
A brief overview of 
reuse mechanisms



CashDesk Keyboard

Display

var1

CashDesk Keyboard

Display

var2

CardReader

CashDesk Scanner

Display

var3

CardReader

1

0..1



CashDesk Keyboard

Display

var1

CashDesk Keyboard

Display

var2

CardReader

CashDesk Scanner

Display

var3

CardReader

1

0..1

Multiple software artefacts such as class 
diagrams can sometimes be related and 

have common parts.  In the following, let us 
refer to the set of artefacts as a family and 

members of this family as variants.
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systems.  It consisting of three 

variants with some commonalities.
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curved rectangle with a bold 

stroke and is named varX 
where X is a number.
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in the following, let us refer to 
both classes and references in 

a class diagram as elements

Multiple software artefacts such as class 
diagrams can sometimes be related and 

have common parts.  In the following, let us 
refer to the set of artefacts as a family and 

members of this family as variants.
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artefacts into smaller building blocks that 

can later be “composed” in some way and 
reused to produce all variants of a family 
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There exist different reuse mechanisms 
that support working with families of 

software artefacts.
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An enumerative mechanism illustrates the family 
by simply enumerating all variants as depicted here.
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An annotative mechanism 
allows combining all variants 
into a single representation 
with suitable annotations. 
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An annotative mechanism 
allows combining all variants 
into a single representation 
with suitable annotations. 
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artefacts to be split into reusable 

fragments that can be composed flexibly.  
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artefacts to be split into reusable 

fragments that can be composed flexibly.  

a “sub” class diagram can now 
refine the super class diagram and in 

this way avoid repeating parts that 
remain unchanged

this refinement relationship is 
denoted by the inheritance arrow

the commonalities of class diagrams 
var1 and var3 can be represented as 

a “super” class diagram 

in this case, this also happens to be 
one of the variants of the family

class diagrams that are “abstract” in 
the sense that they do not themselves 
represent variants in the family, have a 

dashed outline
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in sub class diagrams
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possible (here two parents)

deep nesting of refinements 
(here two levels) is also possible 

Let’s now see how to derive “flat” variants 
from such a refinement hierarchy.
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var2 is most interesting as it 
features both nested refinements 

and multi-refinement
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Step 1 (Union):  Compute all transitive parents of the 
variant to be flattened and build a union of all these class 

diagrams together with the variant itself (here var2)



CashDesk CardReader

var2

1

CashDesk Keyboard

var1

CashDesk

Display

CashDesk CardReader
0..1

Step 1 (Union):  Compute all transitive parents of the 
variant to be flattened and build a union of all these class 

diagrams together with the variant itself (here var2)



CashDesk CardReader

var2

1

CashDesk Keyboard

var1

CashDesk

Display

CashDesk CardReader
0..1

Step 1 (Union):  Compute all transitive parents of the 
variant to be flattened and build a union of all these class 

diagrams together with the variant itself (here var2)

CashDesk Keyboard CashDesk CardReader
0..1

CashDesk

Display

CashDesk CardReader
1

var2



CashDesk CardReader

var2

1

CashDesk Keyboard

var1

CashDesk

Display

CashDesk CardReader
0..1

Step 1 (Union):  Compute all transitive parents of the 
variant to be flattened and build a union of all these class 

diagrams together with the variant itself (here var2)

CashDesk Keyboard CashDesk CardReader
0..1

CashDesk

Display

CashDesk CardReader
1

var2

Step 2 (Flatten):  Form a flat 
class diagram from all elements



CashDesk Keyboard CashDesk CardReader
0..1

CashDesk

Display

CashDesk CardReader
1

var2

Step 2 (Flatten):  Form a flat 
class diagram from all elements



CashDesk Keyboard CashDesk CardReader
0..1

CashDesk

Display

CashDesk CardReader
1

var2

Step 2 (Flatten):  Form a flat 
class diagram from all elements



CashDesk Keyboard CashDesk CardReader
0..1

CashDesk

Display

CashDesk CardReader
1

var2

Step 2 (Flatten):  Form a flat 
class diagram from all elements

var2

CashDeskKeyboard CashDesk CardReader

0..1

CashDesk

Display

CashDesk CardReader
1



CashDesk Keyboard CashDesk CardReader
0..1

CashDesk

Display

CashDesk CardReader
1

var2

Step 2 (Flatten):  Form a flat 
class diagram from all elements

var2

CashDeskKeyboard CashDesk CardReader

0..1

CashDesk

Display

CashDesk CardReader
1

Step 3 (Merge):  Merge all elements 
with the same name together



var2

CashDeskKeyboard CashDesk CardReader

0..1

CashDesk

Display

CashDesk CardReader
1

Step 3 (Merge):  Merge all elements 
with the same name together



var2

CashDeskKeyboard CashDesk CardReader

0..1

CashDesk

Display

CashDesk CardReader
1

Step 3 (Merge):  Merge all elements 
with the same name together



var2

CashDeskKeyboard CashDesk CardReader

0..1

CashDesk

Display

CashDesk CardReader
1

Step 3 (Merge):  Merge all elements 
with the same name together

var2

CashDeskKeyboard CashDesk CardReaderCashDesk

Display

CashDesk CardReader
1



var2

CashDeskKeyboard CashDesk CardReader

0..1

CashDesk

Display

CashDesk CardReader
1

Step 3 (Merge):  Merge all elements 
with the same name together

var2

CashDeskKeyboard CashDesk CardReaderCashDesk

Display

CashDesk CardReader
1

Step 4 (Resolve):  Resolve any conflicts 
(subtypes win, multiplicities lower down 

in the refinement hierarchy win) 
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var2 would be an empty class 
diagram (don’t be irritated: 
exactly the same flattening 

rules apply!)


