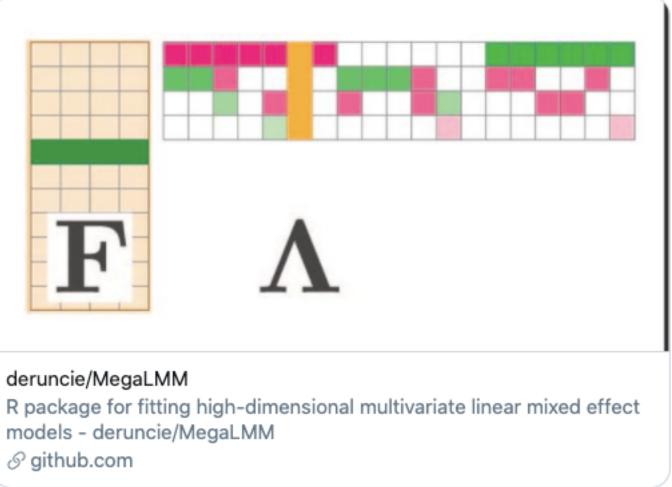
MegaLMM: Mega-scale linear mixed models for genomic predictions with thousands of traits

Daniel E Runcie¹, Jiayi Qu², Hao Cheng³ and Lorin Crawford⁴ ¹Department of Plant Sciences, University of California Davis, Davis, CA, USA; deruncie@ucdavis.edu, ²Department of Animal Sciences, University of California Davis, Davis, CA, USA; jyqqu@ucdavis.edu, ³Department of Animal Sciences, University of California Davis, Davis, CA, USA; qtlcheng@ucdavis.edu, ⁴Department of Biostatistics, Brown University, Providence, RI, USA; lorin_crawford@brown.edu

Daniel Runcie

https://www.biorxiv.org/content/10.1101/2020.05.26.116814v2



Background

value prediction?

Problem

Incorporating phenotype data from many traits at once is challenging

Solution

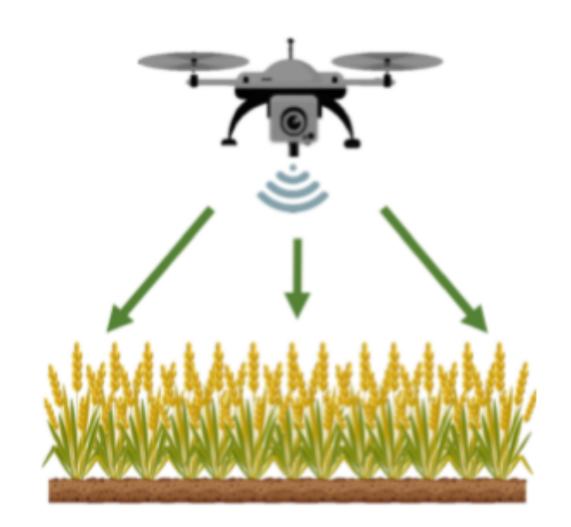
MegaLMM: Fast and Powerful multi-trait linear mixed effects models for an unlimited number of traits

Limitations and future directions

How can we use data from high-throughput phenotyping to improve genetic

New technologies available to breeders

Drones

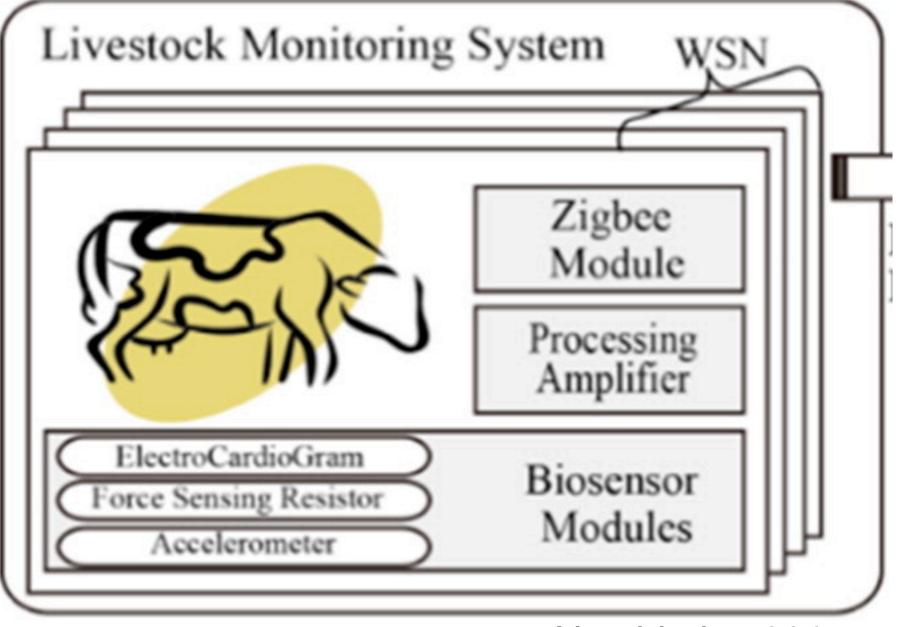


Hyperspectral cameras

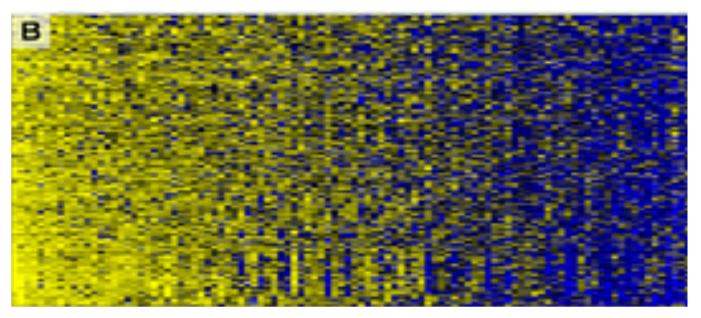


Lopez Cruz et al 2020

Wearable sensors



Gene expression / Metabolomics



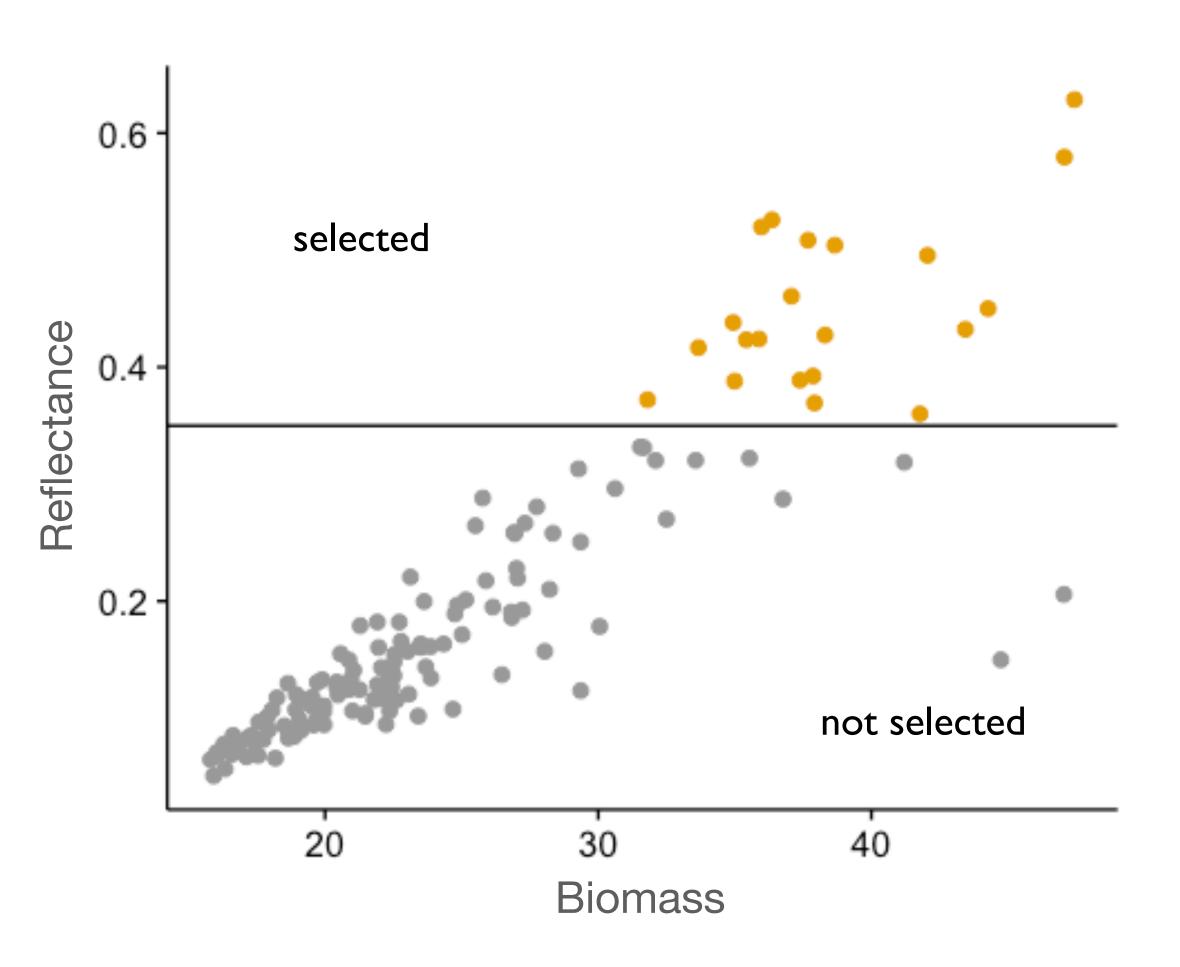
Neethirajan 2017

High dimensional data p >> n

Highly correlated data temporal, spatial, etc

"Secondary traits" Not of direct interest

Secondary traits improve prediction accuracy



Rather than measure biomass directly, predict it based on other traits

Can be more efficient if other traits are: cheaper to measure faster to measure can be measured earlier in development

How to use secondary trait data

Secondary Focal

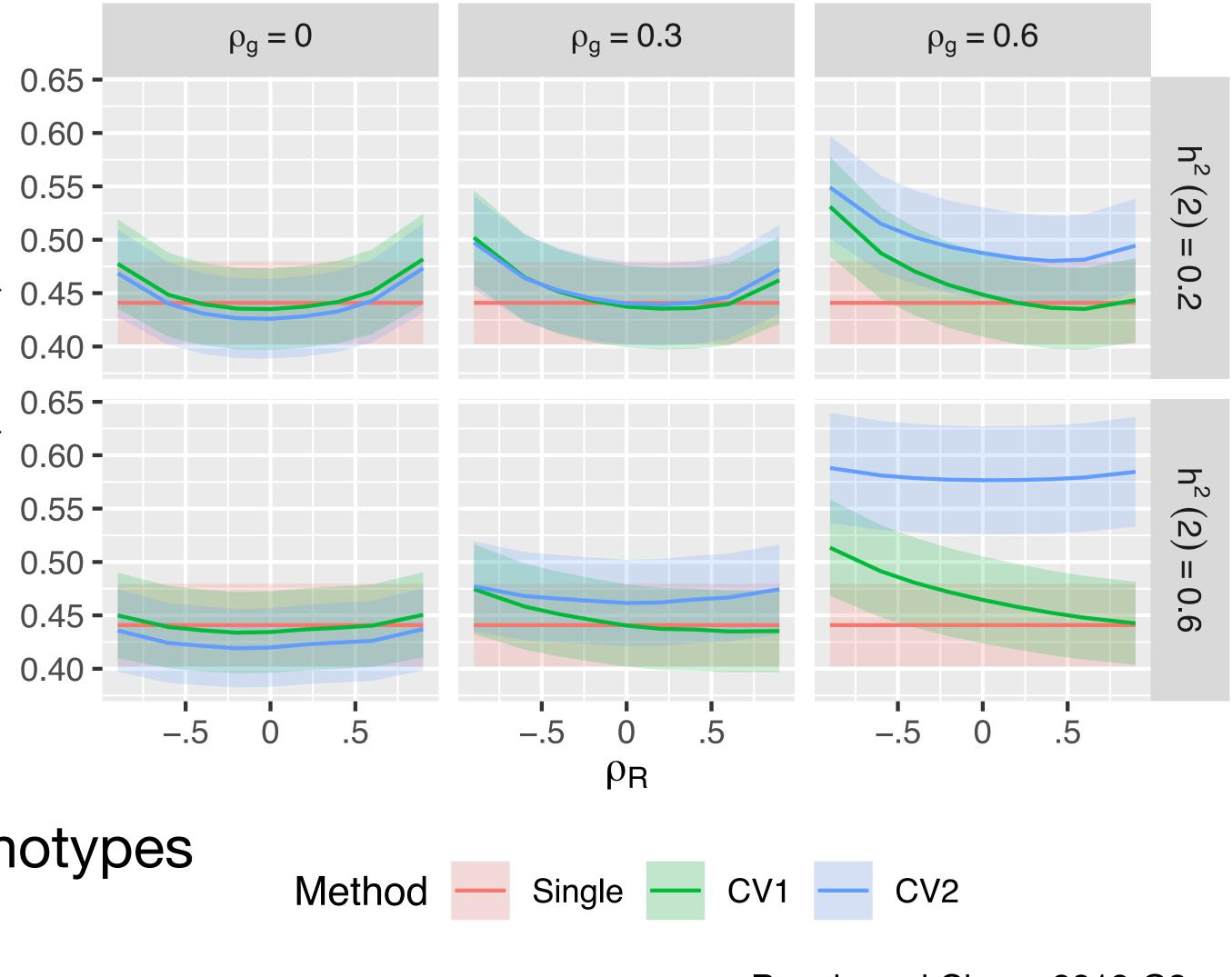
Individuals

"Training data" Both traits measured

```
cor(\hat{\mathbf{u}}_{n1}, \mathbf{u}_{n1})
```

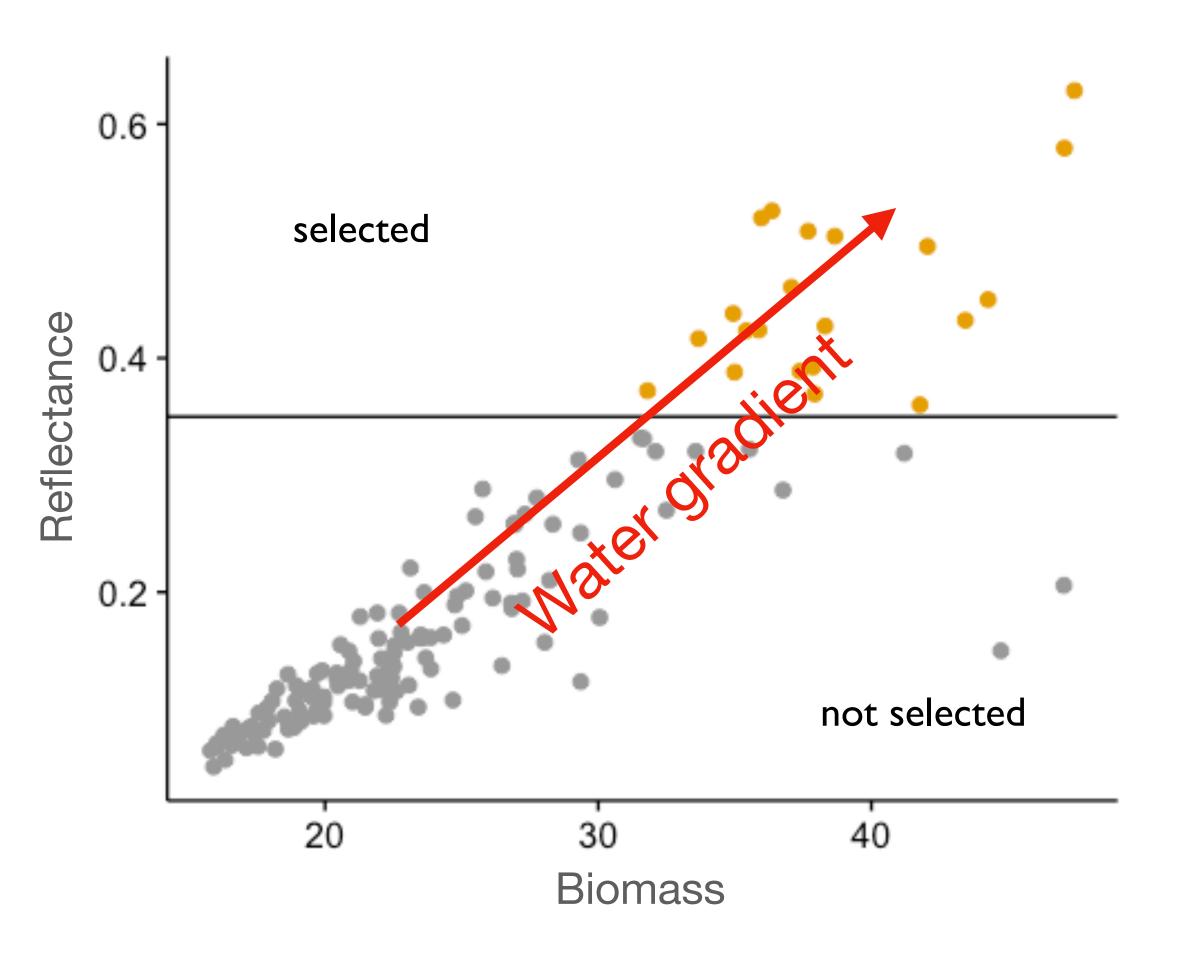
CV1 Neither trait + genotypes CV2

Only secondary trait + genotypes

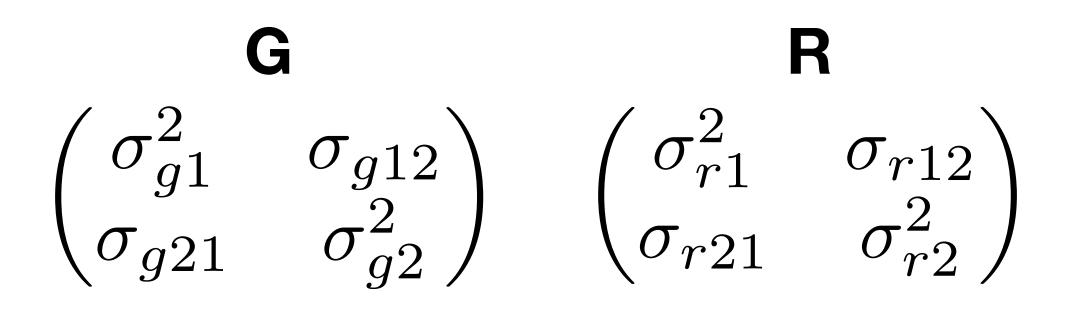


Runcie and Cheng 2019 G3

Problem: non-genetic correlations bias results Need to separate genetic from non-genetic correlations



Estimate **G** and **R** in a multi-trait linear mixed model (MvLMM)

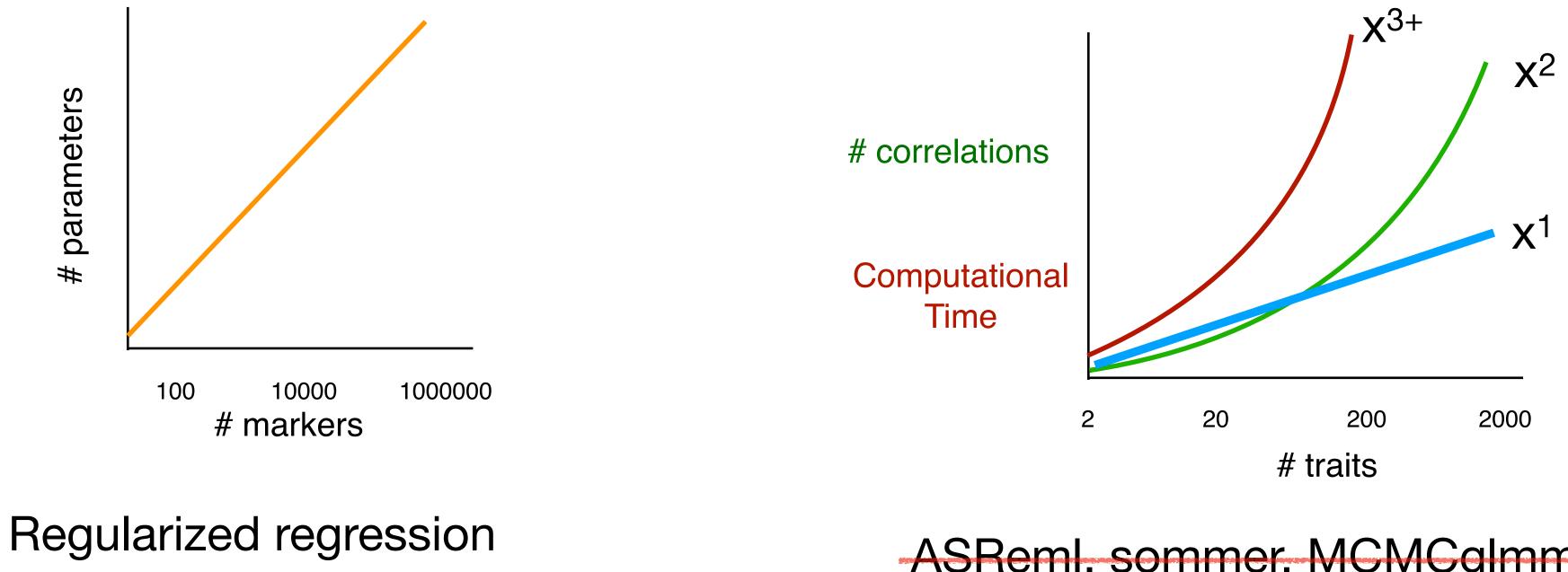


Problem: G and R get very big!

with many traits, many more parameters than data points

Problem: too many parameters (and slow computation)

Single-trait Genomic Prediction



GBLUP, rrBLUP **Bayesian Alphabet** RKHS

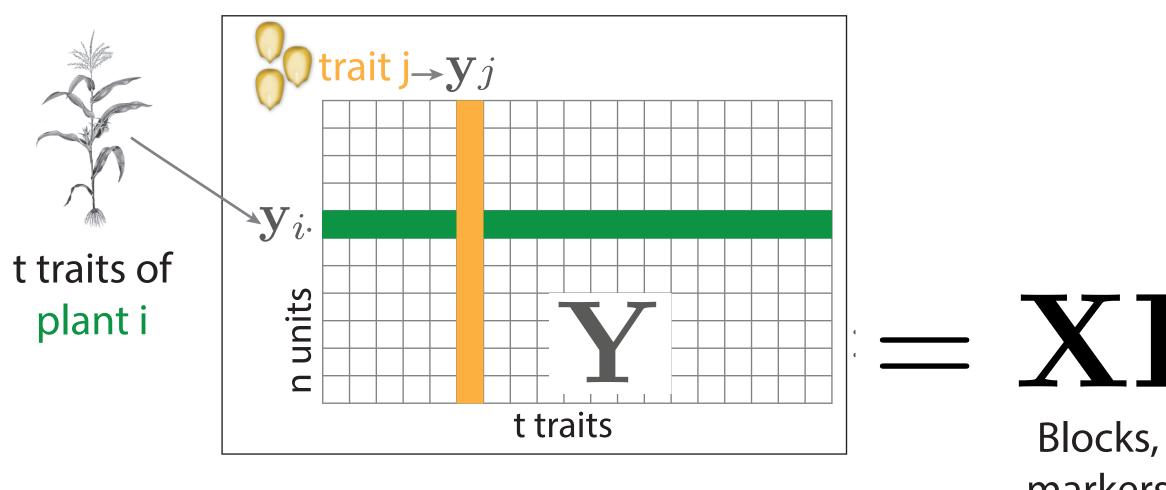
Multi-trait Genomic Prediction

ASReml, sommer, MCMCglmm, GEMMA

Solution:

MegaLMM

MegaLMM: MvLMMs for an unlimited number of traits



$\mathbf{U} \sim \mathrm{MN}_{\mathbf{r} \times \mathbf{t}}(\mathbf{0}, \mathbf{K}, \mathbf{G})$

Genetic values

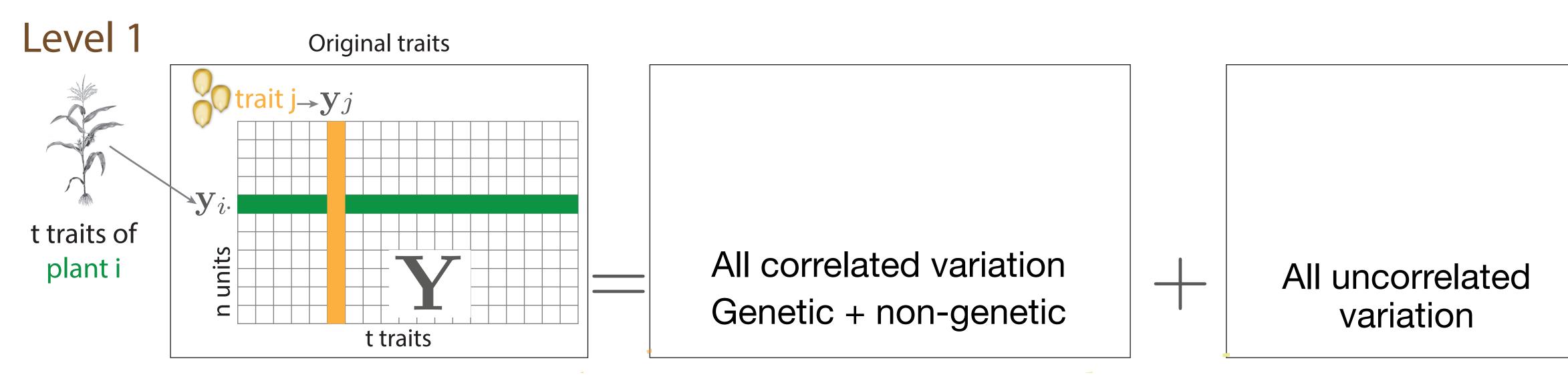
Correlated across traits (columns) and individuals (rows)

Correlations mean we need to estimate whole matrices at once **G** and **R** can be very large, so have too many parameters to estimate directly

= XB + ZU + E Blocks, Genetic Residuals markers relatedness

 $\mathbf{E} \sim \mathrm{MN}_{\mathbf{n} imes \mathbf{t}}(\mathbf{0}, \mathbf{I}, \mathbf{R})$ Residual values Correlated across traits (columns)

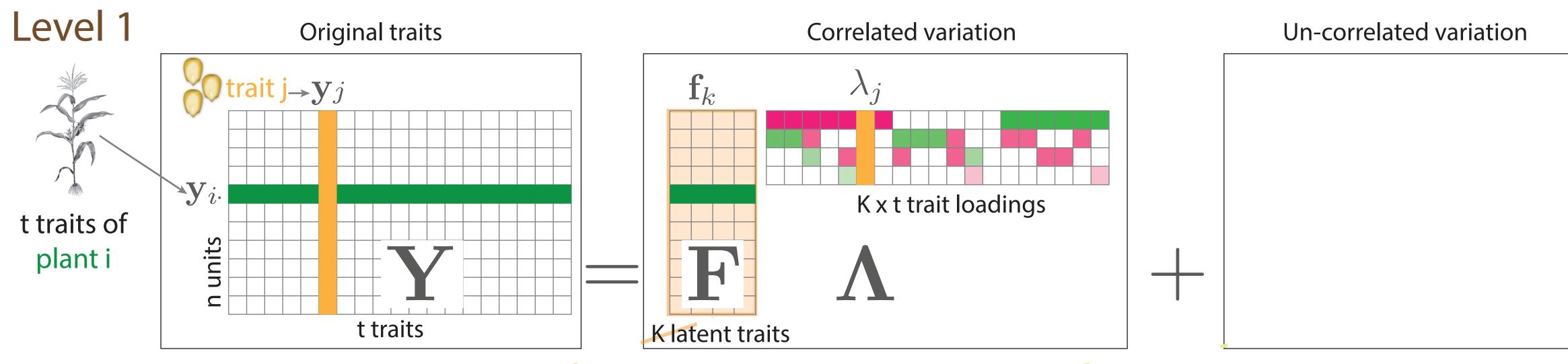
Modeling strategy: two level model



Level 1: Break up the trait matrix into two components One contains all sources of variation shared among traits

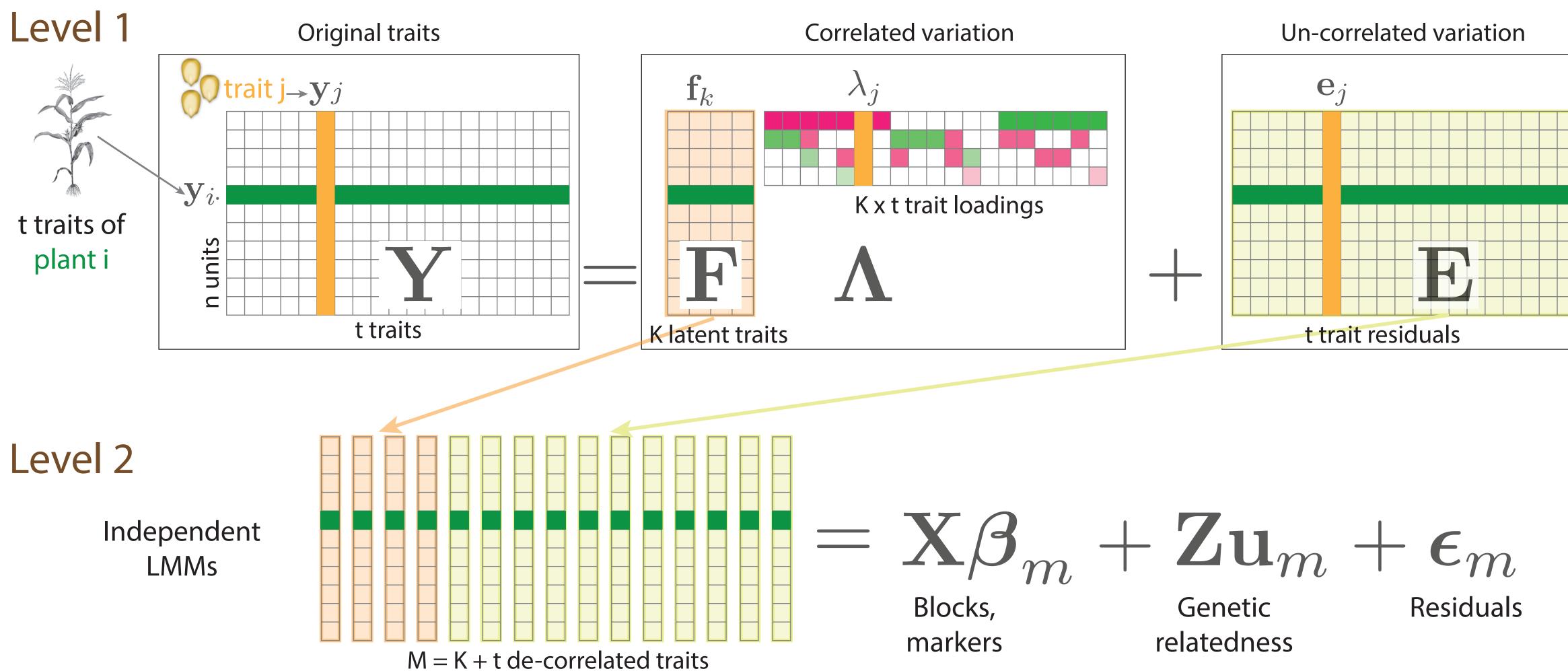
- The other contains all residual variation unique to each trait

Modeling strategy: two level model



Use a factor model to fit the correlated variation (regularization) Introduce K latent traits called factors like PCA: each row of Λ is a loadings vector of correlated traits leave the residuals as is **Result**: K + t traits all are uncorrelated! correlations are modeled with Kt parameters instead of t²

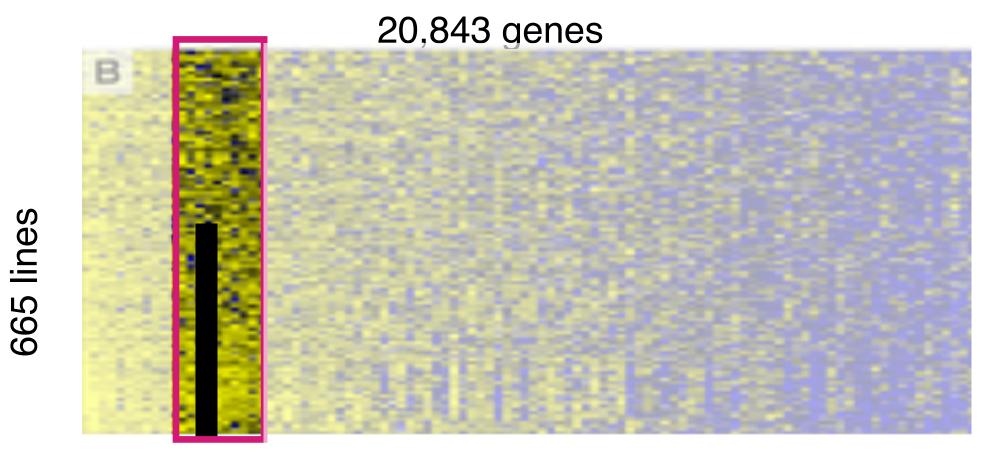
Modeling strategy: two level model



Each of the K + t de-correlated traits is modeled with an independent linear mixed model Novelty: factors are traits so represent all sources of variation

MegaLMM works and is fast

Gene expression from Arabidopsis (1001 genomes project)



- 1. masked 50% of one gene
- 2. selected a set of other random genes

3. Used MvLMMs to predict genetic values of masked gene for masked individuals

4. Repeated multiple times with different genes

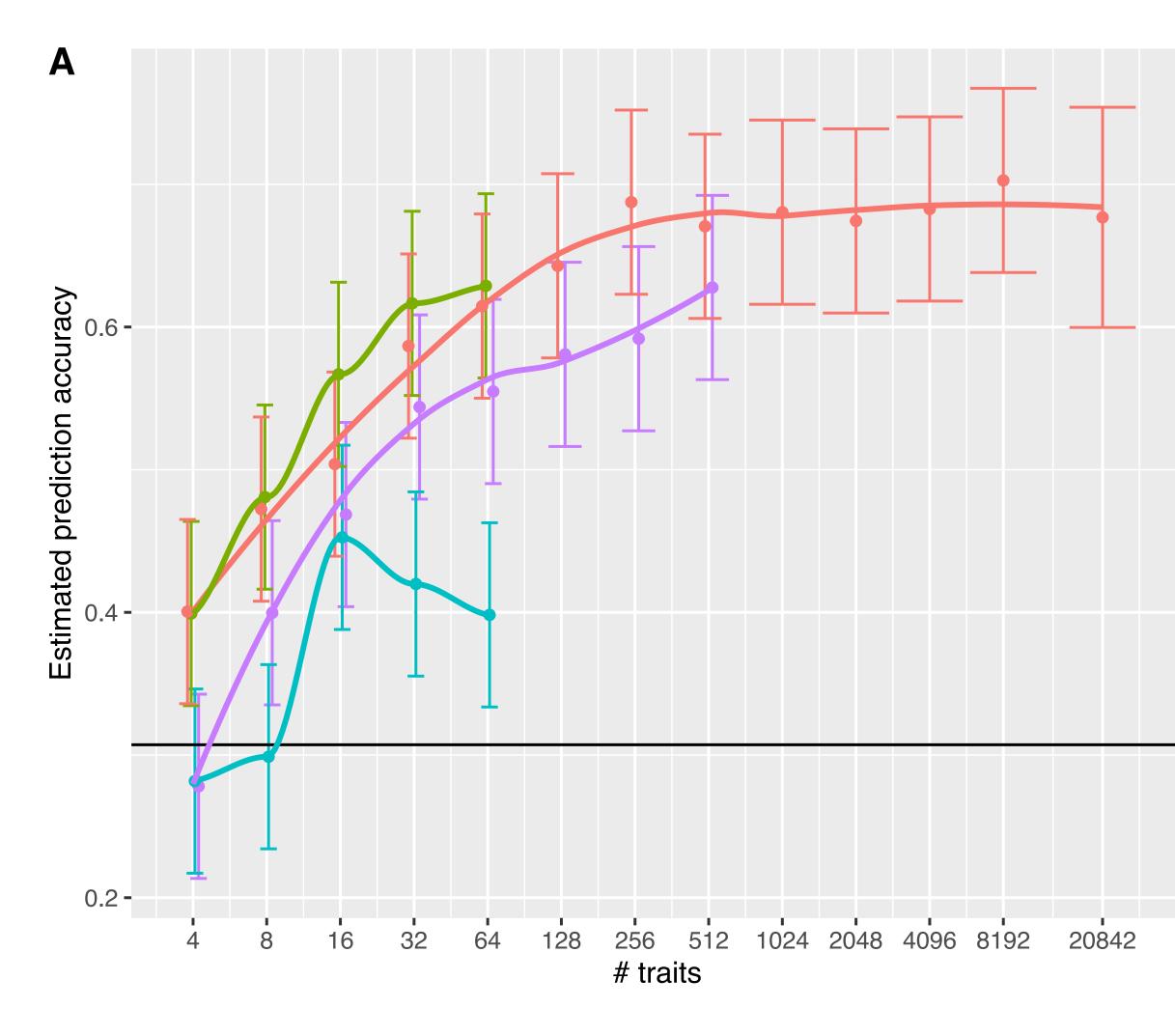
5. Measure accuracy of genetic value predictions for first gene

Pitfalls and Remedies for Cross Validation with Multi-trait Genomic Prediction Methods

Daniel Runcie and Daniel Runcie

G3: GENES, GENOMES, GENETICS November 1, 2019 vol. 9 no. 11 3727-3741; https://doi.org/10.1534/g3.119.400598

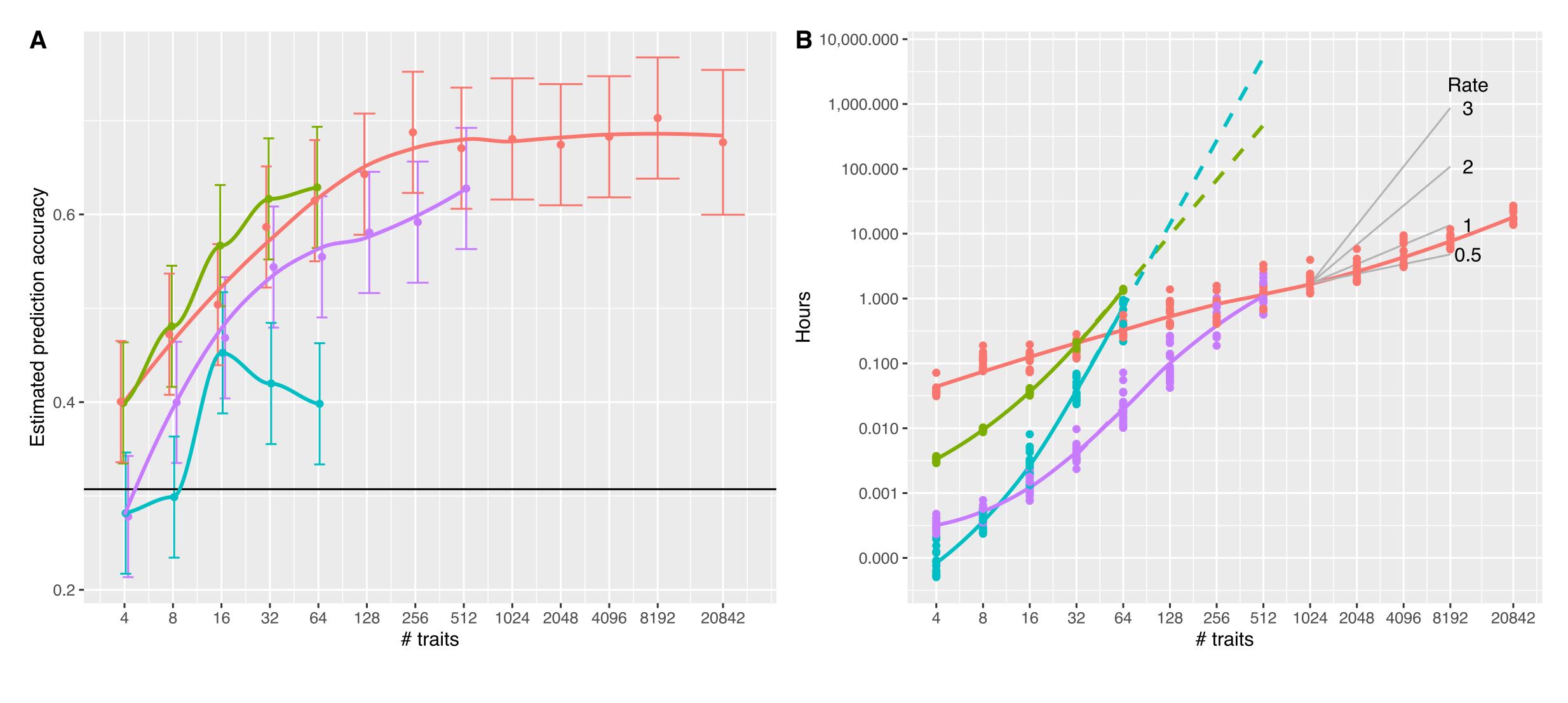
MegaLMM works



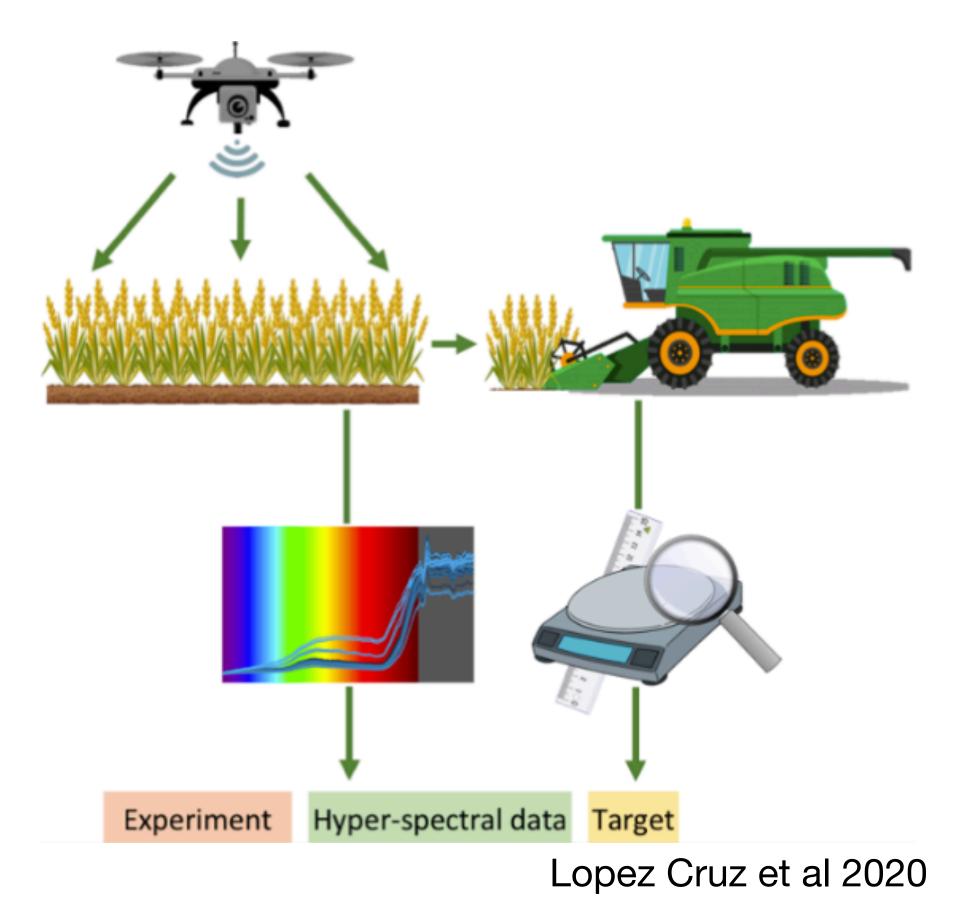
No decline in accuracy with more traits for Bayesian methods

Similar to results for #markers in genomic prediction

MegaLMM works and is fast



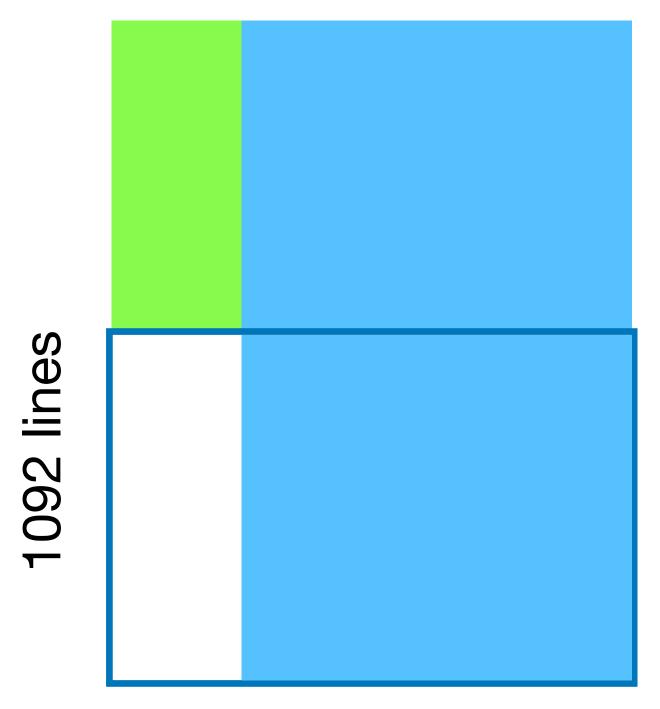
Case study 1: Wheat



CIMMYT Bread Wheat breeding program

Data from Krause et al 2019

Grain Yield 620 wavelengths



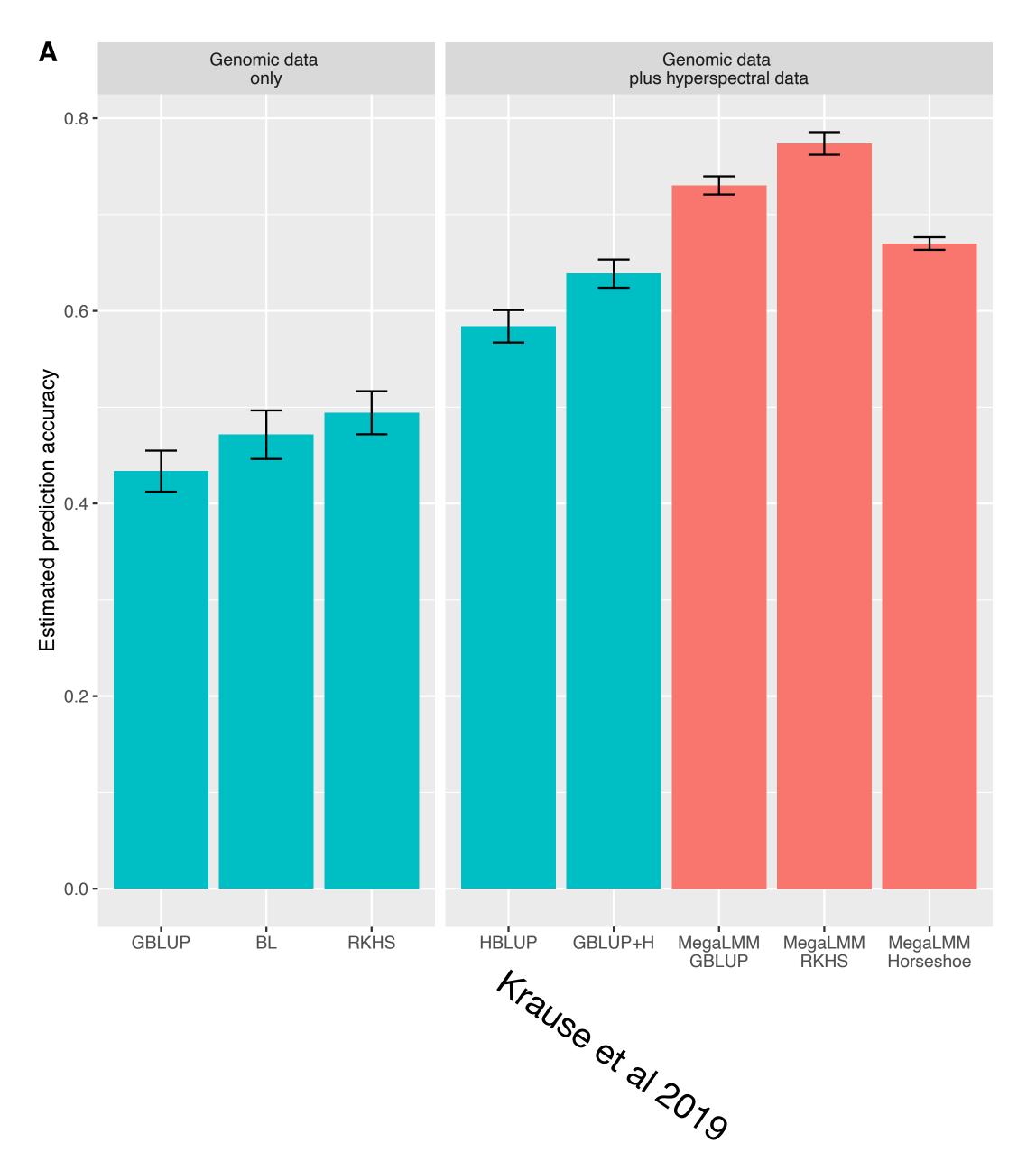
CV2 method 50:50 split

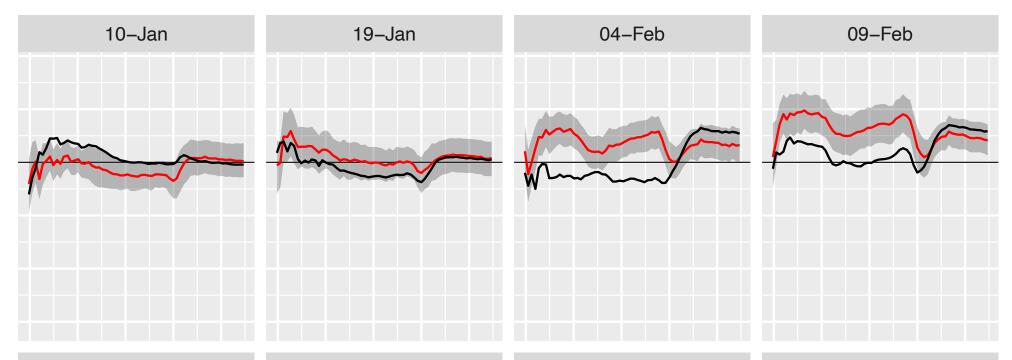
Compare:

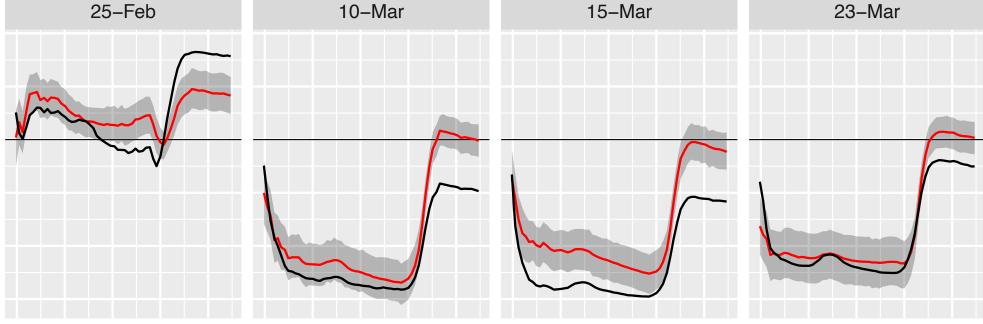
Single-trait genomic prediction

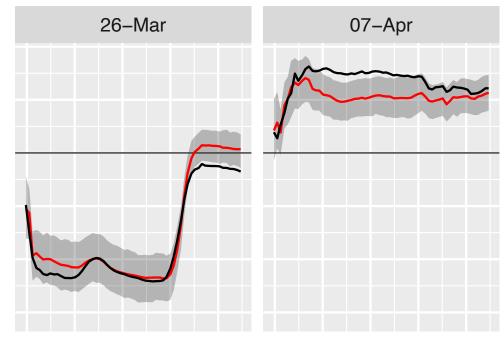
Trait-assisted genomic prediction H-matrix GBLUP full MvLMM with MegaLMM

MegaLMM greatly outperforms other methods

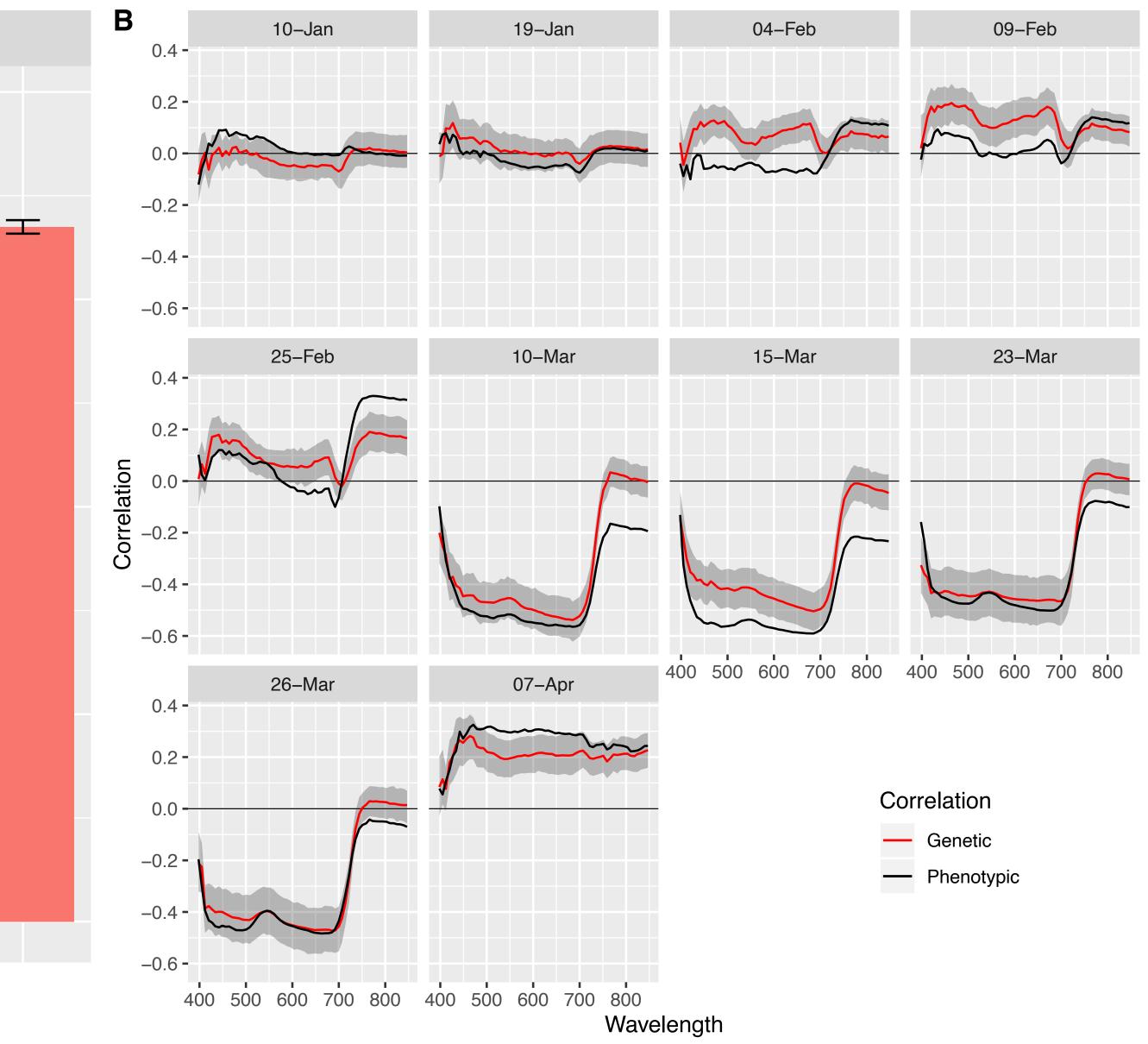








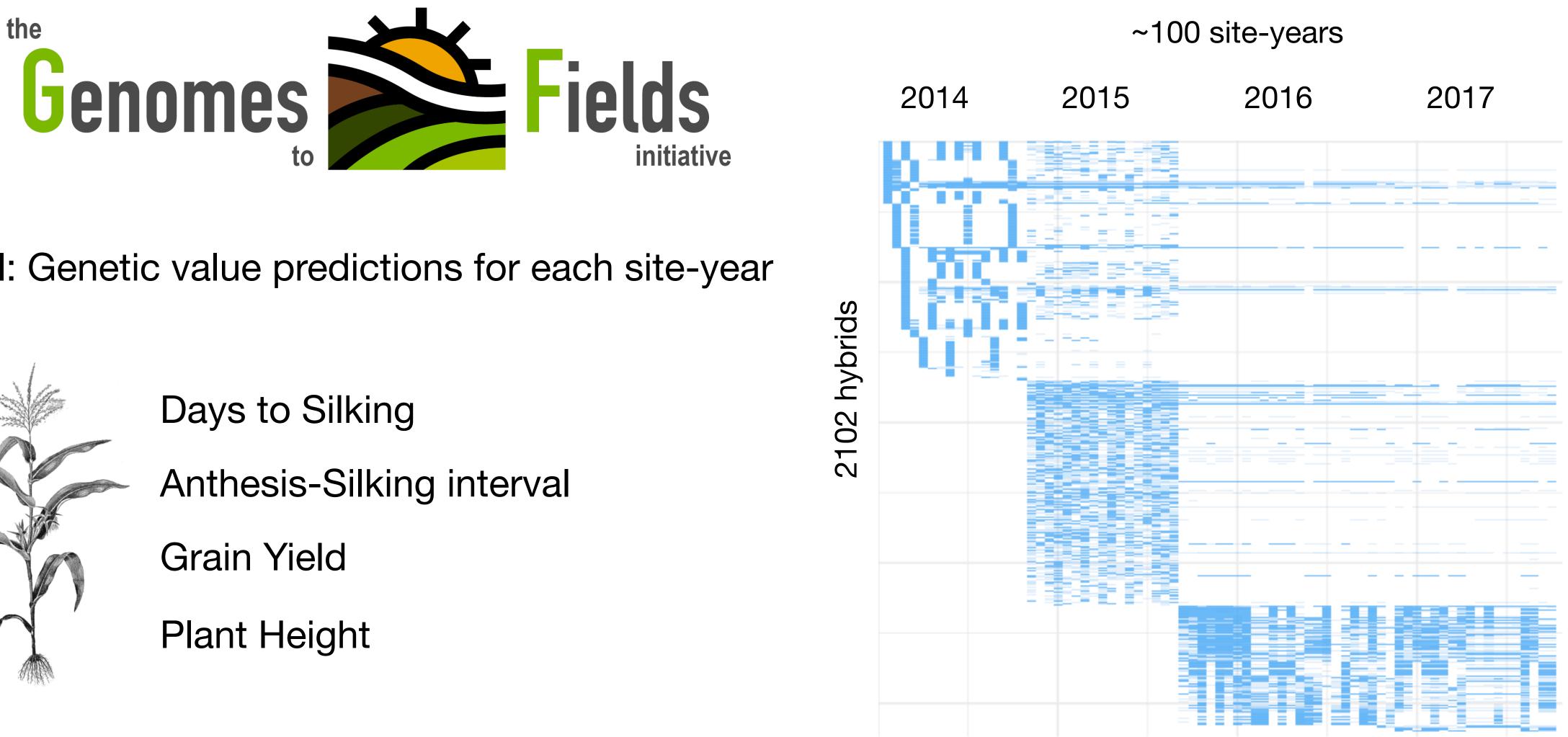
Even subtle differences between G and P matter



Genetic and Phenotypic correlations with yield are mostly similar

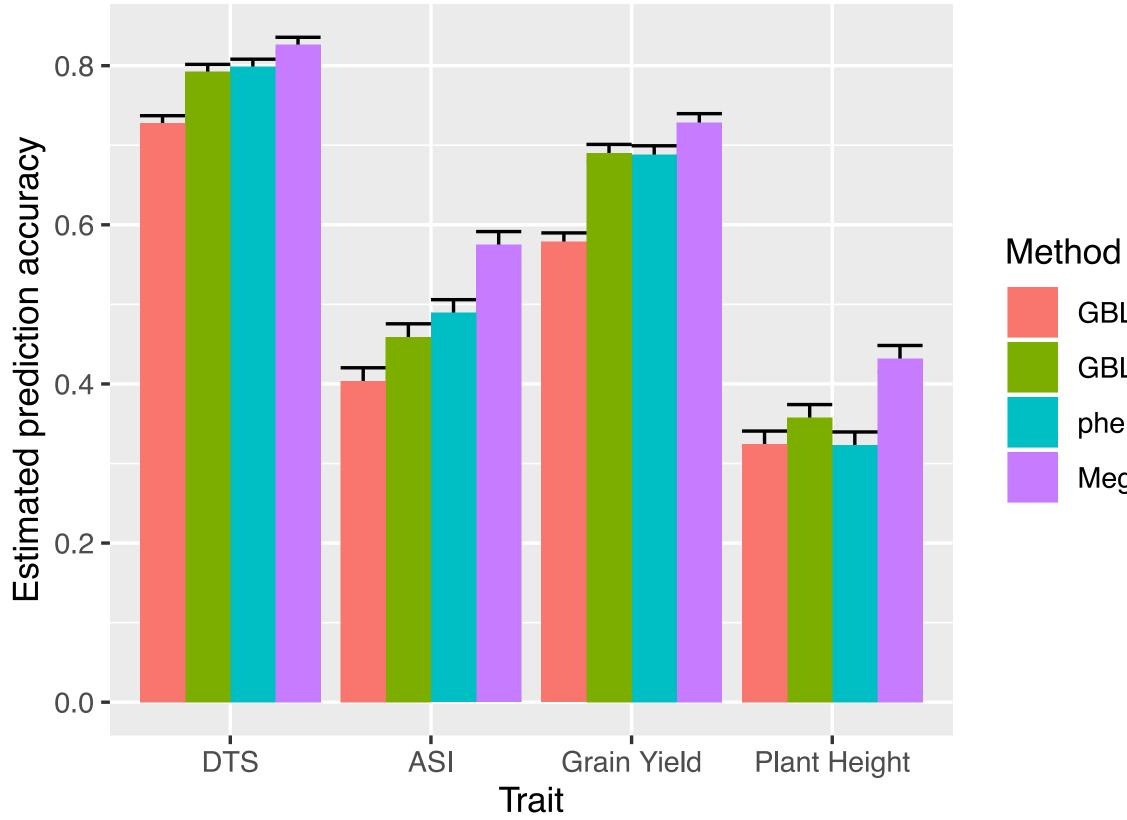
But the difference is big enough to significantly reduce prediction accuracy if not accounted for in a MvLMM

Case study 2: Corn multi-environment trial



Goal: Genetic value predictions for each site-year

MegaLMM greatly outperforms other methods



Results are average accuracies across ~100 site-years

GBLUP(univariate)

GBLUP(env BLUPs)

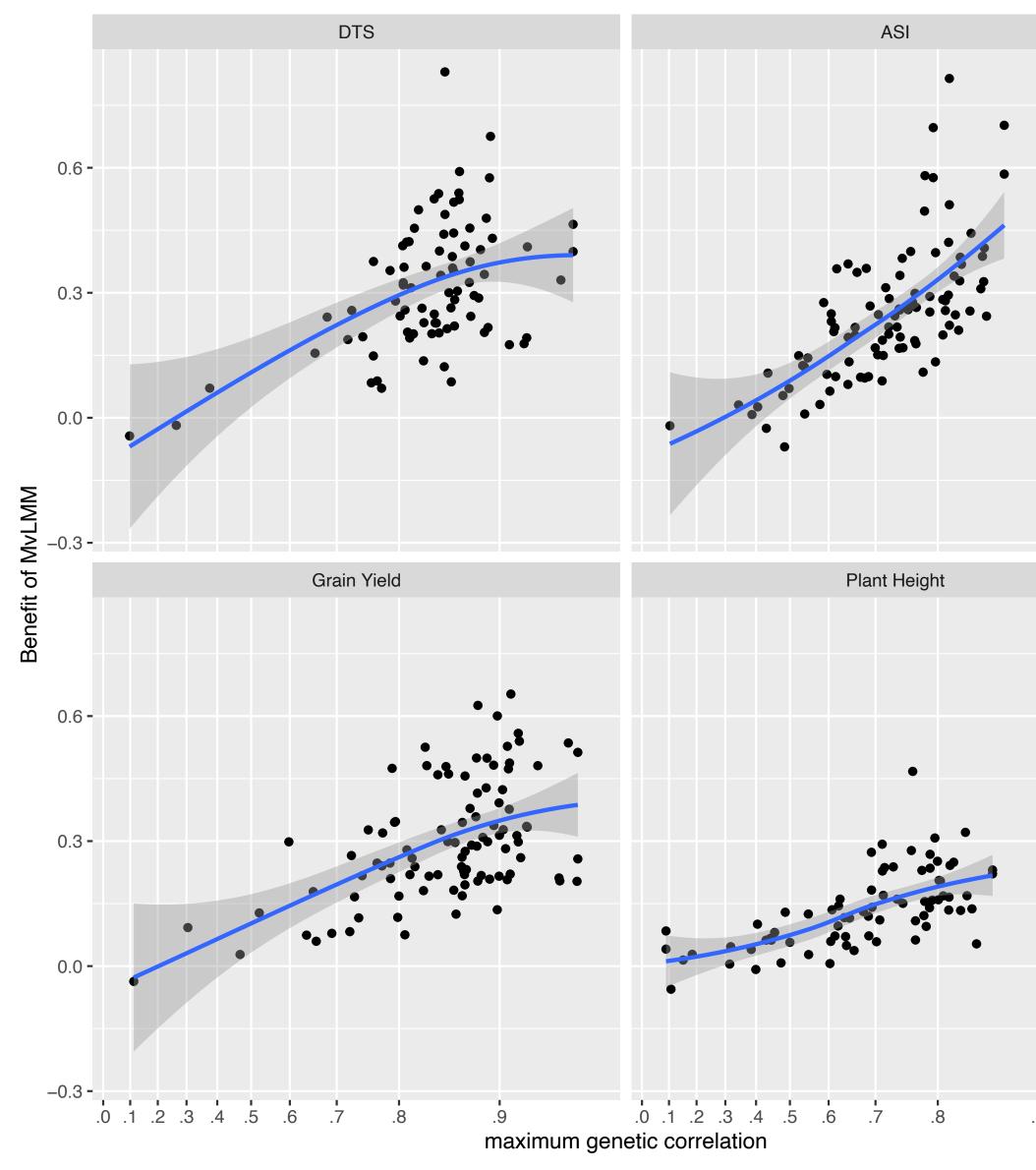
phenix

MegaLMM

MegaLMM almost always the best in every site-year for every trait

Improvement in some site: years even larger

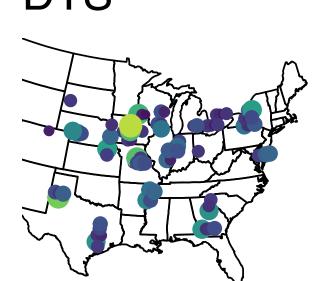
Why does multi-environment prediction work?

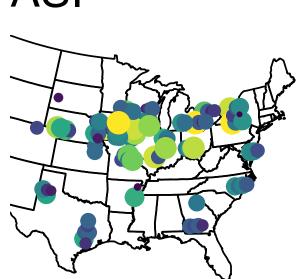


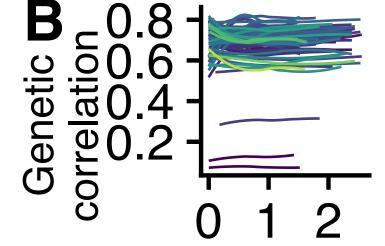
Site-years that have a similar partner show the biggest improvement

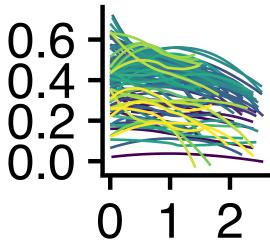
But the identity of the nearest partner field differs among sites, traits and years

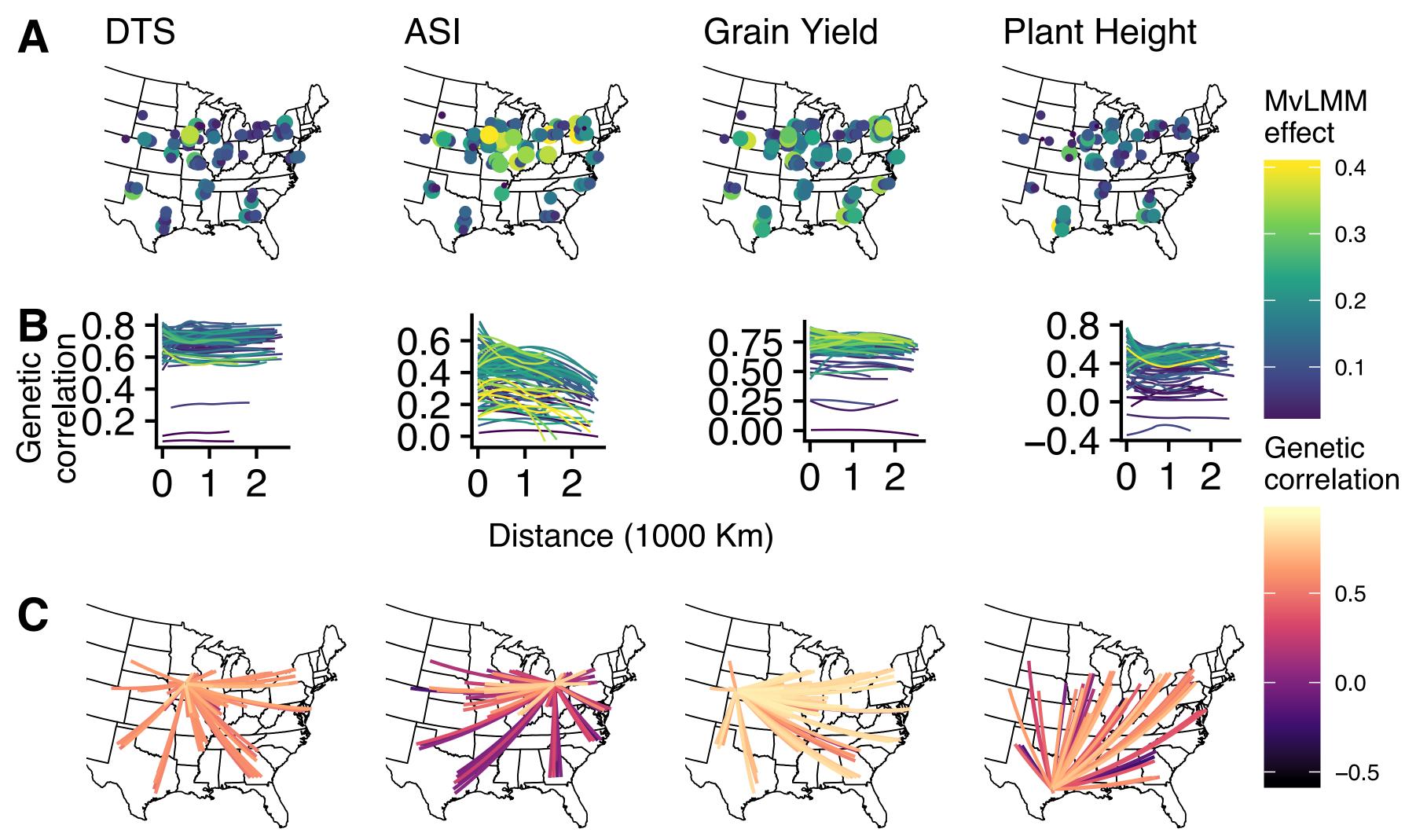
Why does multi-environment prediction work?









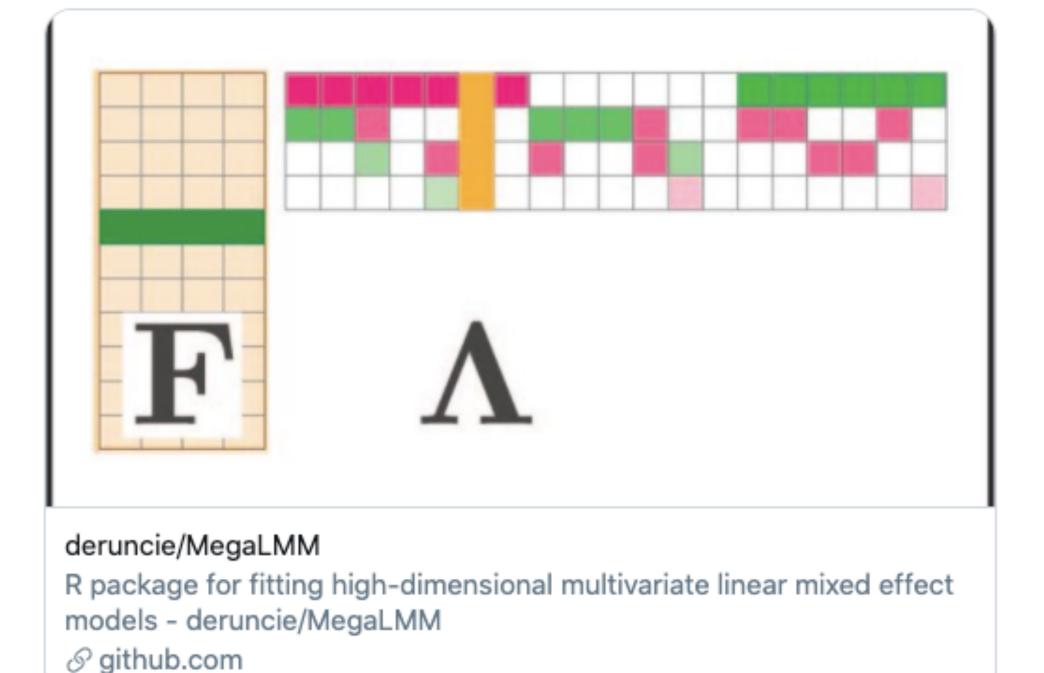


MegaLMM R package

Ime4-style model specification Multiple random effects Flexible fixed-effect specification (some) model diagnostics

Future Directions

- Can we allow more individuals (limit ~5k)?
- Can we allow more random effects (limit ~3)?
- Can we allow non-Gaussian traits?
- Can we do selection on multivariate traits (shape, taste, quality)?



Acknowledgements

Runcie Lab

Sayan Mukherjee

- James Ta Sarah Odell Xin Li
- Jerry Lin

Funding

