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Background

How can we use data from high-throughput phenotyping to improve genetic
value prediction?

Problem

Incorporating phenotype data from many traits at once is challenging

Solution

Megal MM: Fast and Powerful multi-trait linear mixed effects models for an
unlimited number of traits

Limitations and future directions



New technologies available to breeders
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Secondary traits improve prediction accuracy

Rather than measure biomass directly,

0.6 predict it based on other traits

selected

Can be more efficient if other traits are:

O
~

cheaper to measure

faster to measure
can be measured earlier in development

Reflectance

O
N

not selected

20 30 40
Biomass



How to use secondary trait data
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Problem: non-genetic correlations bias results
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Need to separate genetic from non-genetic correlations

Estimate G and R in a multi-trait
linear mixed model (MvLMM)
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Problem: G and R get very big!
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Problem: too many parameters (and slow computation)
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MegalLMM: MvLMMes for an unlimited number of traits

o | QOeit-y;
< -
/{r\
Y ;. —
t traits of .
“i Y =XB+ZU+E
c |
C I I I I
ttraits Blocks, Genetic Residuals
markers relatedness
U ~ MN,...(0,K, G) E ~ MN,,((0,I,R)
Genetic values Residual values
Correlated across traits (columns) Correlated across traits (columns)

and individuals (rows)

Correlations mean we need to estimate whole matrices at once
G and R can be very large, so have too many parameters to estimate directly



Modeling strategy: two level model

Level 1 Original traits
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Level 1: Break up the trait matrix into two components
One contains all sources of variation shared among traits
The other contains all residual variation unique to each trait



Modeling strategy: two level model

Level 1 Original traits Correlated variation Un-correlated variation

0)..
A0 | ;. Aj
K x t trait loadings

A +

t traits of

plant i *2 5 7
>
C |

t traits Klatent traits

Use a factor model to fit the correlated variation (regularization)

Introduce K latent traits called factors

like PCA: each row of A is a loadings vector of correlated traits
leave the residuals as is

Result: K + t traits

all are uncorrelated!
correlations are modeled with Kt parameters instead of 12



Modeling strategy: two level model

Level 1 Original traits Correlated variation Un-correlated variation
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Each of the K + t de-correlated traits is modeled with an independent linear mixed model
Novelty: factors are traits so represent all sources of variation



MegalLMM works and is fast

Gene expression from Arabidopsis (1001 genomes project)
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Pitfalls and Remedies for Cross Validation with
Multi-trait Genomic Prediction Methods

Daniel Runcie and ¥ Hao Cheng
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https://doi.org/10.1534/g3.119.400598

-
.“'

-
—

A

’ .I.}r.

665 lines
R

T
;
1
E
2

1. masked 50% of one gene

2. selected a set of other random genes

3. Used MvLMMs to predict genetic values of
masked gene for masked individuals
4. Repeated multiple times with different genes

5. Measure accuracy of genetic value
predictions for first gene



MegalL MM works

O
o)

Estimated prediction accuracy

0.2-

0.4-

No decline in accuracy with more traits for

Bayesian methods

Similar to results for
prediction

16

32

64

128

056 512 1024 2048 4096 8192 20842

# traits

Method

MegaLMM =e= MCMCglmm == MTG2 phenix

markers in genomic



Estimated prediction accuracy

MegalLMM works and is fast
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Case study 1: Wheat
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MegalLMM greatly outperforms other methods
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Trait-assisted prediction works

Separating genetic from non-genetic
correlations among traits is important

because yield and reflectance
measured on the same individuals



Even subtle differences between G and P matter
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Case study 2: Corn multi-environment trial

~100 site-years
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Goal: Genetic value predictions for each site-year
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MegalLMM greatly outperforms other methods
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Results are average accuracies
across ~100 site-years

MegalLMM almost always the best in
every site-year for every trait

Improvement in some site:years even
larger



Why does multi-environment prediction work"?
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Why does multi-environment prediction work"?
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MegalLMM R package

Ime4-style model specification

Multiple random effects

Flexible fixed-effect specification

deruncie/MegaLMM

R package for fitting high-dimensional multivariate linear mixed effect
models - deruncie/MegalL MM

&’ github.com

(some) model diagnostics

Future Directions
Can we allow more individuals (limit ~5k)?
Can we allow more random effects (limit ~3)?
Can we allow non-Gaussian traits?

Can we do selection on multivariate traits (shape, taste, quality)?
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