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Numerical modelling shows increased fracturing due to melt-undercutting prior to major
calving at Bowdoin Glacier
E. C. H. van Dongen, J. A. Astrém, G. Jouvet, J. Todd, D. I. Benn and M. Funk

This supplement includes additional information regarding the Helsinki Discrete Element Model (HiDEM)
and sensitivity experiments.

1 HIDEM

1.1 Overview

The HiDEM version we use here, models ice as a brittle-elastic material. That is, irreversible material
strain like creep, plasticity and viscosity are not included in the model. Apart from elastic deformation
and instantaneous fracture, the model also includes basal friction. Additional external forces that act
on DEM-particles are: gravity, buoyancy, and drag. When particles collide and beams oscillate there is
dissipation of kinetic energy through a force proportional to relative velocity of DEM-particles or beam
end-points.

The hexagonal close packed (hcp) lattice in which particles are initially arranged is a close-packing
configuration for equal-sized spheres with solid-volume fraction of 0.74. Every sphere in the bulk of
the material has 12 neighbours. Since the beams have a stiffness of the same order of magnitude for all
deformation modes, the particles closely approximate a homogeneous medium. The mass of the DEM-
particles is set such that the density of the material-model is p= 930 kg m—3. The stiffness of the beams
connecting neighbours, can be related to Young’s modulus E of the material (Astrom et al.l 2013) and are
set such that £/ = 1 GPa (a common value for polycrystalline glacier ice, |Vaughan, |1995)). Poisson’s ratio
in HIDEM has a complex dependence on model parameters and implementation but is ~0.2 (Ruikili et al.,
2015).

1.2 Equation of motion

The ice dynamics are computed using a discrete version of Newton’s equation of motion and inelastic

potentials for the interactions of individual particles and beams:

M+; + Cr; + ZC’(T'“Z' — f“j) + ZKP(TZ' — Tj) + ZKb(Ti — Tj) = F;, S1H
J J J

where M contains the masses and moments of inertia of the particles, 7;, 7; are the acceleration and
velocity of particle ¢, including rotations. The indices for all particles that are connected to particle 7 are
denoted with j.

Particles are damped by a viscous drag, denoted by the damping matrix C. The damping coefficients
depend on the particles position, since particles are either in contact with the bedrock, water or air. The
damping coefficients do not change in a discrete manner but linearly over a zone of 1 particle size at the
water line and 1.5 particle size at the bedrock for stability reasons. The bedrock damping coefficient may
vary in space, to model the variation in slipperiness of the bed. The water drag force is estimated by the
drag force of a square-metre objects in water (103 kg s~1, |/Astrom et al., 2013).
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Collisions between particles are inelastic. The damping force for collisions, C’(7; — 75), is velocity-
dependent and allows dissipation of energy. Dissipation C’ can be estimated via an analog to a harmonic
oscillator. On a microsopic level, DEM-particles and beams form a set of coupled harmonic oscillators.
If the oscillators are overdamped, sound waves cannot propagate properly in the material, which would
not be a good model for ice. If the oscillators are very much underdamped, the particles would bounce
around during calving, which is clearly not realistic for ice. Therefore we use values for C” that correspond
to slightly underdamped values (Astrom et al., 2013).

The interactions between particles that are in contact, regardless of having a beam connecting them or
not, are modelled as a Hertz contact problem (Hertz, |1882)). The elastic, radial repulsive interaction is
denoted by K, (r; — r;). Interactions between particles that are connected by a beam, are contained in
the stiffness matrix Kp(r; — 7;). Their interaction is modelled as a Euler-Bernoulli beam (Astrom et al.,
2013), which describes the deflection of a beam under an applied load in a linear elastic manner and holds
for small strains. Without the Euler-Bernoulli beams, the particles would move as granular flow.

Finally, the sum of other forces working on particle ¢ is denoted by F;. For particles above sea level
this includes gravity F; = p;gV" and for particles below sea level a buoyancy force F, = (p; — pw)gV
where p;, p,, are the ice and water density, g the gravitational acceleration and V' the volume of the
particle. The buoyancy force is applied for all submerged ice particles, because it is not trivial to define
a surface (for example the calving front) in a Discrete Element Model. However, a buoyancy force for
all submerged particles is equivalent to application of the water pressure at the calving front and floating
ice base, as usually done in glacier models (e.g., [Todd et al., 2018)). The equivalence can be explained
by a consideration of the involved pressures. The pressure within the ice increases with ice depth, d, as
pigd. The pressure of the water increases with water depth, h, p,,gh. The pressure within the ice below
sea surface can then be written as: p;gl + p;g(d — 1), where, [ is the ice-cliff height above sea surface,
which means i = d — [. We then get for the pressure p;gl + p;gh — pwgh + pwgh, which can be written
as pigl + (pi — pw)gh + pwgh. The first term is the overburden pressure for the ice above sea level, the
second term is the deviatoric term from the difference between ice and water pressure, and the last term is
the pure hydrostatic pressure. Since we can assume that both water and ice are incompressible, and if we
further assume that water penetrates all cracks below sea level, we can neglect the last hydrostatic term in
the computations since it does not induce any dynamics. Therefore, the dynamics induced by buoyancy can
be modelled by the previously introduced forces Fy; and Fj,.

1.3 Time integration

The differential equation for motion (Eq. is rewritten as a difference equation and integrated forward
in time using explicit time integration. A crude estimate of the desired time step for this type of calculations
can be derived from an analog to the resonance frequency of a harmonic oscillator y/ Ed/m, where F is
the stiffness of the beams, d is diameter of the particles and m the particle mass. Hence for spheres with a
radius of 1 m and E ~ 10° N m~2, the resonance frequency is on the order of 103 s~!. Multiplied by the
particle size this gives rise to velocities on the order of 103 m s~!, which should be resolved in at least 10
time steps. Therefore, for particles of 1 m radius, a minimum time step of 10™4 s is required.

1.4 Fracture criterion
Beams break if the strain on the beam exceeds a user-defined threshold ¢, either by tension or bending:

Ep + 0-05|9i — 9j| > ec (S2)
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where ¢ denotes axial strain and 6; — 0; rotations at the ends of the beam. We set . = 0.0003. Since the
model is brittle-elastic and tensile fracturing dominates, fracture-strain is easily translated into to the more
commonly used fracture-stress by multiplying with Young’s modulus. We then have a fracture stress of
0.3 MPa, which is within the range of observed critical stress (Schulson, |1999).

2 SENSITIVITY EXPERIMENTS
2.1 Particle size

Unlike mesh size for continuum models, the particle size for DEM has a direct physical meaning: it
matters whether the glacier is built up of particles of similar size as sand grains or bricks. In an idealized
world with extremely fast computers, one could model a glacier by representing each ice crystal as a
particle. Even when running HIDEM on a supercomputer for a small part of a glacier, the particle size
needs to compromise accuracy and efficiency. We test which particle size, defined as particle diameter, best
reproduces fracturing on Bowdoin Glacier. The largest applied particle size is 10 m, as chosen in |Vallot
et al. (2018) for Kronebreen. However, although terminus thickness of Bowdoin Glacier and Kronebreen
are similar, this particle size does not yield large enough strain to cause fracturing on Bowdoin Glacier
(results not shown). Therefore, particle size was reduced in several steps from 4 to 1.75 m.

The simulation consist of two phases. First initial glacier dynamics are simulated without fracturing, such
that the glacier reaches a state which is reasonably close to a stress equilibrium. Kinetic energy is defined
as )

2
where m; is particle mass and v; velocity, summed over all particles i. Figure [SI| shows for all tested
particle sizes how the kinetic energy of the glacier reduces during 15 s of simulation.
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Figure S1. Time evolution of kinetic energy for various particle sizes.

After 10 s, the kinetic energy is reduced by more than an order of magnitude and fracturing is allowed.
The resulting surface crevasse pattern after 15 s of simulation time is shown in Figure [S2] The HIDEM
results are sensitive to DEM-particle size. In particular, the glacier becomes more fragile, and a larger
portion of bonds break when particle size decreases and particle number grows. The density of broken
bonds in the model domain, which reflects the abundance of fractures, increases with decreasing particle
size from 0.7% for 4 m particles to 2.3% for 1.75 m particles (Fig.[S2)). A rather unexpected effect of this
is that larger particle size reproduces the velocity field better than smaller ones, as the velocity field gets
increasingly scrambled by fracturing. For 4-2.5 m particles, the surface velocity in the final second of the
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simulation reproduces the observed velocity gradient well (Fig.[S3p-c). The velocity gradient is less clearly
for smaller particles because fracturing dominates the modelled velocity (Fig.[S3(d and e).
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Figure S2. All bonds above sea level with fracture strain over 0.01 for several particle sizes after 15 s.
Colors show the strain for each bond, which is a measure of crevasse width and subplot labels give the
percentage of broken bonds for the entire model domain.

2.2 Smoothed surface

The observed glacier geometry is very detailed with surface topographic depressions included. In the
UAV-derived surface elevation, these depressions extend down to about Sm, which is small compared
to the thickness of the glacier (more than 250 m, Fig. 2b). These features are nevertheless sufficient
for fractures formed in the simulations to often appear exactly along these grooves, especially for small

particles (Fig. [S2).

The 1 m resolution DSM was filtered by a two dimensional median filter with a 51 x 51 kernel to study
the impact of the detailed initial geometry. To limit the required computational resources, this was done for
particles of 2.5 m only. The modelled surface fractures are very similar (Fig.[S4), although the smooth
surface simulation shows more fractures aligned with the direction of flow.
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Figure S3. Modelled velocity from 14 to 15 s for varying particle size.
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Figure S4. All bonds above sea level with fracture strain over 0.01 are shown for 2.5 m particles after 15 s
for the control set-up (a) and a smoothed surface (b).

Table S1. Numerical values of the constants used in the numerical experiments.

Parameter Symbol Value  Unit
Ice density p 930 kgm—3
Water density Pw 1030  kgm™3
Gravitational acceleration ¢ 9.81 ms™2
Strain threshold €e 0.0003
Timestep 1074 s
Fracture after time 10 S
Friction scale 1075
Frontiers S
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