
A Survey on the Interplay between Software Engineering and Sys-
tems Engineering during SoS Architecting - Quotes of the codes,
with most occurrences, induced from the responses to the open-ended
questions.

1 Question 3.1.

Table 1: Prominent codes that emerged from the Qualitaitive Content Analysis process on the responses to the
second part of question 3.1.

Code Quote #
ocur-
rences
in
the
ques-
tion.

TEAMS COORDINATION
CHALLENGES

(R10) “Communications between systems and software engineers”,
(R31) “ It is challenging to keep engineering teams’ perspectives
in mind when coordinating across teams.”, (R1) The integration of
the teams and whole goals communication, (R24) Poor coordina-
tion, understanding, of dominant requirements—whether originat-
ing with software or with system concerns.

4

INCOMPLETE SYSTEM RE-
QUIREMENTS

(R2) “Poorly documented or incomplete elicitation results and
stakeholder analysis.”, (R60) “’Vagueness’ in system level require-
ment (when train is at stop) leaves lot of interpretation on how
software determines actual state from odometry captors. ”, (R41)
Quality of Customer Requirements not sufficient, Several NFRs un-
clear/unspecified, Functional Safety Requirements added very late,
(R50) Scarce description of requirements on system level.

4

ASSUMPTIONS ABOUT THE
OTHER DISCIPLINE

(R20) “The focus was on the subsystem level with the assumption
that the system level issues could just be resolved as they came
up...”, (R25) “ Assumptions were made by systems engineers re-
garding where to allocate software components, which led to tim-
ing/sizing and reliability concerns.”, (R31) ...Many software engi-
neers assumed that higher-level requirements existed and wanted to
be guided by them. Systems engineers often assumed that software
had not/could not have been properly developed without higher-level
requirements... , (R30) System Level requirements posed significant
limits on the software and hardware infrastructure required, which
did not allow the facilitation of infrastructure best suited for the
project...

4

INTERDISCIPLINARY DIF-
FERENCES

(R25) “System, software, and programmatic (cost/schedule) goals
of the architecture were sometimes in conflict”, (R30) “System
Level requirements posed significant limits on the software and hard-
ware infrastructure required”, (R54) Decomposition of the system
was different from system (more mechanical) and software., (R8)
Collaborative Architecting activities involving several nations and
several companies towards a single solution being a System of Sys-
tems.

4

Continued on next page

1

Table 1 – continued from previous page
Code Quote # ocur-

rences
in the
question.

LACK OF SYSTEM-LEVEL
PERSPECTIVE

(R17) “... the system architecture was largely ignored by the elec-
trical and software teams when they architected the software and
electrical systems, so there was a change in coupling and inter-
dependence from the original system architecture...”, (R20) “...the
problems at the system level were very difficult to solve and caused
major delays and program replans. Eventually, the program was
given to a different contractor who understood the need for systems
engineering...”, (R16) Gaining a shared, and agreed, understanding
of a desired level of abstraction an granularity for respective archi-
tectures.i.e. Systems imposing levels of granularity that constrict
(rather than constrain) software architecture.

3

LACK-OF-DOMAIN-
KNOWLEDGE

(R38) “Lack of domain knowledge and business understanding in
SW-Development leads to wrong interpretation of requirements...”,
(R11) Common understanding among involved disciplines, even
from the same domain, (R9) ... lack of experience of software en-
gineers related to avionics systems

3

2 Question 3.6.

Table 2: Prominent codes that emerged from the Qualitaitive Content Analysis process on the responses to
question 3.6

Code Quote #
ocur-
rences
in
the
ques-
tion.

ARCHITECTURE-PATCHING

(R2) “Too late, much effort needed to make bandaid patches.”,
(R12) Too late, much effort needed to make bandaid patches...,
(R14) ‘patches and problems not completely solved but considered
as solved., (R17) Flaws in the architecture were discovered deep
into implementation, and so there was little tolerance for rearchi-
tecting due to schedule and budget impact. (R30) “There was no
clear separation between software-level and system-level architec-
ture, thus the evaluation process sometimes resulted in changes to
the system-architecture and sometimes to functional requirements
on the software level.”

5

INSUFFICIENT-EVALUATION
(R50) “Overall insufficient evaluation.”, (R53) “More lessons could
have been learned by better evaluation.”, (R19) “Evaluation seemed
to be informal.”, (R24)“Coverage was spotty.”

5

EVALUATION-COMPLEXITY

(R24)“Overly detailed and complex: more like plumbing and wiring
diagrams than architectures!”, (R10)“Integration, Understanding of
processes”, (R21) “The system-level architecture evaluation required
some training and going through the actual proces”

3

EVALUATION-CRITERIA

(R8) “very difficult to get a set of weighted criteria agreed by the
Stakeholder”, “changes derived from the evaluation, lack of trace-
abilty, architecture patches”, (R1) “Evaluate criteria, is the big
challenge to define consider both aspects [system/software] on the
early phases”

2

2

3 Question 4.2.

Table 3: Prominent codes that emerged from the Qualitaitive Content Analysis process on the responses to
question 4.2

Code Quote #
ocur-
rences
in
the
ques-
tion.

M&S APPROACHES LIMITA-
TIONS

(R27) Impossible to model all possible emergent behaviour, partic-
ularly when dealing with large scale systems with multiple integra-
tions, sub-systems, sensors and data models. (R19) Lab testing was
much less likely to show any emergent behavior due to the lack of
realistic testing environments. (R60) System uses wireless commu-
nication that has important error rate, link from radio performance
to visible system impact (train emergency braking) very difficult to
characterize.

4

SUBSYSTEMS-RELATED-
EMERGENCE-CAUSES

(R23) COTS selected for subsystems too ridged and did not sup-
port emerging needs well. Limited ability to support emerging
needs., (R25) Emergent behaviors in this case were primarily caused
by faulty components or low-level requirements, not architecture.,
(R21) use of shared resources by competing systems, (R3) Timing
of hardware components. Undocumented backdoors.

4

TIME-AND-RESOURCES-
PROBLEMS

(R12) Added cost - for systems to patch sw arch holes. (R9) On-
going rework. Defect growth extending post repeated projection
over life cycle. Exceeding projected demand on software proces-
sor resources, putting safety at risk. (R38) Not enough time and
resources sent for ”architecture governance”. (R24) There was a
recognition (on both system and software teams) of the need to
manage emergences, but aside from some specific cases, neither
team had adequate means to do so.

4

UNSATISFIED REQUIRE-
MENTS

(R18) Available software, driven by the system level decisions, did
not provide expected functionality in the aggregate, (R20) If un-
desired emergent behavior includes not meeting key system require-
ments, this led to the program being taken away from this contractor
and given to another one.

2

3

4 Question 4.5.

Table 4: Prominent codes that emerged from the Qualitaitive Content Analysis process on the responses to the
third part of question 4.5.

Code Quote #
ocur-
rences
in
the
ques-
tion.

CONFIGURATION MANAGE-
MENT

(R1) “Configuration Management is a challenge to this subjects”,
(R8) Stability of the interface specifications with regards to evolu-
tion of the systems, (R34) “Specifications are not enough, you need
lifecycle policies. How long will a specification be supported? How
are consumers notified of (upcoming) changes? What is the back-
ward compatibility time window?”, (R24) For constituent systems
in current development, the interface specs always lagged reality....,
(R31) ...documentation and version control of interface documen-
tation was an issue., (R41) ... Some changes were actually required
due to improper interface specification, so the situation actually
improved. However, close synchronization was required between the
affected teams.

6

INCOMPLETE INTERFACE
SPECIFICATIONS

(R20) “Evolution of the subsystems did not affect changes to the
interface specifications as the specifications were not adequate and
the system impacts of subsystem changes were not appreciated.”,
(R37) “Missing clarity on intended usage of APIs - more docs and
examples improved”, (R41) “Some changes were actually required
due to improper interface specification, so the situation actually
improved. However, close synchronization was required between the
affected teams.”, (R51) “Specification not complete to consider all
cases.”

4

HARDWARE-SOFTWARE
CHANGES BALANCE

(R9) “Dependence on software to address hardware interface is-
sues.”, (R12) “ Cannot solve all in software, need a balanced solu-
tion.”,

2

CHANGE COSTS

(R33) “ time waste in the review, validation and changes, into the
neighbor sub-systems, to adapt them to the new interface”, (R38)
“Changes often result claims requiring addtional efforts (at least
financial), so more stakeholders get involved making the change-
process slower or blocking it”

2

4

	Question 3.1.
	Question 3.6.
	Question 4.2.
	Question 4.5.

