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We provide a detailed description of the structure
and performance of the bio-optical algorithm we
used to detect dominant phytoplankton groups in
remotely sensed ocean-colour of the Barents Sea.
The bio-optical algorithm can itself be de-constructed
into 3 modules, which mask coccolithophore blooms,
sediment and river plumes; recognise blooms of
highly-packaged phytoplankton and finally distinguish
between chlorophyll-c3-rich Phaeocystis blooms and
chlorophyll-c3-poor diatom blooms. We then consider
drift in the retrieval of the derived proxy of
chlorophyll-c3 absorption signal and present time
series of blooms identified in the Labrador and
Barents Seas to supplement our submission.
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1. Supplementary information2

A modular flow chart of the structure of our Barents Sea Bio-Optical algorithm is presented in3

Figure 1.

Figure 1. Modular flow chart of the structure of the Barents Sea bio-optical algorithm.
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(a) Module 1: Masking contaminated pixels5

We developed our bio-optical algorithm to discern different phytoplankton groups under the6

working assumption that the ratio of water-leaving radiance to down-welling irradiance (Rrs),7

is determined principally by elastic scattering (RE). Elastic scattering is itself a wavelength-8

dependent (λ) function of absorption (a) and backscattering (bb):9

RE(λ, 0) = r
bb(λ)

a(λ) + bb(λ)
, (1.1)

where r is a coefficient of proportionality that varies with factors like the angle of incident light10

and the viewing angle.11

The overall contribution of absorption by pure water, phytoplankton and CDOM to total12

absorption is additive;13

a(λ) = aw(λ) + aph(λ) + acdom(λ). (1.2)

By assessing spectral shape- the wavelength dependent variation in Rrs, we avoid the14

requirement to consider variation in r (assuming it does not vary with wavelength), and we make15

the assumption that variation in a and bb are driven principally by variation in phytoplankton16

taxonomic composition and pigment biomass. We take aw(λ) to be unchanging and previous17

research has shown that, in the open waters of the Barents Sea, acdom(λ) (absorption due to18

Coloured Dissolved Organic Matter (CDOM)) is invariant across seasons and major hydrographic19

features and can therefore be treated as constant [1], with an absorption coefficient of 0.04 m−1 at20

400 nm, decaying according to the relationship found in Bricaud et al., (1981) [2];21

acdom(λ) = 0.04e(−0.0014(λ−440)) (1.3)

Hence, as the spectrum of acdom(λ) is constant, we assume that change in a(λ) is driven by22

change in aph(λ) (phytoplankton absorption).23

These assumptions are, however, violated when non-algal particles, which have their own strong24

absorption [3] and backscattering properties [4], are present in substantial concentrations. River25

plumes can also carry terrigenous organic matter, increasing acdom(λ), and therefore violating26

our assumptions [5].27

We therefore needed a means by which to identify ocean-colour observations in which our28

assumption that variation in spectral shape is driven by phytoplankton absorption is violated,29

so that we could mask them from consideration, which includes masking observations where30

coccolithophore blooms control spectral shape, because the heightened backscattering of light off31

of their biomineral liths greatly changes ocean-colour [6].32

Module 1 (Figure 1) is the first of the stack of three stages that together constitute our bio-optical33

algorithm. We performed a Principal Component Analysis (PCA) to explore variation in ocean-34

colour Rrs measurements taken from the Barents Sea between 0 and 80 degrees East and 0 and35

85 degrees North, in July 2014. We selected this region and time because coccolithophore blooms36

have been reported [7]. The geographic range of our sample also included the Ob River plume [5]37

and sediment-dominated fjords of the Svalbard archipelago [4]. We identified the geographic38

regions corresponding to these groups and created linear discriminants that distinguish these39

spectra from those of the open-ocean, where our assumptions can reasonably be expected to hold40

true. PC1-2 space spreads the dataset out into a central Gaussian distribution with 3 aberrant tails,41

corresponding to coccolithophores, river plumes and waters rich in fjordic sediments (Figure 2).42

43
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b) c)a)

Figure 2. a) A Principal Component Analysis of ocean-colour in the Barents Sea, July 2014; blue, yellow, orange and

cyan points correspond to normal ocean, river plumes, sediment and coccolithophores. The pink, dashed; green, dotted

and brown solid lines correspond to the linear trends associated with river plumes, sediment and coccolithophores;

linear discriminants were defined to bisect the angles between them. b) The red, dashed line represents the division

between open-ocean ocean-colour and those masked as river plumes, sediment or coccolithophores. c) A map of the

classifications, showing coherent geographic domains.

Module 1 takes acquired ocean-colour observations, projects them into the PCA space (Figure44

2a) and uses the linear discriminants we previously defined to mask sediment-rich waters, river45

plumes and coccolithophore blooms. Only unmasked observations are then passed on to Module46

2 of our bio-optical algorithm (Figure 1). Figure 3 demonstrates Module 1 effectively recognising47

and masking several coccolithophore blooms identified by the NASA Earth Observatory [8–10].48

49



5

rsta.royalsocietypublishing.org
P

hil.
Trans.

R
.S

oc.
A

0000000
..................................................................

Figure 3. Examples of true colour images of coccolithophore blooms on the 24th of July 2003, 6th of July 2016 and 18th

of July 2018 (A,C,E) and corresponding coccolithophore masks (B,D,F). Normal ocean is masked blue, coccolithophores

are masked cyan and sediment is masked orange.
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(b) Module 2: Discrimination of diatoms and Phaeocystis from50

nanophytoplankton51

Module 2 (Figure 1) distinguishes blooms of highly-packaged phytoplankton (diatoms and the52

colonial prymnesiophyte Phaeocystis), from populations of unicellular nanophytoplankton. We53

adopt the term ‘nanophytoplankton’ here to describe a subset of those populations referred to54

as ‘prymnesiophyte’ in Stuart et al., (2000) and Cota et al., (2003) [11,12]. Nanophytoplankton55

identified in the Labrador Sea by Stuart et al., (2000) and Cota et al., (2003) are optically distinct56

from Phaeocystis, with a much lower degree of pigment-packaging. Given that Phaeocystis is57

a type of prymnesiophyte, we believe the term ‘nanophytoplankton’, is more useful for our58

purposes. We present the relationship between the system of terms we use here in Figure 5.59

Module 2 was constructed empirically; a training dataset of diatom, dinoflagellate, Phaeocystis60

and nanophytoplankton ocean-colour observations was constructed with reference to samples of61

phytoplankton collected in the Barents Sea between June 2017 and July 2018 (Sampling locations62

displayed in Figure 4).63

Figure 4. Left: Map of phytoplankton sampling sites on cruise JR16006 (Julian days 189-217), Centre: Map of

phytoplankton sampling sites on cruise HH23042018 (Julian days 114-122), Right: Map of phytoplankton sampling sites

on cruise JR17006 (Julian days 163-185). Regions with no concomitant MODIS-Aqua ocean-colour observations during

the cruise window are masked in cyan, providing a general indication of the sea ice edge.

64

Distinct phytoplankton assemblages dominating in-situ samples were recognised by their65

absorptive properties. We followed the protocol of Stuart et al., (2000) [11] to record phytoplankton66

absorption spectra, including their pigment extraction methods and choice of path-length67

correction. In total, 191 Barents absorption spectra are presented in this study.68

We chose to match our method to Stuart et al., (2000) so that we could pool our Barents dataset69

with a similar dataset of aph(λ) collected in the Labrador Sea [11–13], in which diatom and70

Phaeocystis-dominated blooms had also been sampled. The Labrador Sea dataset was collected71

between 1996 and 2001 in multiple seasons. Comparing aph(λ) in the Barents and Labrador72

Seas therefore allowed us to gain greater confidence that any recognition of distinct bio-73

optical assemblages common to both Seas is robust to seasonal and inter-annual variation. We74

then decomposed the aph(λ) associated with our phytoplankton samples, and those of Stuart75

et al., (2000) into Gaussian functions that represent the contribution from different suites of76

phytoplankton pigments to absorption, following the method of Chase et al., (2013) (itself a77
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formalisation of earlier schemes employed by Hoeppfner and Sathyendranath, (1993) and Lohrenz78

et al., (2003) [14–16]). This approach reduced the number of variables and made the dataset79

more tractable. Liu et al., (2019) have previously demonstrated the efficacy of this method80

in summarising variability in aph(λ), by relating decomposed aph(λ) to concentrations of81

taxonomically-indicative pigments measured with High Performance Liquid Chromatography82

(HPLC) in the western Barents Sea [17]. The Labrador Sea phytoplankton samples had83

already been prescribed likely identities as diatom or nanophytoplankton dominated, based84

on HPLC [11], but we added a third category, classifying those blooms rich in chlorophyll-c385

as Phaeocystis, which commonly occur off the Greenland Shelf [12,18]. Using a combination of86

optical microscopy, HPLC and PCA performed on the decomposed aph(λ), we recognised that87

the Barents phytoplankton samples we collected could be divided into 4 distinct bio-optical88

communities dominated by nanophytoplankton, colonial Phaeocystis, diatoms and dinoflagellates89

(Figure 5). It can be seen in Figure 5 that Phaeocystis is optically distinct from nanophytoplankton–90

exhibiting a much greater degree of pigment-packaging and having a greater resemblance to the91

diatoms; a shoulder in aph(λ) around 469 nm distinguishes Phaeocystis from diatoms. This feature92

probably results from absorption due to chlorophyll-c3.93
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Figure 5. Left: A PCA space representing variation in the optical properties of the Barents phytoplankton samples. The

density gradients represent the regions of this space occupied by nanophytoplankton, diatom and Phaeocystis samples

identified in the Labrador Sea (blue, green, red). The bold points represent a sub-set of Barents Sea phytoplankton

which optical microscopy showed to be dominated exclusively by Phaeocystis, diatoms or dinoflagellates (red, green,

purple), while the smaller points represent the rest of the Barents phytoplankton samples after a fuzzy clustering algorithm

was instructed to divide them into four groups. Right: Representative average absorption spectra for nanophytoplankton,

dinoflagellates, Phaeocystis and diatoms (blue, purple, green, red) for the Labrador (bold) and Barents (dashed) Sea

datasets, showing high similarity.

We then took the date of sampling and geographic locations of our in-situ Barents samples94

and collected all available daily MODIA-Aqua ocean-colour observations [19] within 1 degree95

latitude or longitude; 18,000 observations in total. Module 1 was used to exclude observations96

contaminated by coccolithophores, sediments or river plumes. The remaining observations were97

then deposited into a training dataset of ≈16,000 ocean-colour observations. We labelled the98

observations in the training dataset, according to the inferred phytoplankton group (Figure 5)99

of the in-situ sample they were associated with.100

Variation in the ocean-colour spectral shape is primarily driven by variations chl-a rather than101
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variation between different phytoplankton assemblages, potentially obscuring patterns of ocean-102

colour that might distinguish different bio-optical assemblages of phytoplankton. We followed103

a similar method to Alvain et al., (2008) [20] in order to remove the confounding effects of chl-104

a on ocean-colour. We constructed a regression of ocean-colour in all diatom-labelled entries in105

our database against the chl-a concentration inferred from them with the Lab-OC4L diatom chl-a106

algorithm of Cota et al., (2003). We then subtracted the predicted spectra from the MODIS-Aqua107

ocean-colour observations in our training database, to arrive at ‘residual’ ocean-colour, in which108

the remaining variance should correspond to variation in phytoplankton assemblage and not109

simply chl-a concentration. In order to be especially conservative, we decided to estimate the chl-110

a concentration of all ocean-colour observations that we hope to classify in accordance with the111

Lab-OC4L prymn chl-a algorithm published by Cota et al., 2003 [12], which generally predicts112

higher values than Lab-OC4L diatom. This has the effect of decreasing bias to conflate change in113

chl-a with change in phytoplankton groups.114

We then used 1000 permutations of hold-p-out cross validation, with p set to 500, to build115

linear discriminant analyses and test whether we could consistently use the held-in ocean-colour116

observations to classify the held-out ocean-colour observations in our training dataset. We found117

that diatoms and Phaeocystis could reliably be distinguished from nanophytoplankton (3% and118

20% of diatom and Phaeocystis-labelled entries are classified as nanophytoplankton, respectively),119

but that diatoms and Phaeocystis were often misclassified (53% of Phaeocystis-labelled entries were120

classified as diatoms) . We found it difficult to consistently recognise dinoflagellates. While 57%121

of dinoflagellate-labelled entries were correctly identified, we suspected this was because they122

tended to occur in oligotrophic waters– and that their identification was more a function of a123

residual signal of chl-a content and not of assemblage-specific phytoplankton optical properties.124

Some 68% of nanophytoplankton-labelled entries were correctly recognised.125

This capacity for consistent classification of our training dataset compared favourably with126

existing algorithms that discern diatoms from nanophytoplankton, developed by Sathyendranath127

et al., 2004 [13] and Jackson et al., 2010 [21]. We tested these two algorithms by adapting them128

to use the nearest available MODIS-Aqua wavebands. When we used the two diatom-detection129

algorithms to classify spectra in our training dataset they tended to have a bias in favour of130

diatoms (only 40 and 42% of nanophytoplankton-labelled entries in our dataset were correctly131

classified, respectively).132

133

(c) Module 3: Discrimination of diatom and Phaeocystis blooms134

Given our weaker confidence in the detection of dinoflagellate blooms, we made the decision135

to exclude dinoflagellate-labelled entries from our training dataset and to concentrate on the136

utility of the linear discriminant we had found for distinguishing blooms of highly-packaged137

phytoplankton (diatoms and Phaeocystis) from ocean waters dominated by nanophytoplankton.138

Owing to the optical similarity of diatom and Phaeocystis-labelled ocean-colour residual spectral139

shape, we considered the possibility that the differences between diatom and Phaeocystis ocean-140

colour observations are subtle and that our linear discriminant analysis had not found them. We141

therefore opted to develop a third algorithm module, with the intent to take ocean-colour residual142

spectra labelled as highly-packaged phytoplankton and divide them into diatom and Phaeocystis143

dominated measurements.144

145

Module 3 (Figure 1) is a semi-empirical algorithm. We made use of Hydrolight-Ecolight software146

[22] to simulate the expected ocean-colour under conditions of diatom and Phaeocystis dominance,147

for chl-a concentrations ranging between 0.1 and 25 mg m−3 (measured values of in-situ samples148

varied between 0.11 and 24.23 mg m−3). We implemented these simulations with phytoplankton149

absorption spectra for our diatom and Phaeocystis groups (as in Figure 5), a chlorophyll-150

specific scattering model based on a combination of Barents and Liqurian Sea measurements151

and a chlorophyll-specific back-scattering model based on a combination of Barents Sea and152
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NOMAD measurements [23]. The spectral absorption of phytoplankton was constrained to153

evolve according to the relationship identified in Bricaud et al., (1995) [24] and absorption due154

to CDOM was treated as constant, with a value of 0.04 m−1 at 440 nm [1], decaying with155

wavelength according to the function identified by Bricaud et al., (1981) [2]. Scattering and back-156

scattering model coefficients are presented in Table 1, wherein scattering and back-scattering157

evolve according to equation 1.4:158

bi(λ) =Ai(λ)(chl-a)Bi(λ), (1.4)

where b1 represents total scattering of particles and seawater (m−1), b2 represents backscattering159

(m−1); chl-a is the chlorophyll-a concentration (mg m−3), and Ai and Bi represent fit parameters.160

Table 1. Scattering and Backscattering model coefficients and goodness of fit.

λ (nm) A1 B1 R2
1 A2 B2 R2

2

412 0.3893 0.0842 0.0177 0.0027 0.4116 0.5727
440 0.4235 0.4089 0.2606 0.0026 0.4967 0.7643
488 0.4271 0.4282 0.2814 0.0023 0.5017 0.7614
510 0.4324 0.4403 0.2961 0.0022 0.5038 0.7581
532 0.4418 0.4852 0.4803 0.0021 0.4898 0.7503
555 0.4459 0.5105 0.5071 0.0020 0.5033 0.7453
650 0.3972 0.4554 0.2833 0.0016 0.5169 0.7132
676 0.3777 0.5215 0.4662 0.0015 0.5048 0.7016
712 0.3595 0.1879 0.0884 no NOMAD data

We recognise that Phaeocystis is a chlorophyll-c3-rich plankton, compared with diatoms, and161

therefore surmised that we might be able exploit this optical difference– evident in Figure162

5– in order to distinguish between our simulated spectra, and then evaluate whether it is163

possible to distinguish diatom and Phaeocystis blooms in our training dataset. We adopted the164

chlorophyll-c3 absorption algorithm developed by Astoreca et al., (2008) [25] to determine whether165

a signal attributable to chlorophyll-c3 could be detected in the diatom and Phaeocystis Hydrolight166

simulations, and made use of the Lab-OC4L diatom chl-a algorithm published by Cota et al., (2003)167

[12] to infer chl-a content, reasoning that Phaeocystis would be typified by a high chlorophyll-168

c3 signal per unit biomass, compared to diatoms. The chlorophyll-c3 algorithm of Astoreca et169

a., (2008) relies upon use of the MODIS land band centred at 469 nm to detect a shoulder in170

aph(λ) associated with chlorophyll-c3 (consult Figure 5 to observe this feature). The use of the171

MODIS land bands, including 469 nm, has already been applied to the identification of bio-172

optically distinct phytoplankton blooms by Hu et al., (2010) [26], who successfully identified173

Trichodesmium blooms in optically complex coastal waters. We found chl-a estimates were broadly174

lower than expected (Figure 6), however given that the magnitude of simulated absorption175

spectra used as input to Hydrolight are computed as a function of chl-a we should still expect the176

relationship between absorption signal attributable to chlorophyll-c3 and chl-a to be informative.177

We found, upon performing a PCA on ocean-colour residual spectra in our training database178

labelled as diatom or Phaeocystis, that there was a bimodal normal distribution of the data in179

Principal Component 5-6 space (Figure 6 a,d). We suspected that this likely represented two180

dominating phytoplankton assemblages, but we note that the entries labelled as diatom or181

Phaeocystis are distributed across both of the Gaussian features, suggesting that the reason that182

linear discriminant analysis could not retrieve an effective discriminant was due to labelling in the183

training dataset confusing these groups– probably as a result of their close spatial co-occurrence184

during cruises. It is clear that the relationship between chl-a and the common logarithm of185

absorption signal attributable to chlorophyll-c3 (log10(ac3)) separates diatom and Phaeocystis from186

one another in Hydrolight simulations (Figure 6 c). We derived a linear discriminant relating187
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log10(ac3) and inferred chl-a concentration to divide diatom and Phaeocystis simulations. When188

this was applied to the training dataset, the results broadly conformed to the two Gaussian189

features we had previously identified (Figure 6 b).190
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Figure 6. A) PC5-6 rotation of the training entries for diatoms (light blue) and Phaeocystis (dark blue)– point size is
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our bio-optical algorithm; diatoms (green), Phaeocystis (magenta), nanophytoplankton (blue). C) a linear discriminant is

developed that distinguishes simulated diatoms (black) from simulated Phaeocystis (dark red), with the training dataset
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(d) Chl-c3 signal retrieval using MODIS-Aqua191

Figure 7. A) Annually-binned mean signal due to chlorophyll-c3 for the Labrador (green), Barents (red) and North-

Atlantic Sub-Tropical Gyre (blue). B) Trends in inferred chlorophyll-c3 signal normalised to variance, with Sub-Tropical

Gyre variance multiplied by 10 to make it visible. C) Annually-binned mean signal due to chlorophyll-c3 after a correction

for drift is applied. D) Trends in corrected chlorophyll-c3 signal normalised to variance, with Sub-Tropical Gyre variance

multiplied by 10 to make it perceptible.

We now move on to discuss the stability of the derived variable, chlorophyll-c3 absorption signal192

(ac3), in time series of MODIS-Aqua ocean-colour. We assessed this by compiling time series of193

mean ac3 estimated from ocean-colour across several years in different parts of the global ocean194

that we would not expect to behave in unison. If these disparate regions show common changes it195

may provide evidence of systematic bias in the inference of ac3. We chose to investigate the North196

Atlantic Sub-Tropical Gyre in particular because we should expect the ocean-colour in the region197

to be relatively constant over time, as it is oligotrophic (chl-a <0.1 mg m−3), and to a first-order198

may be presumed to represent clear ocean waters when contrasted with the eutrophic Barents or199

Labrador Seas (which we define as the regions between 70-85 degrees North, 0-50 degrees East200

and 50-65 degrees North, 40 to 60 degrees West) .201

In Figure 7 the North Atlantic Sub-Tropical Gyre region is assumed to occupy the region202

between 30-50 degrees West and 25-35 degrees North. We downloaded MODIS-Aqua ocean-203

colour observations in this region for Julian days 130-135 between 2003-2018. The fact that ac3204

in this region is clearly related to that in the Barents and Labrador Seas (Figure 7 b) evidences205

drift in the representation of ocean-colour from the MODIS-Aqua r2018.1 reprocessing; a clear206

step-change is visible in all time series at 2010, for example. It is hence necessary to correct for this207

systemic form of bias. Our correction scheme is based on that of Taylor et al., [27], who observed208
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a shift in the spectral output of the IASI (Infrared Atmospheric Sounding Interferometer) remote-209

sensing platform in 2010, which biased results in an algorithm they had developed to infer210

sulphur dioxide. To correct for this drift Taylor et al., took the lowest concentration of inferred211

sulphur dioxide in any image, that was within 1 standard deviation of the mean, and added its212

magnitude to all remaining pixels. In our approach we first constrained all ac3 signal values to213

within -0.01 and 0.005 (see Figure 7 a), so that aberrant values would not significantly disturb214

calculation of the standard deviation. The lower negative limit of -0.01 may be surprising, but215

Astoreca et al., (2008) [25] themselves found that inferred ac3 signal became negative in diatom-216

dominated conditions. We then divided the values into an annually-binned time series and217

calculated the difference between the mean annual ac3 values and the lowest ac3 value in each218

annual bin that fell within 1 standard deviation of the mean ac3 in each bin. We added the219

magnitude of the lowest annually-binned ac3 values to the remaining ac3 values in each bin, and220

then shifted the resulting absorption values so that the mean of all ac3 values between 2010-2018221

matched the mean of the original ac3 values (since our bio-optical algorithm was constructed222

around in-situ samples collected after the 2010 shift in inferred chlorophyll-c3 absorption). In223

our efforts to illustrate drift in sensor output we computed pair-wise t-tests comparing mean224

Rrs values between 2003-2009 and 2010-2018 in the North Atlantic Sub-Tropical Gyre (Figure225

8). We found that a significant shift has occurred among the most blue bands and that this226

was associated with an decrease in the Rrs of bands with the shortest wavelengths. Astoreca227

et al., (2008) had speculated on the question of whether minute differences in Rrs near 469 nm228

would be perceptible by remote-sensing platforms. We believe we have found evidence that229

these differences are detectable (Figure 6), but we caution that for the particular application of230

distinguishing Phaeocystis from diatom blooms, it appears necessary to account for anomalies231

resulting from temporal drift. We caution that different correction schemes may be necessary232

for future ocean-colour reprocessings, because they may subtly alter the ratios between different233

ocean-colour wavebands in a systematic fashion. After a correction scheme is applied, it can be234

seen that temporal drift in mean annualy-binned ac3 is largely removed and patterns of variance235

in the different seas can be considered decoupled (Figure 7).
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Figures 9 and 10 represent time series for the occurrence of different phytoplankton blooms,237

identified with our experimental bio-optical algorithm, in the Labrador and Barents Seas, once238

the correction for drift is applied. These figures are intended to be used as an adjunct to aid239

interpretation of the main text. Figure 9 is a validation exercise, comparing our experimental bio-240

optical algorithm classifications with an inter-annual time series of phytoplankton assemblages241

presented in [18].242
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Figure 9. Phytoplankton blooms retrieved by remote-sensing in the Labrador Sea (background colour). Colour indicates

frequency of phytoplankton classifications; red pixels indicate Phaeocystis dominance, green pixels indicate diatom

dominance and blue pixels indicate nanophytoplankton dominance. White pixels are dominated by coccolithophores.

This colourfield can be envisaged as a triangular prism with red, green and blue vertices, increasing in luminosity along

its length. Slices of the colour field are presented as a visual key. Black pixels represent regions with no observations in

a given year. The background is over-lain with in-situ samples taken by Fragoso et al., 2017 [18] (circular dots: dataset

accessible at https://doi.pangaea.de/10.1594/PANGAEA.871872). Red-filled circles represent Phaeocystis-rich samples,

green-filled circles represent diatom-dominated samples and blue-filled circles represent mixed populations dominated by

nanophytoplankton.
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Figure 10. Phytoplankton blooms retrieved by remote-sensing in the Barents sea. Colour indicates frequency of

phytoplankton classifications; red pixels indicate Phaeocystis dominance, green pixels indicate diatom dominance and

blue pixels indicate nanophytoplankton dominance. White pixels are dominated by coccolithophores. This colourfield can

be envisaged as a triangular prism with red, green and blue vertices, increasing in luminosity along its length. Slices of

the colour field are presented as a visual key. Black pixels represent regions with no observations in a given year.
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Data Accessibility. The datasets of optical properties used in the construction of the phytoplankton243

community composition algorithm used in this study are available at [doi:10.5285/97daa7ea-8792-6cff-e053-244

6c86abc0dd46] [doi:10.5285/982b6da2-7e11-060a-e053-6c86abc09389] [doi:10.5285/982b6da2-7e12-060a-e053-245

6c86abc09389], accompanying datasets for chlorophyll-a concentration are available at [doi:10.5285/97daa7ea-246

8793-6cff-e053-6c86abc0dd46] [doi:10.5285/982b6da2-7e13-060a-e053-6c86abc09389] [doi:10.5285/982b6da2-247

7e14-060a-e053-6c86abc09389] MODIS-A data is available from NASA’s website for ocean-colour.248

[doi:10.5067/AQUA/MODIS/L3SMI/]249
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