were varied

by a certain number of bits. We followed a similar methodology and changed the

challenges by just one bit. The change observed in the corresponding responses gave

us an estimate of the unpredictability in C-PUF . However, as depicted in Fig. 7,

C-PUF’s challenge has several variable parameters. The unpredictability analysis

was performed for each of these parameters, however, due to lack of space, we discuss

and present the results for three of these – Addr_S , Addr_D, and Bitstream_C .

Table. 4.4 presents the results of the analysis.

Addr_S specifies the (starting) address of the SRAM block that undergoes power-

cycling to generate the start-up values. Five addresses or blocks were (randomly)

selected and used to construct five master challenges. Each master challenge has one

of the selected addresses as Addr_S ; the rest of the parameters (Table. 4.4) were

chosen randomly but were fixed across all the master challenges. Next, we generated
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Table 4.4.: HDResponse values for different parameters1

Parameter Average Maximum Minimum Median

Addr_S 524,244 525,113 523,373 524,294

Addr_D 68 84 55 68

Bitstream_C 167 301 118 147

the set of all possible challenges (derived challenges) that differ in just one bit from the

master challenge in the Addr_S parameter (i.e., Hamming Distance, HD = 1). Thus,

five different sets of derived challenges were generated, each corresponding to a master

challenge. Next, C-PUF was subjected to these challenges at 20◦C, generating five

master responses and five sets of derived responses. In each set, the derived responses

were then compared with the master response to generate the HDResponse. As shown

in Table. 4.4, changing just one-bit in the challenge changed the response by 524,244

bits (average). Thus, even with the knowledge of a certain number of CRPs, it is

near impossible for an attacker to predict the response to a challenge that differs in

even one bit from the CRPs.

Addr_D specifies the (starting) address of the DRAM block that undergoes refresh-

pausing to generate the bit-flip patterns. Unpredictability analysis was performed by

following a similar methodology as with Addr_S (described above). However, in this

case, five random DRAM addresses or blocks were used to construct the master chal-

lenges, and the derived challenges were generated such that they differ from the master

challenge in the Addr_D parameter in just one bit. As shown in Table. 4.4, changing

just one bit in the challenge changed the response by 68 bits (average). Thus, the

unpredictability associated with Addr_D is comparatively lower than Addr_S and is

indicative of the low entropy/uniqueness of a (refresh-pausing-based) DRAM PUF.

However, even with just a one-bit difference in the challenge, the attacker still needs

1Temp. = 20◦C; Size_S = 32 B, Size_D = 128 KB, Wrapper pat. = All ’1’s, Ref.-pause int. =

40s
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to guess the value and position of (an average) 68 new bits (out of 128KB), of which

there are 128×1024×8C68×268 different possibilities. Moreover, an increase in operating

temperature leads to an exponential change and would only make the attacker’s job

more difficult. Hence, C-PUF offers high unpredictability with respect to Addr_D

too.

Bitstream_C is a random binary sequence that, after undergoing xor and hash

with the SRAM start-up values, is written onto the DRAM for refresh-pausing. Fol-

lowing a similar methodology as with the previous two parameters, five random

bitstreams were generated to construct five master challenges. The derived chal-

lenges were then generated such that they differ from the master challenge in the

Bitstream_C parameter in just one bit. As shown in Table. 4.4, changing just one bit

in the challenge changed the response by 167 bits (average). As with Addr_D, the

unpredictability associated with Bitstream_C is comparatively lower than Addr_S

and is indicative of the low entropy/uniqueness of a (refresh-pausing-based) DRAM

PUF. However, even with just a one-bit difference in the challenge, the attacker still

needs to guess the value and position of (an average) 167 new bits (out of 128KB),

of which there are 128×1024×8C167 × 2167 different possibilities. As before, an increase

in operating temperature leads to an exponential change and would only make the

attacker’s job more difficult. Hence, C-PUF also offers high unpredictability with

respect to Bitstream_C .

4.5.2 CRP Analysis

C-PUF supports an exponential number of CRPs that makes it suitable for

challenge-response-based authentication. To better explain this, we first estimate

the number of CRPs supported by an SRAM PUF and a DRAM PUF. We assume

the same memory configuration as used in the experiments – 2 MB SRAM and 1 GB

DRAM, generating 32 B and 128 KB responses, respectively. Accordingly, the num-

ber of CRPs supported by the SRAM PUF is NS, where NS = 216 and represents the
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number of 32 B blocks in a 2 MB address-space. Unlike an SRAM PUF, the challenge

applied to a DRAM PUF (block) consists of several widely-variable parameters, as

explained in Section 4.3.1. One such parameter is Bitstream_C , which is a random

binary sequence of Size_D. Note that Size_D also specifies the size of the DRAM

block (128 KB, here). Hence, the total number of ways Bitstream_C could be varied

is of the order of 2128×1024×8. With a 1 GB DRAM module (containing 213 blocks) and

three possible values for Wrapper patterns and Refresh-pause intervals each, the total

CRPs supported by the DRAM PUF equals ND, where ND = 2128×1024×8×213×3×3.

As described earlier, C-PUF tightly integrates the response generation mechanisms

of an SRAM PUF and a DRAM PUF, and hence it supports a total of NC CRPs,

where NC = NS×ND or 21,048,608. Thus, it supports an exponential number of CRPs,

which is ideal for challenge-response-based authentication.

4.5.3 Robustness Analysis: Authentication under Varying Operating Con-

ditions

Robustness of a system can be broadly defined as its ability to withstand or func-

tion normally under varying environmental and temporal conditions. In the present

context of PUF-based authentication, it refers to the PUF’s ability to undergo suc-

cessful authentication under different operating conditions, primarily determined by

temperature and aging. We now present a robustness analysis of the proposed C-PUF

design.

4.5.3.1 Authentication under Temperature Variations

As shown earlier in Figs. 4.5 and 4.6, variations in operating temperatures can

strongly affect the PUF’s responses, thereby hindering its ability to perform authen-

tication. However, through the proposed C-PUF design and the associated authen-

tication scheme, we address this challenge successfully. We demonstrate this for a

sample operating range of [20◦C, 55◦C]. Note that the design is not restricted to this
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Table 4.5.: Hamming Encoder-Decoder < n, k > values for different enrollment points

PUF 30◦C 50◦C

1 <31,26> <15,11>

2 <31,26> <31,26>

3 <31,26> <15,11>

4 <31,26> <31,26>

5 <31,26> <31,26>

particular range and could easily scale to accommodate wider ranges. As the first

step, 100 different challenges were applied to each of the C-PUF instances at two

different enrollment points (EPs) – 30◦C and 50◦C. The generated responses served

as the golden responses and were stored in the CRP database. Next, to emulate an

actual scenario, authentication was performed at five different authentication points

(APs) – 20◦C, 30◦C, 40◦C, 50◦C, and 55◦C, by reapplying the same challenges to the

instances. Note that, EP = 30◦C and EP = 50◦C cater to the lower three and upper

two APs, respectively. Table. 4.5 lists the error-correction utilized for each of the

C-PUF instances at different EPs. Next, at each AP, the responses of the C-PUF

instances generated during authentication were compared with their respective golden

responses to calculate the intra-puf comparison HD, as shown in Fig. 4.13. The y-

axis represents relative frequency, i.e., the fraction of the total comparisons, either

intra-puf or inter-puf (explained later), that yields a certain HD, represented on the

x-axis. Table 4.6 gives the MT values, which were used to determine the authenti-

cation outcome, for each of the instances at different APs. The numbers in square

brackets represent the maximum corrected bits, BMax, which was used to restrict the

error correction during authentication. Note that the appropriate error-correction as

well as MT values, used throughout the experiments, were set using the methodology

described earlier in Secs. 4.3.4.1 and 4.3.4.2. Overall, the experiments resulted in

2438 successful authentications (out of 2, 500), i.e., a true-positive rate of 97.5%.
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Table 4.6.: Match Threshold and [Maximum Corrected Bits] values at different au-

thentication points

PUF 20◦C 30◦C 40◦C 50◦C 55◦C

1 14 [132] 2 [15] 52 [520] 14 [135] 270 [2700]

2 4 [40] 1 [5] 11 [110] 3 [30] 30 [300]

3 12 [120] 2 [13] 43 [430] 10 [100] 200 [2000]

4 6 [52] 1 [5] 9 [84] 8 [80] 94 [940]

5 10 [94] 1 [8] 44 [440] 4 [40] 50 [500]

The C-PUF design also avoids any false-positives; an authentication outcome is

termed as a false-positive when a counterfeit device is successfully authenticated as a

genuine one. In the current design, this could happen when the response generated

during authentication by a counterfeit C-PUF instance (say PUF-X) is very close to

the golden response of a genuine instance (say PUF-Y), resulting in PUF-X getting

falsely authenticated as PUF-Y. To emulate this scenario, we performed inter-puf

comparisons, i.e., the golden responses of a C-PUF instance were compared with the

responses generated during authentication of every other instance. Fig. 4.13 shows

the relative frequency versus HD for the inter-puf comparisons corresponding to the

same 100 challenges and operating conditions. Altogether, a total of 10,000 inter-puf

comparisons were carried out. At each AP, the HD resulting from inter-puf compar-

isons was multiple orders of magnitude higher than the MT value (corresponding to

the genuine instance), thus ensuring the absence of any false-positives.

4.5.3.2 Authentication under Aging Effects

PUFs, like all electronic components, undergo structural degradation over pro-

longed use, severely affecting their reliability. Hence, robustness to temporal varia-

tions (aging effects) is a much-desired attribute in any PUF design. To show that

C-PUF is robust to aging affects, we first applied 100 different challenges to two of
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Fig. 4.13.: Authentication under temperature variations

the C-PUF instances (PUF-1 and PUF-2) at 30◦C, and recorded the corresponding

golden responses. Next, the instances underwent an accelerated aging process [75]

through the application of thermal stress. Specifically, a temperature of 85◦C was

applied to the instances for 460 hours. To avoid damage to the TR-230 boards from

prolonged exposure to high temperature, the aging process was carried out in parts,

i.e., the high temperature was applied for 12 hours followed by a cooling time of 4

hours. The Arrhenius equation, typically used for predicting reliability/failure rates,
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Fig. 4.14.: Authentication under aging effects

was used to calculate the acceleration factor (AF ) resulting from the applied thermal

stress [68]. As per the Arrhenius equation,

AF = e

(
Ea

k

(
1
T use

−
1

T stress

))
(4.4)

where,

AF = Acceleration Factor

Ea = Thermal Activation Energy (value used = 0.5 eV [75])

k = Boltzmann’s Constant (8.63 x 10-5 eV/K)

T use = Use Temperature (value used = 303 K (30◦C))

T stress = Stress Temperature (value used = 358 K (85◦C))

Using these values, AF was calculated to be ~19. Since the thermal stress was

applied for 460 hours, this translates to 8740 (19× 460) hours or 12 months of natu-

ral aging at 30◦C. The responses were then generated from the aged instances during

authentication (with the same challenges and at 30◦C) and compared with the golden

ones. Fig. 4.14 shows the relative frequency versus HD for both intra-puf and inter-

puf comparisons. Generally, aging has a much lesser effect on the response-generation

process as compared to temperature. In other words, the responses are primarily in-

fluenced by temperature and, hence, we set the MT values as per the 30◦C enrollment
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Fig. 4.15.: Authentication of PUF-2C versus PUF-2

point in Table 4.6. This resulted in 198 successful authentications (out of 200), i.e.,

a 99% true-positive rate, and without any false-positives.

4.5.4 Replacing Genuine DRAM with a Counterfeit

Several embedded systems contain DRAMs in the form of Dual In-line Memory

Modules (DIMMs) that (unlike SRAMs, which are physically soldered) could be eas-

ily detached from the system. An attacker with physical access to the system may be

able to replace the genuine DIMMs with counterfeit ones, and then try to undergo

authentication. This scenario was emulated using two C-PUF instances, PUF-2 and

PUF-4, which represented the genuine systems. First, PUF-2 was made to undergo

enrollment at two different EPs – 30◦C and 50◦C, and the corresponding golden re-
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Fig. 4.16.: Authentication of PUF-4C versus PUF-4

sponses were recorded; a set of ten different challenges was used in this process. This

was followed by authentication at two different APs – 40◦C and 55◦C, which were

catered to by EP = 30◦C and 50◦C, respectively. The responses generated during

authentication were then compared with the corresponding golden responses; these

comparisons are termed as genuine-puf response comparisons. Next, a counterfeit

PUF, PUF-2C, was built by replacing the DRAM in PUF-2 with the one in PUF-4.

Hence, PUF-2C now had the same SRAM as PUF-2 but contained a different (coun-

terfeit) DRAM. Note that the DRAM in PUF-4 was chosen as the replacement in

order to emulate the worst-case scenario; the DRAMs (originally) in PUF-2 and PUF-

4 have the same make and architecture. The same set of challenges were then applied

to PUF-2C, followed by a comparison of the generated responses and the correspond-

ing golden responses (of PUF-2); these comparisons are termed as counterfeit-puf
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response comparisons. Fig. 4.15 presents the relative frequency versus HD for both

genuine-puf and counterfeit-puf response comparisons. To determine the authen-

tication outcome, we used the MT values corresponding to PUF-2, as specified in

Table 4.6. This resulted in unsuccessful authentication for each of the challenges

and APs; in other words, the C-PUF design was able to detect the counterfeit PUF

and prevent any false-positives. To further emphasize this ability, we built another

counterfeit PUF, PUF-4C, which had the same SRAM as PUF-4 but contained the

DRAM from PUF-2. The above-described process was repeated, and the resulting

comparisons are depicted in Fig. 4.16. As before, the counterfeit PUF was detected

in each case and no false-positives were generated.

4.5.5 Intrinsic Reconfigurability: A Sample Timeline

The ability to be intrinsically reconfigured, i.e., modify its challenge-response

behavior, can provide C-PUF substantial protection against various attacks (Sec-

tion 4.3.5). As described earlier, there are two reconfiguration knobs – Addr_S

(SRAM reconfiguration) and Refresh-pause interval (DRAM reconfiguration). To

demonstrate that C-PUF’s behavior does undergo substantial modification, we re-

configured a C-PUF instance several times and applied the same challenge to it after

each reconfiguration. This is depicted in a sample timeline (T1–T8) in Fig. 4.17,

where the instance undergoes a series of DRAM and SRAM reconfigurations. The

temperature during the whole process was maintained at 20◦C. The difference (in

terms of HD) between the response generated after a particular reconfiguration and

the one generated after the last SRAM reconfiguration is represented by the x-axis

in Fig. 4.17. For example, the response generated after the DRAM reconfiguration

at T5 differs from the one generated after the SRAM reconfiguration at T3 by more

than 600 bits. This difference increases to more than 500, 000 bits for the two SRAM

reconfigurations at T3 and T6.



105

T1 T2 T3 T4 T5 T6 T7 T8

Timeline

102

103

104

105

106

H
am

m
in

g 
D

is
ta

nc
e

DRAM reconfiguration
SRAM reconfiguration

102

103

104

105

106

H
am

m
in

g 
D

is
ta

nc
e

T1 T3 T4 T5 T6 T7 T8T2
Timeline

Fig. 4.17.: Reconfiguration timeline

Although not depicted in Fig. 4.17, the choice of the Refresh-pause intervals en-

sures that there is also a substantial difference (that meet entropy requirements)

between the responses generated after consecutive DRAM reconfigurations (e.g., at

T4 and T5). Note that the availability of two reconfiguration modes in C-PUF gives

it the flexibility to choose one or the other depending on the scenario, as explained

in Section 4.6.2.

4.6 Discussions

This section provides a brief discussion of potential attack scenarios as well as

additional design aspects of C-PUF .

4.6.1 Attack Scenarios

We envision two types of attacks on a device (containing C-PUF) – non-invasive

and invasive.

In the current design, the communication between the authenticator and the de-

vice (containing C-PUF) is unencrypted. Hence, we assume that an attacker can

eavesdrop on this communication and extract some of C-PUF’s CRPs used during
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authentication. This could enable the attacker to mount a non-invasive attack [14],

which exploits a large set of (previously-used) CRPs for generating an approximate

model of a PUF’s (challenge-response) behavior that could predict the (future) re-

sponses. However, successfully mounting such an attack on C-PUF is extremely

difficult, as described through the predictability analysis in Section 4.5.1.2. Specif-

ically, the unpredictable behavior resulting from the coupling (using hash and xor)

of two heterogeneous memory technologies, each with its distinct behavior, leads to

an extremely-complex overall model in C-PUF . This complexity is further enhanced

by the presence of multiple variable parameters in its challenge-response mechanism,

which generates an exponential number of CRPs, as shown in Section 4.5.2. Lastly,

C-PUF’s final line of defense against such as an attack lies in its ability to undergo

reconfiguration, which completely modifies its challenge-response behavior. For exam-

ple, C-PUF can be reconfigured after every authentication phase, cycling among the

different reconfiguration points in a random or round-robin fashion. In other words,

the reconfiguration knobs can be used just like any parameter in the challenge. Hence,

to an external attacker trying to model C-PUF’s behavior, the responses would seem

like coming from multiple completely different PUFs, making the attack extremely

time and computation intensive. Due to the above reasons, we believe that C-PUF

can provide high resistance (and reduced vulnerability) to a non-invasive attack such

as [14]. Note that a formal analysis of C-PUF’s vulnerability to such attacks is

currently in progress and is planned as a part of future work. Encrypting the com-

munication between the authenticator and device can also help prevent such attacks;

however, this is not a requirement for the C-PUF design.

An invasive attack [73] involves physical tampering with the target device and

requires physical access to it. We described one such scenario in Section 4.5.4, where

the genuine DRAM module was replaced with a counterfeit one, followed by several

authentication attempts. As shown, C-PUF was successfully able to detect this attack

and prevent authentication. Mounting such an attack on the SRAM, on the other

hand, is extremely difficult; its on-chip location requires the attacker to possess a very
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high level of expertise and sophisticated resources. Another type of invasive attack

could involve memory-line snooping, where the attacker can (non-intrusively) read off

the data in off-chip memory lines during authentication. Note that the SRAM start-up

values are always hashed before they travel through the off-chip memory lines. Since

hash (SHA-256, used here) is a one-way function, reading these (hashed) values does

not reveal any information about the SRAM’s behavior. However, the attacker could

be able to read the data written to the DRAM as well as its response. Assuming

he/she has access to C-PUF for a considerable amount of time (~minutes/hours),

he/she may then be able to derive a portion of the DRAM’s (bit-flip) behavior.

However, entirely constructing this behavior requires a very large number of CRPs,

which is extremely time and computation intensive due to the huge (exponential)

challenge-response space of the DRAM (Section 4.5.2). In summary, the utilization

of heterogeneous memory technologies, which are spatially distributed (on-chip and

off-chip), substantially improves C-PUF’s resistance to such invasive attacks.

4.6.2 C-PUF versus [SRAM PUF + DRAM PUF]

An alternative design (say, SD) could have both an SRAM PUF and a DRAM

PUF present in a device but operating independently of each other. C-PUF scores

over such a design by providing much stronger defense against non-invasive attacks

owing to its more complex (challenge-response) behavior, as described in the previous

subsection. One manifestation of this complexity is the higher number of CRPs that

are supported by C-PUF , as compared to SD. Section 4.5.2 showed this through a

typical SRAM/DRAM configuration in C-PUF . Specifically, if the number of CRPs

supported by the SRAM PUF and DRAM PUF are NS and ND, respectively, then

C-PUF supports a total of ND = NS × ND CRPs, as described in Section 4.5.2. In

contrast, SD can support a maximum of NSD CRPs, where NSD = NS +ND, which is

multiple orders of magnitude lower.Moreover, the availability of two reconfiguration

modes in C-PUF gives it the flexibility to choose one or the other, depending on
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the scenario. For example, DRAM reconfiguration could be utilized in case of low

available address space in SRAM while SRAM reconfiguration could be performed

when fast authentication is required. SD does not have the ability to make these

decisions as the constituent PUFs operate independently of each other.

4.6.3 Effect of Variations in Supply Voltage

Variations in supply voltage could affect a PUF’s operation. However, due to

the presence of on-board voltage/power regulators (in all embedded systems), which

closely monitor power supply to the components, this is an extremely rare (and

short-duration) phenomenon. Nevertheless, with regards to C-PUF , the SRAM is

unaffected by supply-voltage variations as its response-generation mechanism relies

on power-cycling or an intentional lowering of supply-voltage as in [45]. The DRAM

could see additional bit-errors if the variation goes beyond the manufacturer-specified

voltage guardbands [76,77], however, the error-rate is low [76] and can be handled by

the authentication scheme employed in C-PUF . The only operations that could be

truly affected by supply-voltage variations are the HASH, XOR, and SRAM/DRAM

Error-correction, as they involve arithmetic computations. In such a scenario, its fair

to assume that the whole compute sub-system (of the embedded system) is actually

paralyzed, affecting all running applications (not only authentication using C-PUF).

Hence, if authentication is in progress, it will need to be stopped and re-initiated once

the voltage levels are restored.

4.7 Conclusion

In this chapter, we propose the concept and design of a memory-based combi-

nation PUF that tightly integrates two heterogeneous memory technologies to con-

struct a PUF that overcomes several shortcomings of current memory-based PUFs.

The design can be easily implemented on a COTS device and takes a step towards

multi-component authentication in an embedded system. The PUF was implemented
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in a real system using several off-the-shelf SRAMs and DRAMs. Experimental results

demonstrated substantial improvements over current memory-based PUFs including

the ability to resist various attacks. We also proposed a light-weight authentication

scheme that ensures robust operation of the PUF across wide environmental and tem-

poral variations. Extensive authentication tests performed on several PUF prototypes

achieved greater than 97.5% true-positive rate across these variations. The absence of

any false-positives, even under an invasive attack, further highlighted the effectiveness

of the overall design. Inclusion of other (system) components into the C-PUF design

and formal analysis of its vulnerability to non-invasive attacks (e.g., machine-learning

based) are currently in progress and are planned as part of future work.
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5. A LIGHTWEIGHT END-TO-END AUTHENTICATION
PROTOCOL FOR IMPLANTABLE MEDICAL DEVICES

The past decade has witnessed a rapid growth in the use of Implantable Medical De-

vices (IMDs) for monitoring and treating a variety of medical conditions, with their

global market valuation expected to reach $50 billion by 2024 [17]. IMDs are increas-

ingly being equipped with wireless interfaces [18], allowing them to communicate with

an External Device (ED) such as a doctor’s programmer or a patient’s smartphone,

as shown earlier in Fig. 2.4. While this greatly improves standard of care (allowing for

post-deployment tuning of therapy as needed and remote, real-time access to health

data), it also exposes the IMD to a range of security concerns [3,4,19–21] such as po-

tential interaction with untrusted EDs and potential leakage of confidential medical

data.

Several techniques [22–30] have been proposed to address these concerns. One

such technique [28, 30], as shown earlier in Fig. 2.4, leverages a trusted entity such

as a Health Server (HS), which assumes the role of an authenticator and arbitrates

access to an IMD when an ED requests it. Upon successful authentication of an ED,

the HS distributes a shared key to both the IMD and the ED. This key is used to

encrypt all further communication between the IMD and ED using symmetric-key

cryptography, while the ED and HS employ asymmetric (public-key) cryptography

to communicate with each other (since they are not as energy-constrained as the

IMD). Note that the trusted-entity approach is popular due to its simplified but

secure usage model and requirement of no additional devices. However, there are

three unaddressed challenges with this approach. First, due to their severely limited

energy budget, IMDs [18] typically utilize short-range communication technologies

such as Bluetooth LE and, hence, do not have direct network connectivity with a

remote HS. This is in contrast to an ED, such as a smartphone, which can use long-
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range wireless technologies such as Wi-Fi, LTE, etc., for network access. Second,

involving the HS for every single authentication session can incur significant energy

overheads at the IMD, besides increasing the load on the HS and the network. This, in

turn, gives rise to the third challenge. If the HS is not reachable over the network, the

IMD and ED cannot securely communicate with each other. Besides, some of these

techniques [28, 29] require the (resource-constrained) IMD to perform asymmetric

cryptography operations resulting in high energy overhead.

5.1 Chapter Contributions

In this chapter, we propose a lightweight end-to-end authentication and key-

exchange protocol based on the trusted-entity approach that fully addresses each

of the aforementioned challenges. A key requirement of the proposed protocol is the

availability/generation of unique identifiers/keys and random numbers on demand.

Although other techniques such as statically-stored secret keys and pseudo-random

number generators could be utilized to satisfy this requirement, we utilize a Physi-

cally Unclonable Function (PUF) [33] and present its seamless integration with ex-

isting cryptography techniques in the protocol. The result is a robust, secure, and

lightweight protocol, which protects against various security attacks [19–21] and can

be easily implemented using Commercial-Off-The-Shelf (COTS) devices with minimal

or no additional hardware resources. Several PUF-based authentication techniques

have been proposed earlier, however, they suffer from several shortcomings such as

non-applicability to the unique IMD ecosystem (Fig. 2.4) [31, 32], need for special

hardware [29, 30], and high operation overhead [29, 30]. The proposed protocol, on

the other hand, overcomes these shortcomings and those of earlier trusted-entity ap-

proaches [28]. Specifically, we make the following contributions [10]:

• We propose an end-to-end authentication and key-exchange protocol for an IMD

ecosystem that addresses several challenges and limitations associated with prior

trusted-entity approaches while protecting against a wide range of security and
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privacy attacks. The protocol requires no special hardware on the IMD or ED,

and therefore, can be implemented on COTS devices.

• We present the seamless integration of existing cryptography techniques with

a PUF in the proposed protocol while also addressing the limitations and chal-

lenges of prior PUF-based approaches in their application to the IMD ecosystem.

• We implement the proposed design on a real system comprising of an ARM

Cortex-M0+ based microcontroller as the IMD, a Raspberry Pi 3 B+ as the ED,

and an Intel Xeon E5 processor based HS. We perform an extensive evaluation of

the design and present experimental results that demonstrate the effectiveness

of the protocol in providing robust, secure, and lightweight authentication and

key-exchange in IMDs. With a typical IMD that is powered by a 2 Ah battery

at 3.3V, the total energy overhead incurred by the protocol per authentication

session is as low as 0.000018% of the IMD’s total energy budget.

The rest of the chapter is organized as follows. Section 5.2 describes the motiva-

tion behind this work. Next, Section 5.3 presents the design details of the proposed

authentication and key-exchange protocol. In Section 5.4, we describe the prototype

implementations of the three entities (IMD, ED, and HS) and the experimental setup

used to validate the proposed protocol. An analysis of the protocol with regards to

overhead and security is also presented in this section. Section 5.5 presents some addi-

tional design aspects, results, and discussions associated with the proposed protocol.

Finally, Section 5.6 concludes the chapter.

5.2 Motivation

Chapter 2 described several approaches [22–30] towards enabling authentication

and key exchange in IMDs. While each of them has its advantages and disadvan-

tages [20, 22], this dissertation utilizes the trusted-entity approach [28, 30] due to its

better security capabilities, simplified usage model (for the patient), and the potential
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Table 5.1.: Capabilities of the different entities in the IMD ecosystem

IMD ED HS

Energy Budget Low (few Ah) Unlimited 1 Unlimited

Storage Capacity Low (few KB) High (few GB) Unlimited

Communication Wireless, Wireless/Wired, Wired,

Short Range Short/Long Range Long Range

Cryptography Symmetric Symmetric/ Symmetric/

Computation Asymmetric Asymmetric

for seamless integration with COTS devices. As shown in Fig. 2.4, an IMD ecosys-

tem based on the trusted-entity approach comprises of the three (types of) entities:

Implantable Medical Device (IMD), External Device (ED), and Health Server (HS).

The role and function of each of these entities was described earlier in Chapter 2.

Table 5.1, here, lists the typical capabilities of the entities. We now describe the

key challenges associated with this IMD ecosystem that form the primary motivation

behind the design of the proposed protocol.

As shown in Fig. 2.4, ED communicates with IMD to send configuration or pro-

gramming data as well as receive the patient’s physiological data for monitoring and

therapy. There are two important requirements associated with this communication

process. First, it must be ensured that ED, which is communicating with IMD, is a

legitimate or authentic device. In the absence of this, an attacker can use his own

device (ED) to access IMD, compromising the safety and privacy of the patient. Prior

work [28, 30] have utilized the trusted-entity approach towards addressing this i.e.,

leveraging a trusted entity - HS, which assumes the role of an authenticator and

arbitrates access to IMD when ED requests it. But, there are several unaddressed

challenges associated with this approach, as described in the next section. Moreover,

1Powered through a chargeable battery or an AC wall outlet.
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Ref. [28], which proposes a hybrid security protocol for authentication, assumes an

asymmetric crypto-system on the IMD, thereby incurring high energy overhead.

In recent years, PUFs have been used to implement several IMD-specific [29,30] as

well as generic (not IMD-specific) authentication protocols [31,32]. Ref. [29] proposed

utilizing two PUFs, one in an intra-body IC (IMD) and one on an FPGA (ED), both

of which are matched to produce the same response. However, the proposed technique

forces the use of an FPGA and requires a cumbersome pre-deployment matching pro-

cess. Also, it uses asymmetric (public-key) cryptography, which is significantly more

expensive than symmetric key cryptography in terms of energy consumption. Ref. [30]

utilizes PUF-generated physically-obfuscated (or secret) keys stored in two IC cards,

belonging to the doctor (ED) and patient (IMD) respectively, for authentication and

key-exchange between the two entities. However, the protocol requires the services

of HS during every authentication session, which has several disadvantages such as

high overhead at the IMD and HS as well as service disruption in the event of HS’

unavailability. Additionally, both the aforementioned works need special hardware,

viz. an FPGA and an ASIC, and are not amenable to implementation on COTS de-

vices. Ref. [31] presents a survey of several generic authentication and key-exchange

protocols. These protocols are designed for a two-entity ecosystem, where the entities

can communicate directly with and authenticate each other. On the other hand, as

shown in Fig. 2.4, the IMD ecosystem in the current work comprises of three entities,

two of which (IMD and HS) do not have any direct connectivity with each other. As

a result, these protocols are not directly applicable to the current ecosystem. Another

generic PUF-based protocol was described in Ref. [32], which performs authentication

and key-exchange between a resource-constrained prover (containing a PUF) and a

resource-rich verifier without requiring the PUF’s (prover’s) challenge-response pairs

to be stored at the verifier end. Moreover, it assumes that the verifier has direct

connectivity with the trusted-entity. On the contrary, the current ecosystem is based

on IMD (verifier) being resource-constrained while ED (prover) being resource-rich.
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IMD (verifier) also does not have direct connectivity with HS (trusted-entity), and

hence, the protocol described in Ref. [32] is not applicable to the current ecosystem.

5.2.1 Challenges with the Trusted-entity and PUF-based Approaches

As shown in Table 5.1, IMD can only communicate with another entity over a

short-range wireless link (e.g., Bluetooth) and may not have direct connectivity with

HS.

i) Without direct connectivity with HS, how can IMD authenticate or verify the

identity of (untrusted) ED?

Involving the HS for every single authentication session can incur significant energy

overheads at the IMD, besides increasing the load on the HS and the network.

ii) How can the overhead associated with the authentication process be reduced at

IMD and HS?

iii) If HS is unavailable or not reachable over the network, how can (untrusted)

ED be authenticated?

The second requirement of the communication process between IMD and (au-

thentic) ED is associated with maintaining the confidentiality and integrity of the

communication data. Specifically, an attacker may be able to eavesdrop on this com-

munication but should not be able to modify or interpret the content of the commu-

nication in any manner. Securing the communication channel through encryption is

the most common approach to achieve this. However, due to a limited energy budget

and resource constraints, IMD is only capable of utilizing symmetric cryptography.

Thus, a symmetric key needs to be shared between IMD and ED before encrypted

communication between the two entities can begin. This, in turn, gives rise to another

challenge.

iv) How to share a symmetric key between IMD and ED over an insecure (open)

communication channel?
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We now present the design of an end-to-end authentication and key-exchange

protocol for the IMD ecosystem to overcome each of the aforementioned challenges

while also addressing the various drawbacks of previous trusted-entity and PUF-based

approaches.

5.3 An End-to-End Authentication and Key-exchange Protocol for IMDs

Before presenting the details of the protocol, we highlight an important aspect of

the communication channel between the entities when they are deployed in the field.

Since both ED and HS have high computational and storage resources (Table 5.1),

they communicate over a secure channel at all times by utilizing asymmetric (public

key) and symmetric cryptography to encrypt the communication. On the other hand,

the resource-constrained nature of IMD (Table 5.1) restricts it to the utilization of

symmetric cryptography only. As a result, the (initial) communication between IMD

and ED is unencrypted, i.e., over an insecure or open channel, until a symmetric

key is exchanged between the two entities. Note that it is this key exchange over an

insecure channel that forms one of the key challenges in the design of the proposed

protocol.

We now present a detailed description of the protocol, which is divided into two

phases – (i) enrollment phase and (ii) authentication phase. Table 5.2 summarizes the

notations and terminology used in the protocol. As shown in Fig. 5.1, IMD and ED

are each identifiable by a tuple – {public id, secret id}. While public id (e.g., manu-

facturer serial number) may be known to other entities, secret id is known only to the

entity itself (and HS, explained later), thereby helping to prevent impersonation at-

tacks (Section 5.4.3). Traditional methods of implementation for the secret id would

involve storing a unique number in tamper-proof storage such as secure non-volatile

memories (NVMs). However, in the current work, secret id generation is enabled

by a PUF (Section 5.3.3), which generates it on-demand (when needed) instead of

statically storing it. This provides better security without the need for additional
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Table 5.2.: Notations and terminology used in the protocol

Notation Description Length

PIMD, SIMD Public Id, Secret Id of IMD 128 bit

PED, SED Public Id, Secret Id of ED 128 bit

TS Timestamp 256 bit

LIMD IMD salt stored in HS Database 128 bit

iLIMD IMD salt stored in IMD Database 128 bit

oLIMD Old IMD salt 128 bit

nLIMD New IMD salt 128 bit

LED ED salt 128 bit

hSED ED verification token 256 bit

RIMD Random Number generated by IMD 256 bit

hRIMD IMD random token 256 bit

hRED ED random token 256 bit

AuthED ED’s Authentication Outcome 1 bit

ACK Acknowledgement Message 256 bit

M Encrypted Message sent by HS -

D Decrypted Message at IMD -

K Symmetric Key exchanged between IMD and ED 128 bit

Hash(A,B,...) SHA256 (A xor B xor ...) 256 bit

GenerateSalt() Generation of Random Number 128 bit

Enc(key, [msg]) Symmetric Encryption of ‘msg’ with ‘key’ using AES-128 -

Dec(key, [msg]) Symmetric Decryption of ‘msg’ with ‘key’ using AES-128 -

resources (secure NVMs) and also makes the overall design better suited for COTS

systems. At the same time, note that the protocol design is agnostic to the secret id

implementation and can work equally well with either of the implementations men-

tioned above. Also, as shown in Fig. 5.1, each of the entities – IMD, ED, and HS, also

maintain a (private) database at their ends. These databases contain several fields
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Communication in Secure Environment
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Fig. 5.1.: Enrollment Phase

that are used throughout the protocol and are described in detail in the following

paragraphs.

5.3.1 Enrollment Phase

During the first phase in the protocol, IMD and ED are both enrolled with HS, as

shown in Fig. 5.1. It primarily involves IMD and ED sharing their credentials with

HS in a secure environment; these credentials are used by HS to verify the identity of

IMD or ED during the following authentication phase. IMD enrollment is performed

by the doctor prior to surgical implantation in the patient. As shown, IMD shares

its public id (PIMD) and secret id (SIMD) with HS, which stores it in its database.

Similarly, ED enrollment is performed by the doctor or patient before ED begins to

operate in the IMD ecosystem. It involves ED sharing its public id (PED) and secret

id (SED) with HS, which stores it in its database.

Apart from credentials sharing, certain initialization steps are also performed dur-

ing the enrollment phase. During IMD enrollment, HS generates and shares a random

number, referred to as IMD salt, with IMD, which stores it in its database. Note that

IMD salt is stored in the LIMD and iLIMD fields at HS and IMD, respectively. Also,
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as shown in Fig. 5.1, a few other fields in the entities’ databases are set to NULL

during IMD/ED enrollment. For better understanding, we defer the explanation of

all these fields to the following section. Thus, at the end of the enrollment phase, the

databases at the three entities contain some shared credentials and initialized fields,

which are shown through an example in Fig. 5.1. Next, we present the second phase

of the protocol, i.e., the authentication phase.

5.3.2 Authentication Phase

Any new or untrusted device (ED) trying to communicate with IMD must first

be authenticated. As mentioned earlier, the proposed protocol follows the trusted-

entity approach and utilizes HS to verify the identity of and authenticate ED. We

refer to this process as authentication by HS . On a day-to-day basis, however, we

envision that IMD will only communicate with a few EDs (e.g., doctor’s programmer

or patient’s smartphone) that have been previously authenticated by HS. Though

another authentication session may seem redundant for such previously-authenticated

devices, it is still necessary to prevent certain sophisticated attacks (e.g., AES attacks,

Section 5.4.3). However, invoking the services of HS, which may be catering to several

thousand IMDs, for every authentication session (as in [30]) may lead to increased load

on HS, thereby affecting the quality of the authentication service. Most importantly,

it may lead to increased authentication overhead at IMD, which operates on a very low

energy budget (Table 5.1). Hence, we propose that the subsequent authentications

be performed by IMD itself, instead of HS. This process, referred to as authentication

by IMD, builds on top of authentication by HS and is an integral part of the protocol

design. As shown later, it enables authentication of (untrusted) ED without HS’

involvement and helps in substantially reducing the authentication overhead at IMD

(Section 5.4). Also, note that the symmetric-key exchange between IMD and ED

to encrypt all further communication between the two entities also occurs during

authentication by IMD. We now describe each of these processes in detail.
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(i) Authentication by HS: As mentioned before, IMD can only communicate

with another entity over a short-range wireless link (e.g., Bluetooth) and, hence,

may not have direct connectivity with HS. This forms the basis of the first challenge

described earlier in Section 5.2.1. In the current design, we overcome this challenge

in two parts. First, we leverage ED’s ability to communicate with both IMD and HS

and use ED as a hop point to simply forward the messages when IMD and HS send

messages to each other. Second, we design the protocol around this leverage and

employ measures to guarantee the integrity and confidentiality of these messages,

which could be altered by ED. We now describe authentication by HS in detail.

Fig. 5.2 shows a concise step-by-step flowchart of authentication by HS ; each of

the steps is further expanded in Fig. 5.3.

• 1-2: As shown, a new or unauthenticated device (ED) begins the session by

sending an access request and its public id (PED) to IMD.

• 3: IMD checks for ED’s public id in its database. A valid entry means that

ED has been authenticated previously and the session shifts to authentication

by IMD (described in the next section). Otherwise, it continues as per the

following steps.

• 4-5: IMD generates timestamp (TS) and computes its hash with IMD salt

(iLIMD) and its secret id (SIMD) to generate IMD random token (hRIMD). Note

that a random number could be used in place of timestamp if a real-time clock

is unavailable at IMD.

• 6-8: Both timestamp and IMD random token are sent to ED, which forwards

this information to HS alongside IMD’s public id (PIMD), its own public id (PED),

and its own secret id (SED).

• 9-10: HS first ensures the freshness of the message by checking the validity of

timestamp. It then checks for ED’s credentials (PED, SED) and IMD’s credential

(PIMD) in its database. An invalid entry against any of these credentials implies
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Fig. 5.2.: Authentication by HS

that at least one of the entities (IMD, ED) is not enrolled (Section 5.3.1), leading

to authentication failure and termination of the session.
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• 11: HS reads IMD’s secret id (SIMD) as well as IMD salt (LIMD) and old IMD

salt (oLIMD) fields from its database. At this stage, we take a short detour and

highlight the role of the last two fields. If IMD salt stored at IMD database

(iLIMD) and HS database (LIMD) have the same value, then the two entities are

said to be in a synchronized state. As will be evident shortly, this synchroniza-

tion between the two entities enables them to verify the integrity as well as

maintain the confidentiality of the messages exchanged between them using the

(common) IMD salt; note that these messages are forwarded by (untrusted) ED.

However, over the course of several sessions, IMD and HS may reach a desyn-

chronized state, i.e., they may have different IMD salt values in their database.

In such a scenario, old IMD salt, which holds the IMD salt value correspond-

ing to the last synchronized state, is utilized to synchronize the two entities

again. Hence, after reading these fields from its database, HS computes a hash

of IMD’s secret id and timestamp with the IMD salt and compares it with (the

received) IMD random token (hRIMD). A successful match verifies the integrity

of the message sent by IMD as well as synchronization between the two entities.

An unsuccessful match prompts HS to compute the above hash with old IMD

salt (instead of IMD salt earlier), followed by a comparison with IMD random

token. A successful match implies that the two entities are in a desynchronized

state and the value of IMD salt in HS database is updated with that of old

IMD salt in order to synchronize them again. An unsuccessful match, on the

other hand, implies that the integrity of the message is compromised, resulting

in authentication failure and termination of the session.

• 12-13: HS sets ED’s authentication outcome (AuthED) to true. Next, it gener-

ates two random numbers – new IMD salt (nLIMD) and ED salt (LED). It also

generates ED verification token (hSED) by computing the hash of ED’s secret

id with ED salt. While new IMD salt is used (later, if the authentication is

successful) to update IMD salt, ED salt and ED verification token are used

during authentication by IMD and are explained in the next section.
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• 14-17: HS constructs a plaintext composed of ED’s authentication outcome,

IMD salt, new IMD salt, and ED verification token. Next, in order to ensure

the confidentiality of the message, it encrypts the plaintext using IMD salt as

the symmetric key. This encrypted message (M) is then sent to ED, which

forwards it to IMD. Note that due to the encrypted nature of the message, ED

has no visibility into its contents.

• 18: Upon receiving the encrypted message, IMD decrypts it using IMD salt

(iLIMD, stored in its database) as the symmetric key.

• 19: IMD first checks the integrity of the message by comparing IMD salt in

the decrypted message with IMD salt in its database. Next, it checks if ED’s

authentication outcome is true. Not satisfying any of these conditions leads to

authentication failure and termination of the session.

• 20: IMD generates acknowledgement message (ACK) by hashing its secret id

with IMD salt and new IMD salt.

• 21-24: IMD updates the value of IMD salt with that of new IMD salt. Next,

it stores the ED’s public id and ED verification token in its database for use

during authentication by IMD. Then, it sends acknowledgement message to ED,

which forwards it to HS.

• 25: HS generates a hash value of IMD’s secret id, IMD salt, and new IMD salt,

and compares it with received acknowledgement message. Note that this step

also checks for synchronization between IMD and HS; an absence of or corrupted

acknowledgement message implies that there could be possible desynchroniza-

tion between the two entities. In such a scenario, it cannot be inferred with

certainty whether IMD salt was successfully updated at IMD’s end. Hence,

HS stores the IMD salt value in old IMD salt and causes authentication failure

followed by session termination. A verified acknowledgment, on the other hand,

causes HS to update the value of IMD salt with that of new IMD salt.



125

HS Database

0xC937 0x23D1… NULL0x59B3…

PIMD SIMD LIMD oLIMD

0xE825 0x35A2…

PED SEDIMD Database
0xE825… 0xE86C… 0x59B3…

PED hSED iLIMD

PIMD: 0xC937…
SIMD: 0x23D1…

ED Database
0xC937… 0xA3C1…

PIMD LED

PED: 0xE825…
SED: 0x35A2…

Fig. 5.4.: Database after Authentication by HS

• 26-28: HS sends ED authentication outcome and ED salt to ED. At its end, ED

first checks for ED authentication outcome to confirm successful authentication

and then stores ED salt alongside IMD’s public id in its database for use during

authentication by IMD.

Fig. 5.4 shows an example picture of the databases at the three entities at the end

of a successful authentication by HS session. At this stage, the first challenge, which

was described earlier in Section 5.2 and is associated with ED authentication without

direct connectivity between IMD and HS, has been addressed. In the next paragraph,

we present authentication by IMD and discuss how it addresses the next three chal-

lenges, which are associated with – reduction of the overhead in the authentication

process at IMD (and HS), authentication of ED without HS’ involvement, and key

exchange between IMD and ED over an insecure channel.

(ii) Authentication by IMD: On a day-to-day basis, we envision that IMD

will only communicate with a few EDs (e.g., doctor’s programmer or patient’s smart-

phone) that have been previously authenticated by HS. Though another authenti-

cation session may seem redundant for such previously-authenticated EDs, it is still

necessary to prevent certain sophisticated attacks (Section 5.4.3). As mentioned ear-

lier, these subsequent authentications are performed by IMD itself through the process

referred to as authentication by IMD. This process also includes the symmetric-key

exchange between IMD and ED that allows encryption of all further communication

between the two entities. Hence, authentication by IMD is performed under two

scenarios. First, it follows directly after authentication by HS , i.e., an unknown ED,

which has just undergone authentication by HS , is requesting the exchange of the first
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symmetric key. Second, a known ED, which has undergone authentication by IMD in

the past, is requesting access to IMD directly. The second scenario is particularly im-

portant and it forces even a known ED to undergo authentication and then exchange

a new key with IMD; this helps to prevent certain sophisticated attacks (e.g., AES

attacks), as described later in Section 5.4.3. At the same time, by enabling IMD to

perform the authentication and key exchange (instead of HS), the authentication by

IMD process reduces the load on HS as well as the authentication overhead at IMD

(Section 5.4). Fig. 5.5 shows a concise step-by-step flowchart of authentication by

IMD; each of the steps is further expanded in Fig. 5.6. Note that the process is based

around IMD and ED only and leaves out HS. We now describe the steps in detail.

• 1-2: As shown, ED begins the session by sending an access request and its

public id (PED) to IMD.

• 3-5: IMD checks for ED’s public id in its database. An invalid entry implies

that ED has not been authenticated previously and the session shifts to authen-

tication by HS (described earlier). A valid entry, on the other hand, prompts

IMD to generate a random number (RIMD) and send it to ED.

• 6-7: Upon receiving the random number, ED first computes ED verification

token (hSED) by hashing its secret id (SED) with ED salt (LED). ED verification

token, in turn, is hashed with the random number to generate ED random token

(hRED), which is then sent to IMD.

• 8-10: At its end, IMD performs a hash of the generated random number with

ED verification token, which is stored in its database, to compute IMD random

token (hRIMD). IMD random token is then compared with (received) ED ran-

dom token. A successful match verifies the identity of ED and prompts IMD

to set ED authentication outcome (AuthED) to true. An unsuccessful match,

on the contrary, causes authentication failure and termination of the session.

Finally, IMD sends ED authentication outcome to ED.



127

IMD ED

3. Check ED’s Public Id

4. Generate Random Number (RIMD)

 2. Send ED’s Public Id (PED)

8. Generate IMD Random Token (hRIMD)

9. Compare IMD Random Token and ED 
Random Token to generate Auth. Outcome

13. Generate Key

5. Send Random Number

7. Send ED Random Token

10. Send Authentication Outcome

Communication over 
Open/Insecure channel

1. Access Request

6. Generate ED Random Token (hRED)

12. Generate Key

11. Check Authentication Outcome
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At this stage, we want to highlight the roles of ED verification token (hSED)

and ED salt (LED). As mentioned earlier, during authentication by HS , ED

verification token is stored in IMD database. Subsequently, during authenti-

cation by IMD, ED uses it to compute ED random token, which is compared

against IMD random token (computed by IMD) to ultimately decide whether

ED is authenticated or not. Thus, ED verification token essentially behaves as

the basis upon which IMD verifies the authenticity of ED during authentication

by IMD. Here, one could propose an alternative method i.e., store ED’s secret
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Fig. 5.6.: Steps in Authentication by IMD

id in IMD’s database (instead of ED verification token) and utilize it the same

way as ED verification token. While the functionality of the protocol is not

affected by this alternate method, it may pose a security concern resulting from

the storage of ED’s secret id in raw form in IMD database. Specifically, if the

secret id gets leaked or is retrieved from the database, it could potentially lead

to impersonation attacks on the other IMDs that also communicate with the

(same) ED. Hence, ED’s secret id is always stored in a hashed form in IMD’s

database; ED salt is utilized here to compute this hash, as described earlier.

• 11-13 (Key exchange): ED first checks the authentication outcome to con-

firm successful authentication. Next, both IMD and ED compute the key, K ,

at their ends by performing a hash of ED random token and ED verification

token. This key-exchange step concludes authentication by IMD and all further

communication between the two entities is encrypted using K .

In the next section, we present a brief discussion about the generation of secret

ids and random numbers utilized in the proposed protocol.
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5.3.3 Generation of Secret IDs and True Random Numbers

From the previous sections, it is evident that secret ids and random numbers

play an important role in the proposed protocol. As described earlier, traditional

methods of implementation for secret ids would involve storing unique numbers in

tamper-proof storage such as secure non-volatile memories (NVMs). Similarly, the

generation of (true) random numbers would require dedicated/custom hardware on

the chip. Hence, in the current work, the generation of both secret ids and random

numbers is enabled by an (on-chip) PUF, which generates them on demand. This

provides better security without the need for additional resources (secure NVMs,

etc.) and makes the overall design better suited for COTS systems. At the same

time, note that the core functionality of the proposed protocol is agnostic to the

secret id and random number implementation and can work equally well with either

of the implementations mentioned above.

Next, we present the details related to the implementation and analysis of the

proposed protocol.

5.4 Implementation and Analysis

In this section, we first present the implementation details of the prototype IMD

ecosystem and the experimental setup used to evaluate the proposed protocol. Next,

we perform an exhaustive evaluation of the overheads at IMD during authentication

followed by a security analysis of the protocol.

5.4.1 Prototypes and Experimental Setup

Fig. 5.7 presents the prototype implementations of IMD, ED, and HS used in the

proposed protocol as well as the experimental setup used. The IMD is implemented

using a Silicon Labs TG11 Starter Kit [78] containing an ARM Cortex-M0+ based

microcontroller (MCU) with 128KB Flash and 32KB RAM and is clocked at 48MHz.
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We use a Silicon Labs BGX13P Bluetooth Low Energy (BLE) Expansion Board [79]

to provide Bluetooth connectivity to the IMD, which communicates with the MCU

board via a serial interface at a baud-rate of 9600 bps. The ED is implemented on

a Raspberry Pi 3 Model B+ board [80], which contains a Cortex-A53 based SoC

and communicates with the IMD over BLE. Finally, the HS is implemented on a

server based on the Intel Xeon E5-2660 processor. The ED and the HS communicate

over Wi-Fi and Ethernet in the current implementation. The energy consumption

and latency associated with the protocol are measured using the Silicon Labs Multi-

Node Energy Profiler [81], which utilizes the Advanced Energy Monitor on-board the

TG11 starter kit to take real-time current and latency measurements. Experiments

related to varying temperatures were performed by placing the IMD inside a constant

temperature chamber.

Although other types of PUFs [55] could be utilized in the proposed protocol, we

chose a memory-based PUF [8, 9, 40, 41, 48, 51, 82–84] to implement in our prototype

design. Specifically, we utilize an SRAM PUF [85] that leverages the power-cycling

(power off → power on → read SRAM) approach to generate unique startup val-

ues. These values, generated from 32-bit words, are hashed (e.g., using SHA-256)

to produce secret ids and true random numbers on demand. The choice of utiliz-
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ing the power-cycling based SRAM PUF stems from the following. First, SRAM is

ubiquitous in most embedded systems, and hence, the PUF requires minimal or no

additional resources for its implementation and operation. Second, a power-cycling

based SRAM PUF exhibits high entropy making it suitable for the generation of secret

ids and random numbers [85]. A lightweight algorithm is utilized to systematically

identify locations in the SRAM that can serve as sources of secret ids and random

numbers; the algorithm is described later in Section 5.5.1. The SRAM PUF in the

IMD is implemented on an unused 8 KB SRAM block in the TG11 MCU through

the power-cycling approach. On the Raspberry Pi (ED), access to the SRAM (for

reading startup value) is restricted by the operating system. Hence, for the proto-

type implementation, the PUF operation was emulated by reading pre-stored 128-bit

strings from its flash memory.

Finally, for performing the hash (SHA-256) and encryption/decryption (AES-128)

operations in the IMD, we explored two possible implementations – HW -based and

SW -based, which utilize a hardware cryptography engine on the MCU and regular

MCU instructions, respectively.

5.4.2 Overhead Analysis at the IMD

The proposed protocol is designed to incur minimal overhead at the IMD, as shown

in Table 5.3. The total overhead is classified into three types – energy, latency, and

memory. For energy and latency, there is a negligible difference in the HW -based

and SW -based implementations, and hence, Table 5.3 lists a single value for these

overheads for both the implementations. This is because an entire authentication

session in the proposed protocol only contains a small number of these cryptographic

operations, as a result of which, their net contributions to the overall overheads are

very small.

Next, energy and latency are each divided into three parts – computation, commu-

nication, and sleep, based on the source of the overhead. While the first two sources
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Table 5.3.: Protocol Overhead at the IMD

Overhead Authentication by IMD Authentication by HS

Computation 52 81

Energy Communication 4194 12589

(µJ) Sleep 22 23

Total 4268 12693

Computation 8 11

Latency Communication 177 528

(ms) Sleep 1010 1040

Total 1195 1579

Memory RAM (data) 248 (HW ), 504 (SW )

(bytes) Flash (text) 33K (HW ), 37K (SW )

are self-explanatory, sleep refers to the MCU’s low-energy state when it is waiting to

receive data from the ED or HS. As shown, the largest shares of the energy and latency

overheads are attributed to communication and sleep, respectively, while computation

makes a relatively much smaller contribution. Also, the overheads (specifically, la-

tency) due to sleep could vary depending upon the latency of the communication with

the other entities (HS and ED) as well as the tasks performed at their ends. Overall,

the total energy consumed by the protocol is very low – 4268 µJ and 12693 µJ for

a single session of authentication by IMD and authentication by HS , respectively. To

put this into perspective, we consider a typical IMD [20] that has a lifetime of 90

months and is powered by a 2 Ah battery; the latter translates to an energy budget

of 23760 J (at 3.3V supply). Therefore, a single session of authentication by IMD

and authentication by HS adds an overhead of only 0.000018% and 0.000053% of the

IMD’s total energy budget, respectively. Specifically, even with ten authentication

sessions per day, the total energy overhead incurred by the protocol over the lifetime

of the IMD is 115 J and 342 J, i.e., only 0.5% and 1.4% of its total energy bud-

get, for authentication by IMD and authentication by HS , respectively. Moreover,
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authentication by IMD is both more energy-efficient (by 66%) and faster (by 24%) as

compared to authentication by HS , thus satisfying an important design requirement

of the protocol. We also present the memory footprint of the program executing on

the IMD. As shown, (248 bytes RAM, 33 KB Flash) and (504 bytes RAM, 37 KB

Flash) are used by the .data and .text sections of the program in the HW -based

and SW -based implementations, respectively.

5.4.3 Security Analysis

In this section, we first present the attacker model, followed by a detailed analysis

of the protocol against security and privacy attacks.

Attacker Model: We assume that an attacker has the ability to passively eavesdrop

on the communication between the IMD and ED as well as actively jam or corrupt

the corresponding packets. However, packets exchanged between the ED and HS are

encrypted at all times and are not readable/corruptible by the attacker.

Eavesdropping Attacks: An attacker can passively listen to the unencrypted mes-

sages between IMD and ED, revealing only their respective public identities (public

ids). All other messages exchanged between the two entities are either encrypted,

randomly generated, in a hashed form, or contain general information such as the

authentication outcome, all of which do not reveal any useful information to the

attacker.

Replay Attacks: In order to gain access or reveal relevant information about the

entities, an attacker can replay messages such as IMD random token (hRIMD), M, and

ACK during authentication by HS and ED random token (hRED) during authentica-

tion by IMD. The protocol employs timestamp at the beginning of the protocol to

prevent the replay of IMD random token. M and ACK are closely tied to the current

value of IMD salt (LIMD) and/or new IMD salt (nLIMD) and, hence, replaying any of

these would also cause authentication failure. Similarly, ED random token is closely
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tied with ED salt (LED) and the random number – RIMD, hence, replaying it would

cause authentication failure.

Impersonation Attacks: An attacker can impersonate an authenticated ED or a

legitimate IMD by using their respective public ids and initiate communication with

the other entity. However, further communication is restricted in such events through

the use of secret ids, which are checked directly and indirectly (though hash compu-

tations) at various stages of the protocol to verify the identity of the communicating

entities.

Desynchronization Attacks: An attacker may deliberately cause desynchroniza-

tion between the IMD and HS by jamming or corrupting the messages – M and ACK.

As described earlier, the protocol inherently takes this into consideration and uses

the old IMD salt field in the HS database to synchronize the two entities again, if

required.

Invasive Attacks: A well-equipped attacker with physical access to the entities

could mount invasive attacks (e.g., physical tampering) in a bid to extract relevant

information (e.g., secret id) from the entities’ database. Even though obtaining phys-

ical access to an IMD that is implanted inside a patient’s body is unlikely, the protocol

provides substantial protection against such attacks. The owner entity’s secret id is

not stored in any local database but generated on demand by a PUF, which is known

to be resistant to invasive attacks. Also, an entity’s secret id is always stored in a

hashed form at any other entity’s database, revealing no information about it.

Side-Channel Attacks: In the proposed protocol, a side-channel attack [22] on the

IMD and (authenticated) ED could potentially leak critical data, e.g., secret ids (SIMD,

SED), salts (iLIMD, LED), symmetric key (K ), etc. The protocol inherently provides

high resistance to such an attack. First, the protocol utilizes a PUF for generating

secret ids on demand. As shown in the next section, the PUF is capable of generating

multiple secret ids, thereby allowing the protocol to vary them across authentica-

tion sessions, if required. Second, the protocol ensures that the other critical data

(salts, symmetric key, etc.) are not constant but also change across different sessions.
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Together, these design features provide high resistance against side-channel attacks.

Additionally, the protocol could be easily modified to include existing techniques [22]

to further enhance its strength against such attacks.

Battery-Drain and Denial-of-Service Attacks: Although the protocol doesn’t

explicitly address these, simple enhancements such as causing a time-out or utilizing

an alternative communication channel [27] could be made to the proposed design to

address battery-drain and denial-of-service attacks, respectively.

Modeling and AES Attacks: By design, the protocol provides substantial pro-

tection against modeling [86] and AES attacks [21] through the use of a PUF and

(one-way) hash functions, which generate time-varying encryption keys and mask the

communication between the entities, respectively. A formal analysis of the protocol’s

vulnerability to these attacks is beyond the scope of this work and is planned as a

future project.

5.5 Additional Discussions and Results

This section presents some additional design aspects, results, and discussions as-

sociated with the proposed protocol.

5.5.1 SRAM PUF: Generation of Secret IDs and Random Numbers

We present and describe a lightweight algorithm to systematically identify loca-

tions in the SRAM that can serve as sources of secret ids and random numbers.

Algorithm 4 starts by employing the power-cycling approach to generate the

startup value of an entire SRAM block (B) several times, specified by the number of

runs (N r). Next, the block is divided into non-overlapping words of size S bits each.

For each word, its startup value (extracted from the block’s startup value) during a

particular run is compared with all the other runs. During this step, a counter keeps

track of the number of comparisons in which the startup values differ, i.e., in which

their Hamming Distance is non-zero. Finally, the counter value is used to calculate
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Algorithm 4: Identification of SRAM Words for Secret Id and Ran-

dom Number Generation
Input: B = SRAM Block, S = Word Size, N r = Number of Runs, P diff = P

Output: W p = Words that exhibit P diff equal to P

1 W p = φ

2 Countcomp = (N r − 1)(N r − 2) / 2

3 for i = 1 to N r do

4 V i = Gen_Startup_V alue (B)

5 W a = Gen_All_NonOverlap_Words (B,S)

6 foreach w ∈W a do

7 Countdiff = 0

8 for i = 1 to N r do

9 vwi = Get_Startup_V alue_Word (w, V i)

10 for j = i+ 1 to N r do

11 vwj = Get_Startup_V alue_Word (w, V j)

12 if vwi 6= vwj then

13 Countdiff = Countdiff + 1

14 P diff = (Countdiff / Countcomp) ∗100

15 if Pdiff== P then

16 W p = W p ∪ w

Percentage Different or Pdiff, which represents the percentage of times the word gen-

erated a different startup value. Note that a low Pdiff implies that the word produces

a stable startup value across several runs, making it ideal for generating a secret id.

On the other hand, a high Pdiff implies an unstable startup value and makes the word

suitable for random number generation. The algorithm takes the required Pdiff as

input and produces a list of all the words in the SRAM block that meet this criterion,

as will be described next.

We followed the methodology described in Algorithm 4 to generate the start-up

of an 8 KB SRAM block and then identify 32-bit words that are suitable for the
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Fig. 5.8.: Secret IDs and Random Numbers in the SRAM PUF

generation of secret ids and random numbers. The results of this process are shown

in Fig. 5.8, which shows a distribution of the number of words that exhibit a certain

(specified) Percentage Different (or Pdiff). Note that, to rule out any bias due to a

specific SRAM module, we performed the process on two SRAM modules (on-board

two different IMD prototypes). Moreover, an IMD is expected to operate across the

entire range of body temperature, which could vary between 34◦C – 42◦C. Hence, the

startup values were generated at three (sample) temperature points – 34◦C, 37◦C,

and 42◦C, with (a sample) ten runs at each point. All these startup values were

then analyzed (together) to identify words that exhibit the specified Pdiff. As shown,

41 and 56 words exhibit P diff = 0% in SRAM-1 and SRAM-2, respectively. The

startup values generated by these words remained constant across every run and

temperature point and, thus, can be used as secret ids. Similarly, 7 and 9 words

exhibit P diff = 100% in SRAM-1 and SRAM-2, respectively. In other words, each

of these generated a different startup value across every run and temperature point

and can be used as a source of true random numbers. Note that slightly relaxing the

criterion, e.g., P diff = 12% or 90%, could help meet the requirements of more secret

ids and random numbers, as shown in Fig. 5.8; Algorithm 4 (and the SRAM PUF)

enables this but the decision is ultimately left to the end-user.



138

Note that the number of runs and temperature points used above represent a

sample-case only; if required, a more rigorous analysis could be performed through

Algorithm 4 using more runs and temperature points. Also, the uniqueness and

randomness associated with the startup values of a power-cycling based SRAM PUF

are well-established [85,86], hence, we do not present any such analysis in this work.

5.5.2 Emergency Access to the IMD

For any authentication protocol involving IMDs, support for emergency access

(to the IMD) is an important (for safety) but conflicting (for security) requirement.

Traditionally, master keys [19], which are generated by the HS and shared with both

the IMD (during enrollment phase) and emergency personnel, have been used for

this. Although this technique could be easily integrated with the proposed protocol

to provide emergency access, we are currently exploring two approaches which are

potentially more secure than the use of master keys. The first approach augments the

proposed protocol with mechanisms to utilize biometrics or side-channels for providing

emergency access. The second approach explores the suitability of digital certificates

(and Public Key Infrastructure (PKI)) in an IMD ecosystem towards achieving the

same goal.

5.6 Conclusion

This chapter presents a lightweight end-to-end authentication and key-exchange

protocol for an IMD ecosystem. The protocol is based on the trusted-entity approach

and successfully addresses the unique challenges of performing authentication and key-

exchange in the IMD ecosystem. We also present the application of an intrinsic PUF,

which integrates seamlessly with the cryptography techniques used in the protocol

to result in a secure and lightweight solution protecting against various security and

privacy attacks. The design is implemented on a real system comprising of several off-

the-shelf devices. Experimental evaluation (using metrics such as energy overheads,
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operation under varying temperature conditions, and protection against security and

privacy attacks) demonstrates the effectiveness of the proposed protocol in providing

robust, secure, and low-overhead authentication and key-exchange in IMDs.
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6. SUMMARY

The last decade has seen a rapid proliferation of embedded computing devices, fueled

in part by the advent of the Internet-of-Things (IoT) era. The increasingly network-

connected nature of these devices, coupled with their ability to access potentially

sensitive or confidential information, has given rise to a plethora of new security

and privacy concerns. An additional challenge is the growing number of counterfeit

components in these devices, with serious reliability and financial repercussions.

In this dissertation, we explore device authentication as a means to address these

challenges. The first part of the dissertation proposes the design of two memory-based

Physically Unclonable Functions (PUFs) that enable low-cost and low-overhead de-

vice authentication and secure-key exchange in off-the-shelf embedded systems. These

PUFs leverage the memory (DRAM, SRAM) in the system, thus, requiring minimal

(or no) additional hardware for operation. Two lightweight authentication and error-

correction techniques, which ensure robust operation under a range of environmen-

tal and temporal variations, are also proposed. Experimental results obtained from

prototype implementations demonstrate the effectiveness of both the designs. The

second part of the dissertation explores the application of these techniques in real-

world systems through a new end-to-end authentication and key-exchange protocol

in the context of an Implantable Medical Device (IMD) ecosystem. The protocol is

based on the trusted-entity approach and successfully addresses the unique challenges

of performing authentication and key-exchange in the IMD ecosystem. The design

is implemented on a real system comprising of several off-the-shelf devices. Experi-

mental evaluation using metrics such as energy and latency overheads and analysis

against several security and privacy attacks demonstrates the effectiveness of the

proposed protocol in providing robust, secure, and low-overhead authentication and

key-exchange in IMDs.
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In summary, this dissertation takes a significant step towards enabling low-cost

and low-overhead device authentication in embedded systems. We hope that the work

presented here will help address several key challenges towards the realization of a

secure IoT.
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