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ABSTRACT Large-scale phenotype data can enhance the power of genomic prediction in plant and animal breeding, as well as

human genetics. However, the statistical foundation of multi-trait genomic prediction is based on the multivariate linear mixed

effect model, a tool notorious for its fragility when applied to more than a handful of traits. We present MegaLMM, a statistical

framework and associated software package for mixed model analyses of a virtually unlimited number of traits. Using three

examples with real plant data, we show that MegaLMM can leverage thousands of traits at once to significantly improve genetic

value prediction accuracy.
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Background2

New high-throughput phenotyping technologies hold promise3

for a revolution in data-driven decisions in plant and animal4

breeding programs (Araus et al. 2018; Koltes et al. 2019). For5

example, drone-based hyperspectral cameras can image fields6

at high resolution across hundreds of spectral bands (Rutkoski7

et al. 2016), wearable sensors can continuously monitor animals8

health and physiology (Neethirajan 2017), and RNA sequencing9

and metabolite profiling can simultaneously assay the concentra-10

tions of tens-of-thousands of targets (Schrag et al. 2018). These11

high-dimensional traits could allow breeders to rapidly assess12

many aspects of performance more accurately or earlier in de-13

velopment than was possible using traditional tools. This can14

increase the rate of gain in target traits by increasing selection15

accuracy, increasing selection intensity, and reducing breeding16

cycle durations.17

However, efficiently incorporating high-dimensional pheno-18

type data into breeding decisions is challenging. Whenever two19

traits are genetically correlated, joint analyses can improve the20

precision of variety evaluation (Thompson and Meyer 1986).21

However, two key problems emerge. First, the number of traits22

in high-dimensional datasets is often much larger than the num-23

ber of breeding lines, which means that naive correlation es-24

timates are not robust. Second, phenotypic correlation among25

traits are often poor approximations to genetic correlation, so not26

all correlated traits are useful for breeding decisions (Bernardo27

2010). For example, plants grown in more productive areas28

of a field will tend to produce higher yields and be greener29

(measured by hyperspectral reflectance). Yet, selecting indi-30

rectly based on green plants instead of directly on higher yields31

may be counter-productive because “green-ess” may indicate32

an over-investment in vegetative tissues at the expense of seed.33

This contrasts with the problem of predicting genetic values34
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from genotype data (e.g., genomic prediction; Meuwissen et al.35

(2001)), where all correlations between candidate features and36

performance are useful for selection.37

The multivariate linear mixed model (MvLMM) is a widely-38

used statistical tool for decomposing phenotypic correlations39

into genetic and non-genetic components. The MvLMM is a40

multi-outcome generalization of the univariate linear mixed41

model (LMM) that forms the backbone of the majority of meth-42

ods in quantitative genetics. The MvLMM was introduced over43

40 years ago (Henderson and Quaas 1976), and has repeatedly44

been shown to increase selection efficiency (Piepho et al. 2007;45

Calus and Veerkamp 2011; Jia and Jannink 2012). Yet, MvLMMs46

are still rarely used in actual breeding programs because naive47

implementations of the framework are sensitive to noise, prone48

to overfitting, and exhibit convergence problems (Johnstone49

and Titterington 2009). Furthermore, existing algorithms are50

extremely computationally demanding. The fragility of naive51

MvLMMs is due to the number of variance-covariance parame-52

ters that must be estimated which increases quadratically with53

the number of traits. The computational demands increase even54

more dramatically: from cubically to quintically with the num-55

ber of traits (Zhou and Stephens 2014) because most algorithms56

require repeated inversion of large covariance matrices. These57

matrix operations dominate the time required to fit a MvLMMs,58

leading to models that take days, weeks, or even years to con-59

verge.60

Here, we describe MegaLMM (linear mixed models for millions61

of observations), a novel statistical method and computational62

algorithm for fitting massive-scale MvLMMs to large-scale phe-63

notypic datasets. Although we focus on plant breeding appli-64

cations for concreteness, our method can be broadly applied65

wherever multi-trait linear mixed models are used (e.g., hu-66

man genetics, industrial experiments, psychology, linguistics,67

etc.). MegaLMM dramatically improves upon existing methods68

that fit low-rank MvLMMs, allowing multiple random effects69

and un-balanced study designs with large amounts of missing70

data. We achieve both scalability and statistical robustness by71
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Background

Limitations and future directions

How can we use data from high-throughput phenotyping to improve genetic 
value prediction?

Problem
Incorporating phenotype data from many traits at once is challenging

Solution

MegaLMM: Fast and Powerful multi-trait linear mixed effects models for an 
unlimited number of traits



New technologies available to breeders

Drones

Hyperspectral cameras

Lopez Cruz et al 2020

Wearable sensors

Neethirajan 2017

Gene expression / Metabolomics

High dimensional data
p >> n

“Secondary traits”
Not of direct 
interest

Highly correlated data
temporal, 
spatial, etc
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Secondary traits improve prediction accuracy

Rather than measure biomass directly, 
predict it based on other traits

Can be more efficient if other traits are: 
cheaper to measure
faster to measure
can be measured earlier in development
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How to use secondary trait data
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Problem: non-genetic correlations bias results
Need to separate genetic from non-genetic correlations

not selected

selected
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Estimate G and R in a multi-trait 
linear mixed model (MvLMM)
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T is the paired vector of a flowering time BLUP (yFij) and

a single agronomic trait BLUP (yAij) for landrace i in trial j, xij is a vector of
fixed e↵ect covariates for tester and year with coe�cient matrix A (i.e. columns
correspond to each trait), and Ej is the environmental value of trial j, with main
e↵ects on each trait given by �. ugi , ugei , and eij are bi-variate random e↵ect
vectors representing the genetic main e↵ects, genetic responses to the environ-
ment, and non-genetic within-individual line e↵ects in each trial, respectively,
with joint distribution:
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where Gg is the covariance matrix of genetic main e↵ects between flowering and
the agronomic trait, Ggxe is the covariance of the responses to the environment
between traits, Gg gxe is the covariance of genetic main e↵ects and genetic
responses to the environment among the four trait components, and R is the
within-trial residual covariance between traits. Note, for simplicity, the among-
line kinship matrix was not used in this analysis, so the genetic parameters are
interpreted as total genetic variances (not additive genetic variances).
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where Gg is the covariance matrix of genetic main e↵ects between flowering and
the agronomic trait, Ggxe is the covariance of the responses to the environment
between traits, Gg gxe is the covariance of genetic main e↵ects and genetic
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line kinship matrix was not used in this analysis, so the genetic parameters are
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Problem: G and R get very big!

with many traits, many more 
parameters than data points



Problem: too many parameters (and slow computation)
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Single-trait Genomic Prediction

Regularized regression
GBLUP, rrBLUP

Bayesian Alphabet

RKHS

Multi-trait Genomic Prediction

# traits

# correlations

2 20 200 2000

x2

Solution:
MegaLMM

x1
Computational

Time

x3+

ASReml, sommer, MCMCglmm, GEMMA



MegaLMM: MvLMMs for an unlimited number of traits
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Genomic Prediction applications
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U ⇠ MNr⇥t(0,K,G) E ⇠ MNn⇥t(0, I,R)
Genetic values
Correlated across traits (columns)

 and individuals (rows)

Residual values
Correlated across traits (columns)

Correlations mean we need to estimate whole matrices at once
G and R can be very large, so have too many parameters to estimate directly



Modeling strategy: two level model
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Genomic Prediction applications

focal trait all focal traitssecondary traits

Level 1: Break up the trait matrix into two components

All correlated variation
Genetic + non-genetic

One contains all sources of variation shared among traits

All uncorrelated 
variation

The other contains all residual variation unique to each trait
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Genomic Prediction applications

focal trait all focal traitssecondary traits

Use a factor model to fit the correlated variation (regularization)

like PCA: each row of Λ is a loadings vector of correlated traits

Result: K + t traits

Introduce K latent traits called factors

all are uncorrelated!
correlations are modeled with Kt parameters instead of t2

leave the residuals as is

Modeling strategy: two level model
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Genomic Prediction applications

focal trait all focal traitssecondary traits

Each of the K + t de-correlated traits is modeled with an independent linear mixed model
Novelty: factors are traits so represent all sources of variation

Modeling strategy: two level model



MegaLMM works and is fast
66

5 
lin

es

20,843 genes
Gene expression from Arabidopsis (1001 genomes project)

1. masked 50% of one gene

3. Used MvLMMs to predict genetic values of 
masked gene for masked individuals
4. Repeated multiple times with different genes

2. selected a set of other random genes

5. Measure accuracy of genetic value 
predictions for first gene



MegaLMM works
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No decline in accuracy with more traits for 
Bayesian methods

Similar to results for #markers in genomic 
prediction



MegaLMM works and is fast
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Case study 1: Wheat

CIMMYT Bread Wheat breeding program
Lopez Cruz et al 2020

Data from Krause et al 2019

Grain Yield 620 wavelengths

CV2 method

10
92

 li
ne

s 50:50 split

Compare:
Single-trait genomic prediction
Trait-assisted genomic prediction

H-matrix GBLUP
full MvLMM with MegaLMM



Genomic data 
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Genomic data 
plus hyperspectral data
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MegaLMM greatly outperforms other methods

Trait-assisted prediction works

Separating genetic from non-genetic 
correlations among traits is important

because yield and reflectance 
measured on the same individuals
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Even subtle differences between G and P matter
Genomic data 

only
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plus hyperspectral data
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Genetic and Phenotypic 
correlations with yield are mostly 
similar

But the difference is big enough to 
significantly reduce prediction accuracy 
if not accounted for in a MvLMM



Case study 2: Corn multi-environment trial
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~100 site-years

Goal: Genetic value predictions for each site-year



MegaLMM greatly outperforms other methods

Results are average accuracies 
across ~100 site-years

MegaLMM almost always the best in 
every site-year for every trait

Improvement in some site:years even 
larger
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Why does multi-environment prediction work?

Grain Yield Plant Height
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Why does multi-environment prediction work?
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MegaLMM R package

lme4-style model specification

Multiple random effects
Flexible fixed-effect specification
(some) model diagnostics

Future Directions

Can we allow more individuals (limit ~5k)?

Can we allow more random effects (limit ~3)?

Can we allow non-Gaussian traits?

Can we do selection on multivariate traits (shape, taste, quality)?
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