
A brief overview of
reuse mechanisms

CashDesk Keyboard

Display

var1

CashDesk Keyboard

Display

var2

CardReader

CashDesk Scanner

Display

var3

CardReader

1

0..1

CashDesk Keyboard

Display

var1

CashDesk Keyboard

Display

var2

CardReader

CashDesk Scanner

Display

var3

CardReader

1

0..1

Multiple software artefacts such as class
diagrams can sometimes be related and

have common parts. In the following, let us
refer to the set of artefacts as a family and

members of this family as variants.

This is a family of cash desk
systems. It consisting of three

variants with some commonalities.

CashDesk Keyboard

Display

var1

CashDesk Keyboard

Display

var2

CardReader

CashDesk Scanner

Display

var3

CardReader

1

0..1

Multiple software artefacts such as class
diagrams can sometimes be related and

have common parts. In the following, let us
refer to the set of artefacts as a family and

members of this family as variants.

This is a family of cash desk
systems. It consisting of three

variants with some commonalities.

CashDesk Keyboard

Display

var1

CashDesk Keyboard

Display

var2

CardReader

CashDesk Scanner

Display

var3

CardReader

1

0..1

every variant is enclosed in a
curved rectangle with a bold

stroke and is named varX
where X is a number.

Multiple software artefacts such as class
diagrams can sometimes be related and

have common parts. In the following, let us
refer to the set of artefacts as a family and

members of this family as variants.

This is a family of cash desk
systems. It consisting of three

variants with some commonalities.

CashDesk Keyboard

Display

var1

CashDesk Keyboard

Display

var2

CardReader

CashDesk Scanner

Display

var3

CardReader

1

0..1

we omit all reference labels and multiplicities
where they are not absolutely necessary

(they are simply “unspecified”)

every variant is enclosed in a
curved rectangle with a bold

stroke and is named varX
where X is a number.

Multiple software artefacts such as class
diagrams can sometimes be related and

have common parts. In the following, let us
refer to the set of artefacts as a family and

members of this family as variants.

This is a family of cash desk
systems. It consisting of three

variants with some commonalities.

CashDesk Keyboard

Display

var1

CashDesk Keyboard

Display

var2

CardReader

CashDesk Scanner

Display

var3

CardReader

1

0..1

we omit all reference labels and multiplicities
where they are not absolutely necessary

(they are simply “unspecified”)

this multiplicity is a variation
point so is explicitly specified

every variant is enclosed in a
curved rectangle with a bold

stroke and is named varX
where X is a number.

Multiple software artefacts such as class
diagrams can sometimes be related and

have common parts. In the following, let us
refer to the set of artefacts as a family and

members of this family as variants.

This is a family of cash desk
systems. It consisting of three

variants with some commonalities.

CashDesk Keyboard

Display

var1

CashDesk Keyboard

Display

var2

CardReader

CashDesk Scanner

Display

var3

CardReader

1

0..1

we omit all reference labels and multiplicities
where they are not absolutely necessary

(they are simply “unspecified”)

this multiplicity is a variation
point so is explicitly specified

every variant is enclosed in a
curved rectangle with a bold

stroke and is named varX
where X is a number.

in the following, let us refer to
both classes and references in

a class diagram as elements

Multiple software artefacts such as class
diagrams can sometimes be related and

have common parts. In the following, let us
refer to the set of artefacts as a family and

members of this family as variants.

There exist different reuse mechanisms
that support working with families of

software artefacts.

enumerative mechanisms show a
complete list of all variants in the family

There exist different reuse mechanisms
that support working with families of

software artefacts.

compositional mechanisms split the
artefacts into smaller building blocks that

can later be “composed” in some way and
reused to produce all variants of a family
(instead of enumerating them explicitly)

enumerative mechanisms show a
complete list of all variants in the family

There exist different reuse mechanisms
that support working with families of

software artefacts.

compositional mechanisms split the
artefacts into smaller building blocks that

can later be “composed” in some way and
reused to produce all variants of a family
(instead of enumerating them explicitly)

annotative mechanisms
combine all artefacts into a

single artefact with annotations
that indicate which individual
products contain which parts

enumerative mechanisms show a
complete list of all variants in the family

There exist different reuse mechanisms
that support working with families of

software artefacts.

CashDesk Keyboard

Display

var1

CashDesk Keyboard

Display

var2

CardReader

CashDesk Scanner

Display

var3

CardReader

1

0..1

An enumerative mechanism illustrates the family
by simply enumerating all variants as depicted here.

CashDesk Keyboard

Display

var1

CashDesk Keyboard

Display

var2

CardReader

CashDesk Scanner

Display

var3

CardReader

1

0..1

CashDesk Scanner

Display
CardReader0..1

Keyboard

«var3» «var3»

«var1,var2»
«var1,var2»

«var2,var3»

«var2,var3» 1

«var3»

«var2»

An annotative mechanism
allows combining all variants
into a single representation
with suitable annotations.

CashDesk Scanner

Display
CardReader0..1

Keyboard

«var3» «var3»

«var1,var2»
«var1,var2»

«var2,var3»

«var2,var3» 1

«var3»

«var2»

An annotative mechanism
allows combining all variants
into a single representation
with suitable annotations.

CashDesk Scanner

Display
CardReader0..1

Keyboard

«var3» «var3»

«var1,var2»
«var1,var2»

«var2,var3»

«var2,var3» 1

«var3»

«var2»

a single annotated class
diagram is used to represent

the whole family

An annotative mechanism
allows combining all variants
into a single representation
with suitable annotations.

CashDesk Scanner

Display
CardReader0..1

Keyboard

«var3» «var3»

«var1,var2»
«var1,var2»

«var2,var3»

«var2,var3» 1

«var3»

«var2»

a single annotated class
diagram is used to represent

the whole family

an annotation is used to mark parts of the
annotated class diagram that should only be

included in a subset of all variants

An annotative mechanism
allows combining all variants
into a single representation
with suitable annotations.

CashDesk Scanner

Display
CardReader0..1

Keyboard

«var3» «var3»

«var1,var2»
«var1,var2»

«var2,var3»

«var2,var3» 1

«var3»

«var2»

a single annotated class
diagram is used to represent

the whole family

an annotation is used to mark parts of the
annotated class diagram that should only be

included in a subset of all variants

colours provide additional visual support:
• elements with a black outline belong to all variants
• elements with a gray outline belong to two or more

variants, but not to all variants
• elements with a coloured outline belong to

precisely one variant

An annotative mechanism
allows combining all variants
into a single representation
with suitable annotations.

CashDesk Scanner

Display
CardReader0..1

Keyboard

«var3» «var3»

«var1,var2»
«var1,var2»

«var2,var3»

«var2,var3» 1

«var3»

«var2» variants of the family are generated by:
selecting one of the variants (e.g., var1), and

removing all parts that are annotated only with the
other variants (e.g., if we select var1, we would

remove all parts annotated with var2 and/or var3)

a single annotated class
diagram is used to represent

the whole family

an annotation is used to mark parts of the
annotated class diagram that should only be

included in a subset of all variants

colours provide additional visual support:
• elements with a black outline belong to all variants
• elements with a gray outline belong to two or more

variants, but not to all variants
• elements with a coloured outline belong to

precisely one variant

An annotative mechanism
allows combining all variants
into a single representation
with suitable annotations.

CashDesk Scanner

Display
CardReader0..1

Keyboard

«var3» «var3»

«var1,var2»
«var1,var2»

«var2,var3»

«var2,var3» 1

«var3»

«var2» variants of the family are generated by:
selecting one of the variants (e.g., var1), and

removing all parts that are annotated only with the
other variants (e.g., if we select var1, we would

remove all parts annotated with var2 and/or var3)

a single annotated class
diagram is used to represent

the whole family

an annotation is used to mark parts of the
annotated class diagram that should only be

included in a subset of all variants

for example, when we select var1, the classes
Scanner and CardReader, and their incoming

associations will be removed, giving us a smaller
class diagram (the variant var1).

colours provide additional visual support:
• elements with a black outline belong to all variants
• elements with a gray outline belong to two or more

variants, but not to all variants
• elements with a coloured outline belong to

precisely one variant

An annotative mechanism
allows combining all variants
into a single representation
with suitable annotations.

CashDesk Scanner

Display
CardReader0..1

Keyboard

«var3» «var3»

«var1,var2»
«var1,var2»

«var2,var3»

«var2,var3» 1

«var3»

«var2»

for example, when we select var1, the classes
Scanner and CardReader, and their incoming

associations will be removed, giving us a smaller
class diagram (the variant var1).

CashDesk

Display

Keyboard
«var1,var2»

«var1,var2»

var1

CashDesk Keyboard

var1

CashDesk CardReader

CashDesk Scanner

var3

0..1

CashDesk

Display

CashDesk CardReader

var2

1

CashDesk Keyboard

var1

CashDesk CardReader

CashDesk Scanner

var3

0..1

CashDesk

Display

CashDesk CardReader

var2

1

A compositional mechanism allows the
artefacts to be split into reusable

fragments that can be composed flexibly.

CashDesk Keyboard

var1

CashDesk CardReader

CashDesk Scanner

var3

0..1

CashDesk

Display

CashDesk CardReader

var2

1

A compositional mechanism allows the
artefacts to be split into reusable

fragments that can be composed flexibly.

the commonalities of class diagrams
var1 and var3 can be represented as

a “super” class diagram

CashDesk Keyboard

var1

CashDesk CardReader

CashDesk Scanner

var3

0..1

CashDesk

Display

CashDesk CardReader

var2

1

A compositional mechanism allows the
artefacts to be split into reusable

fragments that can be composed flexibly.

the commonalities of class diagrams
var1 and var3 can be represented as

a “super” class diagram

in this case, this also happens to be
one of the variants of the family

CashDesk Keyboard

var1

CashDesk CardReader

CashDesk Scanner

var3

0..1

CashDesk

Display

CashDesk CardReader

var2

1

A compositional mechanism allows the
artefacts to be split into reusable

fragments that can be composed flexibly.

a “sub” class diagram can now
refine the super class diagram and in

this way avoid repeating parts that
remain unchanged

the commonalities of class diagrams
var1 and var3 can be represented as

a “super” class diagram

in this case, this also happens to be
one of the variants of the family

CashDesk Keyboard

var1

CashDesk CardReader

CashDesk Scanner

var3

0..1

CashDesk

Display

CashDesk CardReader

var2

1

A compositional mechanism allows the
artefacts to be split into reusable

fragments that can be composed flexibly.

a “sub” class diagram can now
refine the super class diagram and in

this way avoid repeating parts that
remain unchanged

this refinement relationship is
denoted by the inheritance arrow

the commonalities of class diagrams
var1 and var3 can be represented as

a “super” class diagram

in this case, this also happens to be
one of the variants of the family

CashDesk Keyboard

var1

CashDesk CardReader

CashDesk Scanner

var3

0..1

CashDesk

Display

CashDesk CardReader

var2

1

A compositional mechanism allows the
artefacts to be split into reusable

fragments that can be composed flexibly.

a “sub” class diagram can now
refine the super class diagram and in

this way avoid repeating parts that
remain unchanged

this refinement relationship is
denoted by the inheritance arrow

the commonalities of class diagrams
var1 and var3 can be represented as

a “super” class diagram

in this case, this also happens to be
one of the variants of the family

class diagrams that are “abstract” in
the sense that they do not themselves
represent variants in the family, have a

dashed outline

CashDesk Keyboard

var1

CashDesk CardReader

CashDesk Scanner

var3

0..1

CashDesk

Display

CashDesk CardReader

var2

1

CashDesk Keyboard

var1

CashDesk CardReader

CashDesk Scanner

var3

0..1

CashDesk

Display

CashDesk CardReader

var2

1
“multi-refinement” is

possible (here two parents)

CashDesk Keyboard

var1

CashDesk CardReader

CashDesk Scanner

var3

0..1

CashDesk

Display

CashDesk CardReader

var2

1
“multi-refinement” is

possible (here two parents)

deep nesting of refinements
(here two levels) is also possible

CashDesk Keyboard

var1

CashDesk CardReader

CashDesk Scanner

var3

0..1

CashDesk

Display

CashDesk CardReader

var2

1

multiplicities can be overridden
in sub class diagrams

“multi-refinement” is
possible (here two parents)

deep nesting of refinements
(here two levels) is also possible

CashDesk Keyboard

var1

CashDesk CardReader

CashDesk Scanner

var3

0..1

CashDesk

Display

CashDesk CardReader

var2

1

multiplicities can be overridden
in sub class diagrams

“multi-refinement” is
possible (here two parents)

deep nesting of refinements
(here two levels) is also possible

Let’s now see how to derive “flat” variants
from such a refinement hierarchy.

CashDesk Keyboard

var1

CashDesk CardReader

CashDesk Scanner

var3

0..1

CashDesk

Display

CashDesk CardReader

var2

1

CashDesk Keyboard

var1

CashDesk CardReader

CashDesk Scanner

var3

0..1

CashDesk

Display

CashDesk CardReader

var2

1

var2 is most interesting as it
features both nested refinements

and multi-refinement

CashDesk CardReader

var2

1

CashDesk Keyboard

var1

CashDesk

Display

CashDesk CardReader
0..1

CashDesk CardReader

var2

1

CashDesk Keyboard

var1

CashDesk

Display

CashDesk CardReader
0..1

Step 1 (Union): Compute all transitive parents of the
variant to be flattened and build a union of all these class

diagrams together with the variant itself (here var2)

CashDesk CardReader

var2

1

CashDesk Keyboard

var1

CashDesk

Display

CashDesk CardReader
0..1

Step 1 (Union): Compute all transitive parents of the
variant to be flattened and build a union of all these class

diagrams together with the variant itself (here var2)

CashDesk CardReader

var2

1

CashDesk Keyboard

var1

CashDesk

Display

CashDesk CardReader
0..1

Step 1 (Union): Compute all transitive parents of the
variant to be flattened and build a union of all these class

diagrams together with the variant itself (here var2)

CashDesk Keyboard CashDesk CardReader
0..1

CashDesk

Display

CashDesk CardReader
1

var2

CashDesk CardReader

var2

1

CashDesk Keyboard

var1

CashDesk

Display

CashDesk CardReader
0..1

Step 1 (Union): Compute all transitive parents of the
variant to be flattened and build a union of all these class

diagrams together with the variant itself (here var2)

CashDesk Keyboard CashDesk CardReader
0..1

CashDesk

Display

CashDesk CardReader
1

var2

Step 2 (Flatten): Form a flat
class diagram from all elements

CashDesk Keyboard CashDesk CardReader
0..1

CashDesk

Display

CashDesk CardReader
1

var2

Step 2 (Flatten): Form a flat
class diagram from all elements

CashDesk Keyboard CashDesk CardReader
0..1

CashDesk

Display

CashDesk CardReader
1

var2

Step 2 (Flatten): Form a flat
class diagram from all elements

CashDesk Keyboard CashDesk CardReader
0..1

CashDesk

Display

CashDesk CardReader
1

var2

Step 2 (Flatten): Form a flat
class diagram from all elements

var2

CashDeskKeyboard CashDesk CardReader

0..1

CashDesk

Display

CashDesk CardReader
1

CashDesk Keyboard CashDesk CardReader
0..1

CashDesk

Display

CashDesk CardReader
1

var2

Step 2 (Flatten): Form a flat
class diagram from all elements

var2

CashDeskKeyboard CashDesk CardReader

0..1

CashDesk

Display

CashDesk CardReader
1

Step 3 (Merge): Merge all elements
with the same name together

var2

CashDeskKeyboard CashDesk CardReader

0..1

CashDesk

Display

CashDesk CardReader
1

Step 3 (Merge): Merge all elements
with the same name together

var2

CashDeskKeyboard CashDesk CardReader

0..1

CashDesk

Display

CashDesk CardReader
1

Step 3 (Merge): Merge all elements
with the same name together

var2

CashDeskKeyboard CashDesk CardReader

0..1

CashDesk

Display

CashDesk CardReader
1

Step 3 (Merge): Merge all elements
with the same name together

var2

CashDeskKeyboard CashDesk CardReaderCashDesk

Display

CashDesk CardReader
1

var2

CashDeskKeyboard CashDesk CardReader

0..1

CashDesk

Display

CashDesk CardReader
1

Step 3 (Merge): Merge all elements
with the same name together

var2

CashDeskKeyboard CashDesk CardReaderCashDesk

Display

CashDesk CardReader
1

Step 4 (Resolve): Resolve any conflicts
(subtypes win, multiplicities lower down

in the refinement hierarchy win)

CashDesk Keyboard

var1

CashDesk CardReader

CashDesk Scanner

var3

CashDesk

Display

var2

CashDesk Keyboard

var1

CashDesk CardReader

CashDesk Scanner

var3

CashDesk

Display

var2

assuming we didn’t care about
the multiplicity here…

CashDesk Keyboard

var1

CashDesk CardReader

CashDesk Scanner

var3

CashDesk

Display

var2

assuming we didn’t care about
the multiplicity here…

var2 would be an empty class
diagram (don’t be irritated:
exactly the same flattening

rules apply!)

