The Prodigious Hydrogen Bonds with Sulfur and Selenium in Molecular Assemblies, Structural Biology and Functional Materials

Apramita Chand^{1,2}, Dipak Kumar Sahoo^{1,2}, Abhijit Rana^{1,2}, Subhrakant Jena^{1,2}, and Himansu S. Biswal^{1,2}*

¹School of Chemical Sciences, National Institute of Science Education and Research (NISER), PO- Bhimpur-Padanpur, Via-Jatni, District- Khurda, PIN - 752050, Bhubaneswar, India

²Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India

* Corresponding Author's E-mail: <u>himansu@niser.ac.in</u>, Phone No: - +91-674-2494

The rise of S/SeCHBs: Milestones and Methods

Figure S1: Schematic timeline of evolution of significant events relating to sulfur/selenium centered H-bonds (S/SeCHBs)¹⁻⁶⁷, ranging from explorations on the unique nature and occurrence of these H-bonds^{3,21–26,68–71} to their applicability in engineered natural systems as well as materials.(see main text for references)

The significant milestones enunciated above have been achieved through an arsenal of techniques perfected over the years by the researchers working in this arena. It is interesting to have an idea of the methods and the model complexes that were employed to answer the *critica quaestiones* pertaining to the nature of various kinds of S/SeCHBs, as detailed in Fig S2 and Table S1.

Figure S2: Graphical Representation of the communion of various methodologies adopted for detection and prediction of H-bonds with sulfur and selenium: (A) Gas phase resonant ion-dip infrared (RIDIR) spectra of N-phenylacetamide (NPAA) and pyridone (2PY) and their complexes with dimethyl sulphide (DMS) and dimethylselenide (DMSe) to probe N-H···S and N-H···Se Hbond, respectively. Reproduced with permission from ref.⁵⁶ Copyright (2017) American Chemical Society. (B) Benzene- $(H_2S)_n$ clusters subjected to electronic (resonant two-photon ionization combined with mass spectrometry) and ionization depletion IR spectra for probing S-H··· π interactions. Reproduced with permission from ref.⁷² Copyright (2019) American Chemical Society., (C) Fourier Transform Microwave spectroscopy of H_2S dimer and several isotopomers for evidence of S-H···S hydrogen bonds by study of Ka = 1 transitions. Reproduced with permission from ref.⁵⁹, Copyright (2018) Wiley Publishers., (D) High-Resolution Zero Kinetic-Energy *Photoelectron-Spectroscopy (ZEKE-PE) spectra of p-chlorophenol-H₂S complex for determination* of O-H···S H-bond dissociation energy. Adapted with permission from ref.⁷⁰ Copyright (2015) American Chemical Society. (E) Gibbs Energy determination at room level for -O-H•••O/S/Se Hbond formation in alcohol-dimethylselenide complex - The figure shows pressure of the complex versus the product of the donor and acceptor pressures, for complexes with TFE donor. Reproduced with permission from ref.⁶² Copyright (2019) American Chemical Society. (F) Thioamide-N-H. H-bonds in solution investigated through concentration dependent NMR spectroscopy. Reproduced with permission from ref.⁵⁷ Copyright (2017) American Chemical Society., (G) Electron density topology analysis through plot of reduced density gradient against

the sign of the second eigenvalue of the electron-density Hessian matrix for the $Fe(CO)_4H_2$...DMS dimer to study Fe-H. S H-bond. Reproduced with permission from ref.⁷³ Copyright (2019) American Chemical Society. (H) N-H···S H-bonds in NMFA-DMS complexes as revealed by colored isosurfaces of the reduced electron density gradient (3D-NCI-plot), following the NCI-plot topological analysis of the electron density at the MP2/aug-cc-pVDZ. Reproduced with permission from ref.⁵¹ Copyright (2015) American Chemical Society. (I) Electrostatic potential plot drawn at an isosurface of 0.074 a.u. for S-H···S H-bond in 2-mercaptobenzoic acid and its (J) 2D deformation density and Laplacian plot of the interaction region. Reproduced with permission from ref.⁷⁴ Copyright (2017) International Union of Crystallography. (K) The plots of donoracceptor interacting natural bond orbitals (NBO) i.e. overlap of p-type sulfur/oxygen/nitrogen lone pair and N-H σ^* for the amide-N-H···S=C H-bond complex of 6-thioguanosine monophosphate (6thio-GMP) and NUDT15 (PDB-5LPG). Reproduced with permission from ref.⁵⁷ Copyright (2017) American Chemical Society. (L) Contribution of different components of interaction energy (Electrostatics, polarisation, dispersion, repulsion) in various complexes of indole conformers, as obtained from SAPT analysis. Adapted with permission from ref.⁷⁵ Copyright (2017) Royal Society of Chemistry.

Probing the Nature and Strength of S/SeCHBs

It has been established that the strength of conventional hydrogen bonds (with nitrogen/oxygen as donor and acceptor) varies between 4-15 kcal/mol (16.74 kJ/mol-62.76 kJ/mol). These depend on the type of model systems studied. From various studies^{17,18,23,24,51,56,57,73,76-78}, it has been proved that the strength of S/SeCHBs and conventional H-bonds in similar systems are comparable.

Table S1: Model Systems and Methodologies

(The absolute values of various energies (corrected for BSSE and/or ZPE, wherever applicable) have been indicated within parenthesis. The given range of values are considered from calculations from different levels of theory/conformations/environment/intra or inter-H-bonding modes. Wherever possible, the corrected energy values (e.g BSSE, ZPE) have been given)

Interaction	Systems Studied	Methods		
N-H···S	Dimethylamine-dimethylsulfide ⁴⁷ , (3-	FTIRS, AIM, NBO, EDA, R2PI,		
	methyl)Indole-Me ₂ S ²³ (18.11-19.08	FDIRS, NBO, Normal Coordinate		
	kJ/mol), N-methylformamide (NMFA)/N-	Analysis		

	phenylacetamide (NPAA)- Me ₂ S ⁵¹ (30-40			
	kJ/mol) Zinc enzyme model complex ³³			
O-H···S	<i>para</i> -cresol·Me ₂ S/MeSH/EtSh ⁷⁷ (17.07-	R2PI, FDIRS, AIM, EDA (KR, NVS,		
	19.66 kJ/mol), thiomalondialdehyde and	NEDA), NBO, Ab-initio, Gas phase		
	thioacetylacetone derivatives ⁷⁹ (40.0-42.1	FTIR		
	kJ/mol), Alcohol-ethylene sulphide			
	complex ⁸⁰ (20.2-27.2 kJ/mol)			
C-H···S	Complexes of 1,2,4,5-tetracyanobenzene	LIF, FDIR spectroscopy, Ab-initio		
	with various sulfur containing solvents ⁸¹			
	(5.73-27.82 kJ/mol)			
	$CH_4/C_2H_4/C_2H_2\cdots SH_2^{82}$	Ab-initio, DFT, AIM		
	2,3-thienyl- and phenyl- or 2,3-dithienyl-			
	substituted propenoic acid aggregates ⁸³	IR spectroscopy, Ab-initio		
	(9.6-9.8 kJ/mol)			
S-H···O	H_2S -MeOH dimer ²¹ (6.65-14.06 kJ/mol),	Ab-initio, vibrational energy analysis		
	H_2S -Et ₂ O/Bu ₂ O/1,4-dioxane complex ⁷¹ (0.5	IR Predissociation and VUV		
	kJ/mol -17.70 kJ/mol),	spectroscopy Microwave		
	thiomalondialdehyde and	spectroscopy, AIM, NBO		
	thioacetylacetone derivatives ⁷⁹ (20.3-25.4			
	kJ/mol)			
	3-mercaptopropionic acid ²⁶			
S-H···N	Thiolimin tautomers of thioaminoacrolein ⁴²	High-level ab-initio, NBO, AIM		
	(16.08 kJ/mol-27.19 kJ/mol),			
	H ₂ S: ammonia/aliphatic amines			
	complex ⁴³ (7.37-15.72 kJ/mol)			
S-H···S	Ethane-1,2-dithiol ⁸⁴ ,	Electron Diffraction,		
	2 and 3-mercaptobenzoic acid ⁷⁴ (9.1, 6.9	X-ray diffraction, Multipole		
	kJ/mol)	modelling, DFT		
	Substituted (Z)-N-(Thionitrosomethylene)-	DFT, NBO, AIM		
	thiohydroxylamine Systems (23.64 kJ/mol-			
	31.35 kJ/mol)			
	$C_2H_4\cdots H_2S$ and $C_6H_5CCH\cdots H_2S^{45,85}$	Microwave spectroscopy		
S-H… π	[Benzene]-H ₂ S clusters ⁷²	IR, Electronic Spectroscopy		

	Indole/3-methyl-indole- H ₂ S ⁷⁶ (20.46	FDIRS, R2PI, EDA		
	kJ/mol-21.63 kJ/mol)			
	Cysteine SH-aromatic interactions (8.34-	PDB analysis, Ab-initio calculations		
	15.5 ⁸⁶)			
N-H…Se	Amine adducts of chiral selones ³⁰ , 2-	¹ H- ⁷⁷ Se HMQC NMR, IR/UV double		
	pyridone/NPAA/NMFA- Me ₂ Se complex ⁵⁶	resonance spectroscopy, NBO, NCI		
	(29.5-50.4 kJ/mol)			
O-H…Se	p-substituted phenol-SeH ₂ complexes ^{52,87}	NBO, NRT, QTAIM, DFT		
	(4-15 kJ/mol (neutral), 32-57 kJ/mol	(B3LYP/6-311+G*), NICS, PDI,		
	(charged)) peri-substituted naphthalenes ⁸⁸ ,	ATI, FTIR Spectroscopy		
	selenosalicylaldehyde ⁸⁹ , Hydrated 6-			
	selenoguanine tautomers ⁴⁸ (28.62-47.28			
	kJ/mol) Alcohol-dimethylselenide			
	complex ⁶² , 2-(Methylseleno)ethanol ³⁵			
C-H···Se	Q_3 CH···SeH ₂ complex (Q =Cl, F, H) ⁶⁰	NBO, AIM, Normal Mode analysis,		
	(3.97-10.58 kJ/mol), Aldols of chiral N-	¹ H- ⁷⁷ Se HMQC NMR and XRD,		
	acyl selones ³⁴ Diselenocin ¹⁵	Solid Phase IR, ¹ H NMR		
Se-H…N	p-substituted pyridine-SeH ₂	NBO, NRT, AIM		
	complexes ⁶³ (10-15 kJ/mol), 3-imino-			
	propeneselenol ⁴⁶ (39.35- 41.03 kJ/mol)			
Se-H…O	Selenoacetic acid ⁹⁰ , Tautomer of hydrated	FTIR, Raman, UV spectra, ¹ H- ⁷⁷ Se		
	6-selenoguanine ⁴⁸ (29.20-32.17 kJ/mol), 2-	NMR, Ab-initio, vibrational energy		
	selenoformyl-3-thioxo-propionaldehyde91	analysis, AIM, NBO		
	(5.71-11.77 kJ/mol)			
S-H···Se	Selenal tautomer of 3-mercapto	TD-DFT, AIM, NBO		
	propeneselenal ⁹² (31.45-46.37 kJ/mol)			
Se-H…S	Thial tautomer of 3-mercapto			
	propeneselenal ⁹² (31.69-45.87 kJ/mol)			
Se-H…Se	Selenophenol ⁵³ (3.2 kJ/mol)			

(FDIRS- fluorescence dip infrared spectroscopy, FTIR- Fourier Transform IR spectroscopy,

R2PI - resonant two-photon ionization, LIF-Laser Induced Fluorescence, DFT- Density

Functional Analysis, AIM – Atoms-in-molecules theoretical calculations, NBO-Natural Bond Orbital Analysis, EDA- Energy Decomposition Analysis, NICS- Nucleus Independent Chemical Shifts, PDI- para delocalization index, NRT- Natural Resonance Theory)

Drug-Biomolecule Interactions

Table S2 : Interactions between approved sulfur-containing drugs with biomolecules

PDB ID	Drug	Biomolecule	Donor ··· Acceptor
1I2W	Cefoxitin	Beta-Lactamase from Bacillus	CB _{ALA} ··· S1 _{1Q1} (Chain A, B)
		Licheniformis BS3	
1IYP	Cephalothin	Toho-1 Beta-Lactamase	CB _{PRO} Chain A
			S19 _{CEP}
			CB _{ASN} ··· S19 _{CEP}
2C5W	Cefotaxime	Penicillin-Binding Protein 1A(PBP-	CB _{TRP} ··· S1 _{CEF} (Chain A)
		1A) (Acyl-Enzyme Complex) from	
		Streptococcus Pneumoniae	
3VSL		Penicillin-Binding Protein 3 (PBP3)	CD _{PRO} S2 _{CEF} (Chain A)
		from Methicillin-resistant	
		Staphylococcus aureus (MRSA)	
2ZQA		beta-lacta Toho-1	CB _{PRO} Chain A
		E166A/R274N/R276N triple mutant	S2 _{CEF}
5NZY		(E-coli)	CB _{ASN} S _{SO4}
5ZQD		DNA cross-link repair protein 1A	CG _{PRO} ··· S1 _{CE3} (Chain A)
		Penicillin-Binding Protein D2 from	CE2 _{PHE} ···· S2 _{CEF}
		Listeria monocytogenes	(Chain A, B, C, E, G)
3Q1F	Piperacillin	CTX-M-9 S70G	CB _{LEU} ··· SAI _{YPP} (Chain B)
		TP domain from Chlamydia	
6I1G		trachomatis Penicillin-Binding	CB _{ASP} S _{JPP} (Chain A)
		Protein 3	

4DKI	Ceftobiprole	PBP2A from Methicillin-resistant	CB _{GLN} ··· SBE _{RB6} (Chain B)
		Staphylococcus aureus (MRSA)	
5TX9		S. aureus penicillin binding protein 4	CB _{SER} SAS _{RB6} (Chain A &
		(PBP4) mutant (E183A, F241R)	B)
5TXI		wild-type S. aureus penicillin binding	
		protein 4 (PBP4)	CB _{SER} ··· SAS _{RB6} (Chain A &
6G88		Enterococcus Faecium D63r	B)
		Penicillin-Binding protein 5	
		(PBP5fm)	CG _{GLN} ··· SBE _{RB6} (Chain A, B
			& C)
			CE2 _{TYR} ··· SBE _{RB6} (Chain B)
4JF4	Meropenem	OXA-23 β-lactamase	CB _{SER} ··· S14 _{MER} (Chain A &
4N91		β-lactamase PenP_E166S	B)
			CB _{ALA} ··· SAK _{DWZ} (Chain B)
4ML1	Oxacillin	Class D β-lactamase OXA-1 K70D	CZ2 _{TRP} ··· SAR _{1S6} (Chain D)
4R1G	Cloxacillin	peptidoglycan glycosyltransferase	CB _{TYR} S1 _{CFU} (Chain A & B)
		from Atopobium parvulum	
4RA7	Nafcillin	peptidoglycan glycosyltransferase	CB _{TYR} ···· S1 _{NXU}
		from Atopobium parvulum	
5TY2		S. aureus penicillin binding protein 4	CB _{SER} ···· SAS _{NFF}
		(PBP4) mutant (E183A, F241R)	
5CGX	Cefoxitin	Fox-4 cephamycinase mutant Y150F	CE2 _{PHE} ··· S1 _{1S7} Chain A
6PT5		Class D Beta-lactamase OXA-48	CZ2 _{TRP} S1 _{1S7}
5TB8,	Lamivudine	Human DNA Polymerase Beta	CA _{PHE} ···· S3' _{1RZ} (Chain A)
5TBC	(Triphosphate)		
6G3V	Famotidine	Human carbonic anhydrase I	CE1 _{HIS} ··· S _{F09} (Chain B)
6I1F	Amoxicillin	TP domain from Chlamydia	CB _{ASP} S4 _{AXL} (Chain A & B)
		trachomatis Penicillin-Binding	
		Protein 3	
6MKF	Imipenem	penicillin binding protein 5 (PBP5)	CG _{GLU} S _{SO4} (Chain A)
		from Enterococcus faecium	
6P54	Ceftriaxone	transpeptidase domain of PBP2 from	CA _{GLY} S2 _{CEF} (Chain B)
		Neisseria gonorrhoeae	

6UN1	Temocillin	Pseudomonas aeruginosa PBP3	CE2 _{TYR} ··· S1 _{TJ7} (Chain A)
4ACS	Azathioprine	Glutathione transferase (GST) A2-2	SG2 _{GSH} ··· O(H) _{TYR}

More examples of S/SeCHBs in crystal structures and their applications

Sulfur and selenium centered H-bonds have been exploited in crystal engineering for design of three-dimensional stacked, channel, interpenetrated and tubular architectures.^{31,36,49,54,55,61,64,93} Some examples from the Cambridge Structural Database corresponding to several kinds of S/SeCHBs have been presented in Fig S3. This also includes attractive features like host-guest formations^{16,94}, layered packing features²⁸ and finite chain of cooperative/anti-cooperative H-bonds in co-crystals.³⁷ These can be particularly useful when such assembling of molecular units can be manipulated with an intention of targeting specific functionalities. For example, Thomas et al.⁵³ observed participation of S-H…S and Se-H…Se H-bonds in crystal structure organization (as seen in Fig S3(G) could lead to the formation of intriguing organic alloys of thiophenol and selenophenol. Another study shows the importance of the C-H···S H-bonds in the intersheet stability in crystals of Bis(ethylenedithio)tetrathiafulvalene (BDET-TTF)²⁹; usually employed in the doping of superconducting materials as well as in development of organic light emitting diodes. Several S/SeCHBs are known to confer stability to metal complexes that are not only significant from their synthetic utility but also for optical/thermal properties.⁵⁸ This is illustrated by how complexes of iridium and rhodium with 2-aminoethanethiolate are known to yield dimeric structures bridged by triple S-H···S H-bonds. One of these H-bonds is converted to a covalent S-S disulphide bond on controlled oxidation, a feature that is being actively explored for creation of such coordination spheres in future.⁶⁵ It was also reported in a resonance Raman spectroscopic study of a synthesized dioxomolybdenum(VI) complex that the Mo^{VI}=O bond with the oxo groups could be stabilised by the *trans* effect of the two N-H…S H-bonded thiolate ligands.⁹⁵As seen in thiolate complexes, nickel complexes with xanthate ions or ligands, like the complex (Et₄N)[N-(carbamoylmethyl)ethylxanthate)], often exhibit the presence of N-H···S as well as C-H···S H-bonds. This trait of sulfur in xanthates to act as H-bond acceptor, can be exploited to induce formation of its metal complexes.³⁹ Another excellent example of the usage of a combined N-H…S and C-H…S H-bonded interaction network was noted from a recent study by Ushakov et al.⁹⁶ on layered nanocrystals of MoS₂. The interlinking of the layers through the afore-mentioned H-bonds formed by alkyldiammonium ions was responsible for stability of these sheets.

(A) N-H S	(B) O-H S	(C) S-H S	(D) C-H S
CSD ID: LINJOK	CSD ID: XIYGIY	CSD ID: DAPLAJ	CSD ID : LIRYIV
(E) N-H Se	(F) O-H […] Se	(G) S-H Se/ Se-H S	(H) C-H Se
GGG G			
CSD ID: PHSEAZ11	CSD ID: GABTEJ	CSD ID: JUJNEJ	CSD ID : IPAKIV
(I) S-H […] N	(J) S-H O	(K) Se-H […] O	(L) Se-H […] Se
CSD ID: YIRGEM	CSD ID: RONVAR01	CSD ID: VUTTEK	CSD ID : HUCJUL

*Figure S3: Various types of supramolecular architectures like connected helices, stacked sheets, columns, host-guest structures, zig-zag/wavy ribbons, etc are sustained by different types of S/SeCHBs in crystal structures of (A) 5,5-dimethyldecahydro-3H-1,2,4-benzotriazepine-3-thione*⁹⁷, *(B) 4-nitrobenzoic acid dimethyl sulfoxide solvate*⁶⁶, *(C) 1-(Hydrogen sulfido)-tetra-µH-nido-decaborane*⁴⁴, *(D) bis(2-(1H-Benzimidazol-2-yl)phenyl)disulphide acetone solvate*⁴¹, *(E) 10H-phenoselenazine*⁶⁷, *(F) 2,3-Dimethyl-4-(phenylseleno)phenol*³⁸, *(G) organic alloy of benzenethiol and benzeneselenol*⁵³, *(H) (selanyldicyclohex-1-ene-2,1-diyl)dimethanol*⁹⁸, *(I) Ethyl (E)-3-anilino-2-cyano-3-mercaptoacrylate*⁹⁹, *(J) 2-Hydroxythiobenzoic acid*¹⁰⁰, *(K) 17-Oxapentacyclo[6.6.5.0*^{2,7}.0^{9,14}.0^{15,19}]nonadeca-2,4,6,9,11,13-hexaene-1-selenol¹⁰¹, *(L) trans-bis(2-(1)-methylamino)propyliminomethyl)-4,6-dihydroselenophenolato-N,N',O)-zinc(ii)*¹⁰²

REFERENCES

- Latimer, W. M.; Rodebush, W. H. Polarity and Ionization from the Standpoint of the Lewis Theory of Valence. J. Am. Chem. Soc. 1920, 42, 1419–1433.
- Watson, J. D.; Crick, F. H. Molecular Structure of Nucleic Acids. *Nature* 1953, 171, 737–738.
- (3) Heafield, T. G.; Hopkins, G.; Hunter, L. Hydrogen Bonds Involving the Sulphur Atom.
 Nature 1942, *149*, 218–218.
- Pauling, L.; Corey, R. B.; Branson, H. R. The Structure of Proteins: Two Hydrogen-Bonded Helical Configurations of the Polypeptide Chain. *Proc. Natl. Acad. Sci.* 1951, 37, 205–211.
- Mertes, M. P. Intramolecular Hydrogen Bonding to Sulfur. J. Org. Chem. 1961, 26, 5236–5238.
- Mori, N.; Takahashi, Y.; Tsuzuki, Y. Intramolecular Hydrogen Bonds. Xl. The Intramolecular Hydrogen Bonding Ability of Sulfur. *Bull. Chem. Soc. Jpn.* 1967, 40, 2720–2721.
- Sung, E.-M.; Harmony, M. D. The Microwave Spectrum, Structure, and Dipole Moment of 2-Mercaptoethanol; Evidence for an Intramolecular OH····S Hydrogen Bond. J. Am. Chem. Soc. 1977, 99, 5603–5608.
- (8) Adman, E.; Watenpaugh, K. D.; Jensen, L. H. NH····S Hydrogen Bonds in Peptococcus Aerogenes Ferredoxin, Clostridium Pasteurianum Rubredoxin, and Chromatium High Potential Iron Protein. *Proc. Natl. Acad. Sci.* 1975, 72, 4854–4858.

- (9) Sabin, J. R. Hydrogen Bonds Involving Sulfur. I. Hydrogen Sulfide Dimer. J. Am. Chem. Soc. 1971, 93, 3613–3620.
- (10) Tursi, A. J.; Nixon, E. R. Infrared Spectra of Matrix-Isolated Hydrogen Sulfide in Solid Nitrogen. J. Chem. Phys. 1970, 53, 518–521.
- (11) Saenger, W.; Suck, D. The Relationship between Hydrogen Bonding and Base
 Stacking in Crystalline 4-Thiouridine Derivatives. *Eur. J. Biochem.* 1973, *32*, 473–478.
- Bugg, C. E.; Thewalt, U. Crystal and Molecular Structure of 6-Thioguanine. J. Am. Chem. Soc. 1970, 92, 7441–7445.
- (13) Conde, A.; López-Castro, A.; Marquez, R. The Crystal and Molecular Structure of 2-Formylpyridine Selenosemicarbazone. *Acta Crystallogr. B* 1972, 28, 3464–3469.
- (14) Vogel, G. C.; Drago, R. S. Hydrogen Bonding of Sulfur Donors with Various Phenols.
 J. Am. Chem. Soc. 1970, 92, 5347–5351.
- (15) Iwaoka, M.; Tomoda, S. First Observation of a CH…Se" Hydrogen Bond". J. Am.
 Chem. Soc. 1994, 116, 4463–4464.
- (16) Gopal, R.; Robertson, B. E.; Rutherford, J. S. Adamantane Inclusion Complexes with Thiourea and Selenourea. *Acta Crystallogr. C* 1989, 45, 257–259.
- Biswal, H. S.; Gloaguen, E.; Loquais, Y.; Tardivel, B.; Mons, M. Strength of NH… S
 Hydrogen Bonds in Methionine Residues Revealed by Gas-Phase IR/UV
 Spectroscopy. J. Phys. Chem. Lett. 2012, 3, 755–759.

- (18) Biswal, H. S.; Wategaonkar, S. O- H… O versus O- H… S Hydrogen Bonding. 3. IR-UV Double Resonance Study of Hydrogen Bonded Complexes of p-Cresol with Diethyl Ether and Its Sulfur Analog. J. Phys. Chem. A 2010, 114, 5947–5957.
- (19) Sahoo, D. K.; Mundlapati, V. R.; Gagrai, A. A.; Biswal, H. S. Efficient SO₂ Capture through Multiple Chalcogen Bonds, Sulfur-Centered Hydrogen Bonds and S••• π
 Interactions: A Computational Study. *ChemistrySelect* 2016, *1*, 1688–1694.
- (20) Abdur, R.; Gerlits, O. O.; Gan, J.; Jiang, J.; Salon, J.; Kovalevsky, A. Y.;
 Chumanevich, A. A.; Weber, I. T.; Huang, Z. Novel Complex MAD Phasing and
 RNase H Structural Insights Using Selenium Oligonucleotides. *Acta Crystallogr. D Biol. Crystallogr.* 2014, 70, 354–361.
- (21) Bhattacherjee, A.; Matsuda, Y.; Fujii, A.; Wategaonkar, S. The Intermolecular S-H…
 Y (Y=S, O) Hydrogen Bond in the H₂S Dimer and the H₂S–MeOH Complex. *ChemPhysChem* 2013, 14, 905–914.
- Biswal, H. S.; Wategaonkar, S. OH… X (X= O, S) Hydrogen Bonding in
 Thetrahydrofuran and Tetrahydrothiophene. J. Chem. Phys. 2011, 135, 134306.
- (23) Biswal, H. S.; Wategaonkar, S. Nature of the N- H… S Hydrogen Bond. J. Phys.
 Chem. A 2009, 113, 12763–12773.
- Biswal, H. S.; Chakraborty, S.; Wategaonkar, S. Experimental Evidence of O–H—S
 Hydrogen Bonding in Supersonic Jet. J. Chem. Phys. 2008, 129, 11B613.
- (25) Platts, J. A.; Howard, S. T.; Bracke, B. R. F. Directionality of Hydrogen Bonds to Sulfur and Oxygen. J. Am. Chem. Soc. 1996, 118, 2726–2733.

- (26) Silva, W. G.; van Wijngaarden, J. Sulfur as a Hydrogen Bond Donor in the Gas Phase: Rotational Spectroscopic and Computational Study of 3-Mercaptopropionic Acid. *J. Mol. Spectrosc.* 2019.
- (27) Pauling, L. The Nature of the Chemical Bond and the Structure of Molecules and Crystals; Cornell University Press, 1949.
- (28) Green, D. C.; Eichhorn, B. W.; Bott, S. G. An Unusual Hydrogen Bonding Network in the Layered [Ba₂(OH)₂(H₂O)₁₀][Se₄] Compound. *J. Solid State Chem.* 1995, *120*, 12–16.
- (29) Novoa, J. J.; Rovira, M. C.; Rovira, C.; Veciana, J.; Tarrés, J. C-H... S and S... S: Two Major Forces in Organic Conductors. *Adv. Mater.* 1995, *7*, 233–237.
- (30) Wu, R.; Hernández, G.; Odom, J. D.; Dunlap, R. B.; Silks, L. A. Simple Enantiomeric Excess Determination of Amines Using Chiral Selones: Unusual N–H… Se Bonding Detected by HMQC 1 H/77 Se NMR Spectroscopy. *Chem. Commun.* 1996, *10*, 1125–1126.
- Pedireddi, V. R.; Chatterjee, S.; Ranganathan, A.; Rao, C. N. R. Noncovalent
 Synthesis of Layered and Channel Structures Involving Sulfur-Mediated Hydrogen
 Bonds. J. Am. Chem. Soc. 1997, 119, 10867–10868.
- (32) Okamura, T.; Takamizawa, S.; Ueyama, N.; Nakamura, A. Novel Rubredoxin Model Tetrathiolato Iron (II) and Cobalt (II) Complexes Containing Intramolecular Single and Double NH…S Hydrogen Bonds. *Inorg. Chem.* **1998**, *37*, 18–28.

- (33) Shi, X.-F.; Sun, W.-Y.; Zhang, L.; Li, C.-D. NH–S Hydrogen Bonding in Zinc Enzyme Model Complex with S2N2 Binding Set Studied by Normal Coordinate Analysis of Vibrational Spectra. *Spectrochim. Acta. A. Mol. Biomol. Spectrosc.* 2000, *56*, 603–613.
- (34) Michalczyk, R.; Schmidt, J. G.; Moody, E.; Li, Z.; Wu, R.; Dunlap, R. B.; Odom, J. D.; Silks III, L. A. Unusual C- H… Se= C Interactions in Aldols of Chiral N-Acyl Selones Detected by Gradient-Selected ¹H-⁷⁷Se HMQC NMR Spectroscopy and X-Ray Crystallography. *Angew. Chem. Int. Ed.* 2000, *39*, 3067–3070.
- (35) Harada, T.; Yoshida, H.; Ohno, K.; Matsuura, H.; Zhang, J.; Iwaoka, M.; Tomoda, S. Implications of Intramolecular OH····Se Hydrogen Bonding and CH···O Interaction in the Conformational Stabilization of 2-(Methylseleno)Ethanol Studied by Vibrational Spectroscopy and Density Functional Theory. J. Phys. Chem. A 2001, 105, 4517–4523.
- (36) Lynch, D. E.; McClenaghan, I.; Light, M. E.; Coles, S. J. The Solid-State Packing of Sulfur Substituted 2-Aminopyrimidines and the Occurrence of NH—S Hydrogen-Bonding Associations. *Cryst. Eng.* 2002, *5*, 79–94.
- (37) Vangala, V. R.; Desiraju, G. R.; Jetti, R. K.; Bläser, D.; Boese, R. A 1: 1 Molecular
 Complex of Bis (4-Aminophenyl) Disulfide and 4-Aminothiophenol. *Acta Crystallogr. C* 2002, *58*, o635–o636.
- (38) Oddershede, J.; Henriksen, L.; Larsen, S. Relations between ⁷⁷Se NMR Chemical Shifts of (Phenylseleno)Benzenes and Their Molecular Structures Derived from Nine X-Ray Crystal Structures. *Org. Biomol. Chem.* 2003, *1*, 1053–1060.
- (39) Walters, M. A.; Barad, J.; Sireci, A.; Golen, J. A.; Rheingold, A. L. Xanthate Sulfur as a Hydrogen Bond Acceptor: The Free Xanthate Anion and Ligand Sulfur in Nickel Tris Ethylxanthate. *Inorganica Chim. Acta* 2005, *358*, 633–640.

- (40) Baba, K.; Okamura, T.; Suzuki, C.; Yamamoto, H.; Yamamoto, T.; Ohama, M.; Ueyama, N. O-Atom-Transfer Oxidation of [Molybdenum (IV) Oxo {3, 6- (Acylamino) 2-1, 2-Benzenedithiolato₂]²⁻ Promoted by Intramolecular NH···· S Hydrogen Bonds. *Inorg. Chem.* 2006, 45, 894–901.
- (41) Esparza-Ruiz, A.; Peña-Hueso, A.; Hernández-Díaz, J.; Flores-Parra, A.; Contreras, R.
 Effect of Weak Sulfur Interactions and Hydrogen Bonds in the Folded or Unfolded
 Conformation of Bis[2-(1H-Benzimidazol-2-Yl)Phenyl]Disulfide Derivatives. *Cryst. Growth Des.* 2007, 7, 2031–2040.
- (42) Nowroozi, A.; Roohi, H.; Poorsargol, M.; Jahani, P. M.; Hajiabadi, H.; Raissi, H. N-H…S and S-H…N Intramolecular Hydrogen Bond in β-Thioaminoacrolein: A Quantum Chemical Study. *Int. J. Quantum Chem.* 2011, *111*, 3008–3016.
- (43) Solimannejad, M.; Gharabaghi, M.; Scheiner, S. SH… N and SH… P Blue-Shifting H-Bonds and N… P Interactions in Complexes Pairing HSN with Amines and Phosphines. J. Chem. Phys. 2011, 134, 024312.
- (44) Bould, J.; Macháček, J.; Londesborough, M. G. S.; Macías, R.; Kennedy, J. D.; Bastl,
 Z.; Rupper, P.; Baše, T. Decaborane Thiols as Building Blocks for Self-Assembled
 Monolayers on Metal Surfaces. *Inorg. Chem.* 2012, *51*, 1685–1694.
- (45) Goswami, M.; Neill, J. L.; Muckle, M.; Pate, B. H.; Arunan, E. Microwave, Infrared-Microwave Double Resonance, and Theoretical Studies of C₂H₄… H₂S Complex. *J. Chem. Phys.* 2013, *139*, 104303.
- (46) Raissi, H.; Farzad, F.; Eslamdoost, S.; Mollania, F. Conformational Properties and Intramolecular Hydrogen Bonding of 3-Amino-Propeneselenal: An Ab Initio and Density Functional Theory Studies. *J. Theor. Comput. Chem.* **2013**, *12*, 1350025.

- (47) Andersen, C. L.; Jensen, C. S.; Mackeprang, K.; Du, L.; Jørgensen, S.; Kjaergaard, H.
 G. Similar Strength of the NH···O and NH···S Hydrogen Bonds in Binary Complexes. *J. Phys. Chem. A* 2014, *118*, 11074–11082.
- (48) Karthika, M.; Senthilkumar, L.; Kanakaraju, R. Hydrogen-Bond Interactions in Hydrated 6-Selenoguanine Tautomers: A Theoretical Study. *Struct. Chem.* 2014, 25, 197–213.
- Qin, Y.; Zhang, J.; Zheng, X.; Geng, H.; Zhao, G.; Xu, W.; Hu, W.; Shuai, Z.; Zhu, D.
 Charge-Transfer Complex Crystal Based on Extended-π-Conjugated Acceptor and
 Sulfur-Bridged Annulene: Charge-Transfer Interaction and Remarkable High
 Ambipolar Transport Characteristics. *Adv. Mater.* 2014, *26*, 4093–4099.
- (50) Bhattacharyya, S.; Roy, V. P.; Wategaonkar, S. Acid–Base Formalism Extended to Excited State for O–H··· S Hydrogen Bonding Interaction. J. Phys. Chem. A 2016, 120, 6902–6916.
- (51) Mundlapati, V. R.; Ghosh, S.; Bhattacherjee, A.; Tiwari, P.; Biswal, H. S. Critical Assessment of the Strength of Hydrogen Bonds between the Sulfur Atom of Methionine/Cysteine and Backbone Amides in Proteins. J. Phys. Chem. Lett. 2015, 6, 1385–1389.
- (52) Schamnad, S.; Chakraborty, S. Substituent Effect in OH… Se Hydrogen Bond—
 Density Functional Theory Study of Para-Substituted Phenol–SeH₂ Complexes. *Chem. Phys. Lett.* 2015, 622, 28–33.
- (53) Thomas, S. P.; Sathishkumar, R.; Row, T. G. Organic Alloys of Room Temperature Liquids Thiophenol and Selenophenol. *Chem. Commun.* 2015, *51*, 14255–14258.

- (54) Rigane, I.; Walha, S.; Salah, A. B. Hydrogen Bonding in Thiobenzamide Synthon and Its Cadmium Complex: Crystal Structure and Hirshfeld Analysis. J. Chem. Sci. 2016, 128, 1395–1404.
- (55) Okamura, T.; Omi, Y.; Hirano, Y.; Onitsuka, K. Comparative Studies on the Contribution of NH···· S Hydrogen Bonds in Tungsten and Molybdenum Benzenedithiolate Complexes. *Dalton Trans.* 2016, 45, 15651–15659.
- (56) Mundlapati, V. R.; Sahoo, D. K.; Ghosh, S.; Purame, U. K.; Pandey, S.; Acharya, R.;
 Pal, N.; Tiwari, P.; Biswal, H. S. Spectroscopic Evidences for Strong Hydrogen Bonds with Selenomethionine in Proteins. *J. Phys. Chem. Lett.* 2017, *8*, 794–800.
- (57) Mundlapati, V. R.; Gautam, S.; Sahoo, D. K.; Ghosh, A.; Biswal, H. S. Thioamide, a
 Hydrogen Bond Acceptor in Proteins and Nucleic Acids. *J. Phys. Chem. Lett.* 2017, 8, 4573–4579.
- (58) Sun, P.; Liu, S.; Han, J.; Shen, Y.; Sun, H.; Jia, D. Solvothermal Syntheses, Crystal Structures, and Optical and Thermal Properties of Transition Metal Selenidostannates. *Transit. Met. Chem.* 2017, 42 (5), 387–393.
- (59) Das, A.; Mandal, P. K.; Lovas, F. J.; Medcraft, C.; Walker, N. R.; Arunan, E. The H2S
 Dimer Is Hydrogen-Bonded: Direct Confirmation from Microwave Spectroscopy.
 Angew. Chem. Int. Ed. 2018, *57*, 15199–15203.
- (60) Chopra, P.; Chakraborty, S. Computational Study of Red-and Blue-Shifted CH… Se
 Hydrogen Bond in Q₃CH… SeH₂ (Q= Cl, F, H) Complexes. *Chem. Phys.* 2018, 500, 54–61.

- (61) Contreras Aguilar, E.; Echeverría, G. A.; Piro, O. E.; Ulic, S. E.; Jios, J. L.; Tuttolomondo, M. E.; Pérez, H. Weak and Strong Hydrogen Bonds Conducting the Supramolecular Framework of 1-Butyl-3-(1-Naphthoyl) Thiourea: Crystal Structure, Vibrational Studies, DFT Methods, Pixel Energies and Hirshfeld Surface Analysis. *Mol. Phys.* 2018, *116*, 399–413.
- (62) Kjaersgaard, A.; Lane, J. R.; Kjaergaard, H. G. Room Temperature Gibbs Energies of Hydrogen Bonded Alcohol Dimethylselenide Complexes. *J. Phys. Chem. A* 2019, *123*, 8427-8434.
- (63) Jaju, K.; Pal, D.; Chakraborty, A.; Chakraborty, S. Electronic Substituent Effect on Se-H… N Hydrogen Bond: A Computational Study of Para-Substituted Pyridine-SeH₂
 Complexes. *Chem. Phys. Lett. X* 2019, 100031.
- (64) Castillo, O.; Delgado, E.; Hernández, D.; Hernández, E.; Martín, A.; Pérez, M.;
 Zamora, F. Synthesis and Crystal Structures of Ion-Pairs Based on Anionic Iron-Dithiolenes and Alkylammonium as Countercation. *J. Mol. Struct.* 2019.
- Minami, K.; Kuwamura, N.; Yoshinari, N.; Konno, T. Controlled Formation of Thiol-Thiolate Hydrogen versus Disulfide Bonds between Two Iridium (III) Centers. *Chem. Asian J.* 2019, *14*, 3291–3294.
- (66) Dash, S. G.; Singh, S. S.; Thakur, T. S. Structural Landscape-Guided Exploration of a New Polymorph of 4-Nitrobenzoic Acid. *Cryst. Growth Des.* 2019, *19* (2), 952–958.
- (67) Pereira, D. de S.; Lee, D. R.; Kukhta, N. A.; Lee, K. H.; Kim, C. L.; Batsanov, A. S.; Lee, J. Y.; Monkman, A. P. The Effect of a Heavy Atom on the Radiative Pathways of an Emitter with Dual Conformation, Thermally-Activated Delayed Fluorescence and Room Temperature Phosphorescence. *J. Mater. Chem. C* **2019**, *7*, 10481–10490.

- (68) Biswal, H. S.; Bhattacharyya, S.; Bhattacherjee, A.; Wategaonkar, S. Nature and Strength of Sulfur-Centred Hydrogen Bonds: Laser Spectroscopic Investigations in the Gas Phase and Quantum-Chemical Calculations. *Int. Rev. Phys. Chem.* 2015, *34*, 99– 160.
- (69) Wategaonkar, S.; Bhattacherjee, A. N–H…S Interaction Continues To Be an Enigma: Experimental and Computational Investigations of Hydrogen-Bonded Complexes of Benzimidazole with Thioethers. J. Phys. Chem. A 2018, 122, 4313–4321.
- (70) Ghosh, S.; Bhattacharyya, S.; Wategaonkar, S. Dissociation Energies of Sulfur-Centered Hydrogen-Bonded Complexes. J. Phys. Chem. A 2015, 119, 10863–10870.
- (71) Bhattacherjee, A.; Matsuda, Y.; Fujii, A.; Wategaonkar, S. Acid–Base Formalism in Dispersion-Stabilized S–H··· Y (Y=O, S) Hydrogen-Bonding Interactions. *J. Phys. Chem. A* 2015, *119*, 1117–1126.
- (72) Wang, D.; Chopra, P.; Wategaonkar, S.; Fujii, A. Electronic and Infrared Spectroscopy of Benzene-(H₂S) n (N= 1 and 2): The Prototype of the SH-π Interaction. *J. Phys. Chem. A* 2019, *123*, 7255–7260.
- (73) Sahoo, D. K.; Jena, S.; Dutta, J.; Rana, A.; Biswal, H. S. Nature and Strength of M–H… S and M–H… Se (M= Mn, Fe, & Co) Hydrogen Bond. J. Phys. Chem. A 2019, 123, 2227–2236.
- (74) Pavan, M. S.; Sarkar, S.; Row, T. G. Exploring the Rare S—H… S Hydrogen Bond Using Charge Density Analysis in Isomers of Mercaptobenzoic Acid. *Acta Crystallogr. Sect. B Struct. Sci. Cryst. Eng. Mater.* 2017, 73, 626–633.

- Mishra, K. K.; Singh, S. K.; Ghosh, P.; Ghosh, D.; Das, A. The Nature of Selenium Hydrogen Bonding: Gas Phase Spectroscopy and Quantum Chemistry Calculations. *Phys. Chem. Chem. Phys.* 2017, *19*, 24179–24187.
- (76) Biswal, H. S.; Wategaonkar, S. Sulfur, Not Too Far behind O, N, and C: SH $\cdots \pi$ Hydrogen Bond. J. Phys. Chem. A **2009**, 113, 12774–12782.
- Biswal, H. S.; Shirhatti, P. R.; Wategaonkar, S. O- H… O versus O- H… S Hydrogen Bonding. 2. Alcohols and Thiols as Hydrogen Bond Acceptors. *J. Phys. Chem. A* 2010, *114*, 6944–6955.
- Biswal, H. S.; Shirhatti, P. R.; Wategaonkar, S. O- H… O versus O- H… S Hydrogen Bonding I: Experimental and Computational Studies on the p-Cresol· H2O and p-Cresol· H₂S Complexes. J. Phys. Chem. A 2009, 113, 5633–5643.
- (79) Buemi, G. AM1 Study of Tautomerism and Intramolecular Hydrogen Bonding in Thiomalondialdehyde and Thioacetylacetone. J. Chem. Soc. Faraday Trans. 1990, 86, 2813–2818.
- (80) Tang, S.; Zhao, H.; Du, L. Hydrogen Bonding in Alcohol–Ethylene Oxide and Alcohol–Ethylene Sulfide Complexes. *RSC Adv.* 2016, *6*, 91233–91242.
- (81) Ghosh, S.; Chopra, P.; Wategaonkar, S. C–H···S Interaction Exhibits All the Characteristics of Conventional Hydrogen Bonds. *Phys. Chem. Chem. Phys.* 2020.
- (82) Domaga\la, M.; Grabowski, S. J. CH… N and CH… S Hydrogen Bonds Influence of Hybridization on Their Strength. J. Phys. Chem. A 2005, 109, 5683–5688.
- (83) Csankó, K.; Illés, L.; Felföldi, K.; Kiss, J. T.; Sipos, P.; Pálinkó, I. CH… S Hydrogen Bonds as the Organising Force in 2, 3-Thienyl-and Phenyl-or 2, 3-Dithienyl-

Substituted Propenoic Acid Aggregates Studied by the Combination of FT-IR Spectroscopy and Computations. *J. Mol. Struct.* **2011**, *993*, 259–263.

- (84) Barkowski, S. L.; Hedberg, L.; Hedberg, K. Conformational Analysis. 10. Ethane-1, 2-Dithiol. Electron-Diffraction Investigation of the Molecular Structure, Conformational Composition, and Anti-Gauche Energy and Entropy Differences. Evidence for an Intramolecular SH····S Hydrogen Bond. *J. Am. Chem. Soc.* **1986**, *108*, 6898–6902.
- (85) Goswami, M.; Arunan, E. Microwave Spectrum and Structure of C6H5CCH… H2S
 Complex. J. Mol. Spectrosc. 2011, 268, 147–156.
- (86) Duan, G.; Smith Jr, V. H.; Weaver, D. F. Characterization of Aromatic-Thiol π-Type
 Hydrogen Bonding and Phenylalanine-Cysteine Side Chain Interactions through Ab
 Initio Calculations and Protein Database Analyses. *Mol. Phys.* 2001, 99, 1689–1699.
- (87) Das, B.; Chakraborty, A.; Chakraborty, S. Effect of Ionic Charge on OH… Se
 Hydrogen Bond: A Computational Study. *Comput. Theor. Chem.* 2017, *1102*, 127–138.
- (88) Sánchez–Sanz, G.; Alkorta, I.; Elguero, J. Theoretical Study of Intramolecular Interactions in Peri-Substituted Naphthalenes: Chalcogen and Hydrogen Bonds. *Molecules* 2017, 22, 227.
- (89) Rad, O. R.; Nowroozi, A. A Comprehensive Theoretical Study of Mutual Interactions between the Intramolecular Hydrogen Bond and π-Electron Delocalization of RAHB Units with the Benzene Rings in Salicylaldehyde and Ortho-Aminobenzaldehyde with Their Thio and Seleno Analogues. *Struct. Chem.* **2017**, *28*, 1141–1149.

- (90) Gómez Castaño, J. A.; Romano, R. M.; Beckers, H.; Willner, H.; Boese, R.; Della Védova, C. O. Selenoacetic Acid, CH₃C(O)SeH: Preparation, Characterization, and Conformational Properties. *Angew. Chem. Int. Ed.* 2008, 47, 10114–10118.
- (91) Rafat, R.; Nowroozi, A. A Comprehensive Theoretical Study of Conformational Analysis, Intramolecular Hydrogen Bond, π-Electron Delocalization, and Tautomeric Preferences in 2-Selenoformyl-3-Thioxo-Propionaldehyde. *Struct. Chem.* 2018, 29, 1057–1065.
- (92) Shokhmkar, M.; Raissi, H.; Mollania, F. Molecular Structure, Conformational Stability, Energetic and Intramolecular Hydrogen Bonding in Ground, and Electronic Excited State of 3-Mercapto Propeneselenal. *Struct. Chem.* 2014, 25, 1153–1164.
- (93) Mielcarek, A.; Daszkiewicz, M.; Kazimierczuk, K.; Ciborska, A.; Do\lęga, A.
 Variable-Temperature X-Ray Diffraction Study of Structural Parameters of NH····S
 Hydrogen Bonds in Triethylammonium and Pyridinium Silanethiolates. *Acta Crystallogr. Sect. B Struct. Sci. Cryst. Eng. Mater.* 2016, 72, 763–770.
- (94) Senchyk, G. A.; Lysenko, A. B.; Naumov, D. Y.; Fedin, V. P.; Krautscheid, H.;
 Domasevitch, K. V. Multiple Anion… *π* Interactions with a Soft Selenium Atom:
 Accommodation of NCSe⁻ Anions inside Hydrophobic Pockets of Adamantane/1, 2, 4Triazole Coordination Framework. *Inorg. Chem. Commun.* 2010, *13*, 1576–1579.
- (95) Okamura, T.; Tatsumi, M.; Omi, Y.; Yamamoto, H.; Onitsuka, K. Selective and Effective Stabilization of Mo^{VI}=O Bonds by NH···· S Hydrogen Bonds via Trans Influence. *Inorg. Chem.* 2012, *51*, 11688–11697.
- (96) Ushakov, I. E.; Goloveshkin, A. S.; Lenenko, N. D.; Ezernitskaya, M. G.; Korlyukov,A. A.; Zaikovskii, V. I.; Golub, A. S. Hydrogen Bond-Driven Self-Assembly between

Single-Layer MoS²⁻ and Alkyldiamine Molecules. *Cryst. Growth Des.* **2018**, *18*, 5116–5123.

- (97) Fesenko, A. A.; Grigoriev, M. S.; Shutalev, A. D. A Convenient Stereoselective Access to Novel 1,2,4-Triazepan-3-Ones/Thiones via Reduction or Reductive Alkylation of 7-Membered Cyclic Semicarbazones and Thiosemicarbazones. *Org. Biomol. Chem.* 2018, *16*, 8072–8089.
- (98) Prasad, P. R.; Singh, H. B.; Butcher, R. J. Synthesis, Structure and Antioxidant Activity of Cyclohexene-Fused Selenuranes and Related Derivatives. *Molecules* 2015, 20, 12670–12685.
- (99) Qin, Y.-Q.; Jian, F.-F.; Jiang, M.-N.; Ren, X.-Y. Ethyl (E)-3-Anilino-2-Cyano-3-Mercaptoacrylate. Acta Crystallogr. Sect. E Struct. Rep. Online 2008, 64, 074–074.
- (100) Mikenda, W.; Steinwender, E.; Mereiter, K. Hydrogen Bonding in 2-Hydroxybenzoic,
 2-Hydroxythiobenzoic, and 2-Hydroxydithiobenzoic Acid. A Structural and
 Spectroscopic Study. *Monatshefte Für Chem. Chem. Mon.* 1995, *126*, 495–504.
- (101) Nakata, N.; Yamaguchi, Y.; Ishii, A. Synthesis and Thermal Reaction of Hydrido
 (Selenolato) Platinum (II) Complex Having a 9, 10, 11, 12, 14, 15-Hexahydro-9, 10
 [3', 4']-Furanoanthracenyl Group. *J. Organomet. Chem.* 2010, 695, 970–973.
- (102) Yang, J.; Yuan, J.-W.; Zha, R.-H.; Zeng, Q.-F. Bis{2-[3(Dimethyl-amino)Propyl-imino-meth-yl]-4,6-Dihydro-seleno-phenolato}zinc(II). Acta Crystallogr. Sect. E Struct. Rep. Online 2009, 65, m1090–m1090.