Athletics South Africa Coaches Symposium Bloemfontein – 7 October, 2016

Supporting the Coach's Eye: Measurements That Matter

Helen Bayne, PhD

Head Biomechanist University of Pretoria, High Performance Centre

The role of sport science

ATHLETE FOCUSED

COACH LED

SUPPORTED BY SCIENCE

Performance Model

Health	Physiology	Technique	Nutrition	
Mental state	Recovery & adaptation	Performance analysis	Strength training	= Performance (Time / Distance / Height)
Innovation	Performance lifestyle	Athlete monitoring	Supplements	+

"Measurement is the first step that leads to control and eventually to improvement. If you can't measure something you can't understand it. If you can't understand it you can't control it. If you can't control it you can't improve it."

-H. James Harrington

"You can't manage what you don't measure."

-Peter Drucker

"Just because you can measure something doesn't mean that you should." –W. Edwards Deming

Measurement

Decide what matters

Measure it

maintain

Apply

Decide What Matters

Higher maximum velocity later in the race is a key determinant of 100m performance

Requires the ability to keep accelerating at high speeds

Slawinski, J., et al. Scan J Sci Med Sport (2015)

Decide What Matters

PHYSICS Newton's second law: Ground reaction forc Force = mass x acceleration Driving action F = m.dForce is required to accelerate a body Newton's third law: for every action there is an equal and opposite reaction

Decide What Matters

Technical Ability of Force Application as a Determinant Factor of Sprint Performance

JEAN-BENOÎT MORIN, PASCAL EDOUARD, and PIERRE SAMOZINO

Université de Lyon; and Laboratory of Exercise Physiology, Saint-Etienne, FRANCE horizontal FORCE

- 100m sprint times related to:
- Horizontal force
- Ratio of horizontal:vertical force
- <u>NOT</u> total amount of force produced

Morin, J-B., et al. Med Sci Sport Exerc (2011)

Scand J Med Sci Sports 2015: --: ---doi: 10.1111/sms.12490 © 2015 John Wiley & Sons AS. Published by John Wiley & Sons Ltd

MEDICINE & SCIENCE IN SPORTS

A simple method for measuring power, force, velocity properties, and mechanical effectiveness in sprint running

P. Samozino¹, G. Rabita², S. Dorel³, J. Slawinski⁴, N. Peyrot⁵, E. Saez de Villarreal⁶, J.-B. Morin⁷

Samozino, P., et al. Scan J Med Sci Sport (2015)

F0 = high horizontal force at low velocities

* Slawinski (2015)

V0 = the ability to keep producing horizontal force at high velocities

* Rabita (2015)

1. Training Optimisation

Similar sprint performance - different mechanical profiles May need different types of intervention to improve sprint time

1. Training Optimisation

FO: resisted strength and sprint training

V0: BW, <BW, assisted sprint training

2. Technique Work

3. Injury Rehabilitation Guidelines

- Hamstring injury
- Re-tested after medical clearance, return to full participation

	Pre-injury	Post-injury
20m time (s)	3.33	3.56
P (W/kg)	18.0	14.2
F0 (N/kg)	8.3	6.6
V0 (m/s)	8.7	8.7

Mendiguchia, J., et al. J Sport Sci (2015)

4. Record Keeping

1 Athlete Name I Year I V H1 V H2 V H3 V H6 V H7 V H8 V H9 V 2 3 5.9 9.6 13.5 17.5 21.6 25.8 30.2 34.5 38.9 38.9 38.9 38.7 39.2 34.4 38.7 38.7 38.7 39.2 34.4 38.7 39.2 34.7 39.2 34.7 39.2 34.7 39.2 34.7 39.2 34.7 39.2 34.7 39.2 34.7 39.2 34.7 39.2 34.7 39.2 34.7 38.7 38.7 38.7 38.7 38.7 38.7 38.7 38.7 39.2 34.6 39.9 34.6 39.9 34.6 39.9 34.	H10 43.6 43.2 43.3 44.1 43.8 43.7 43.6 44.6 43.9 43.6 43.0 43.9 43.6 43.0 43.9 43.5 43.5	FINISH 48.97 48.89 48.78 49.86 49.27 49.52 49.29 50.09 49.34 49.13 48.67 49.46 49.92
6.0 9.9 13.9 18.0 22.2 26.4 30.6 34.9 39.2 5.9 9.6 13.5 17.6 21.7 25.9 30.3 34.6 39.1 5.9 9.6 13.3 17.1 21.1 25.3 29.4 23.8 38.3 6.00 6.00 6.00 6.00 6.00 6.00 9.9 13.3 17.1 21.1 25.3 29.4 23.8 38.3 6.00 6.00 6.00 6.00 6.00 6.00 9.9 13.3 17.1 21.1 25.3 29.4 23.8 38.3 6.00 6.00 6.00 6.00 6.00 6.00 9.9 39.3 .7 39.4 .2 38.7 .2 38.8 .2 38.8 .2 38.8 .2 38.8 .2 38.8 .2 38.8 .2 38.8 .2 38.8 .2 38.8 .2 38.8 .2 38.8 .2 38.8 .2 38.8 .2 38.8 .2 38.8 .2 38.8<	43.2 43.3 44.1 43.8 43.7 43.6 44.6 43.9 43.6 43.0 43.9 43.9 44.3 43.5	48.89 49.86 49.27 49.52 49.29 50.09 49.34 49.13 48.67 49.46
6 6.0 9.9 13.9 18.0 22.2 26.4 30.6 34.9 39.2 4 5.9 9.6 13.5 17.6 21.7 25.9 30.3 34.6 39.1 5 0.6 13.3 17.1 21.1 25.3 29.4 23.8 38.3 6 6.00 6.00 6.00 6.00 6.00 9.9 13.3 17.1 21.1 25.3 29.4 23.8 38.3 6 6.00 6.00 6.00 6.00 6.00 9.9 13.3 17.1 21.1 25.3 29.4 23.8 38.3 7 39.4 39.4 39.4 39.4 39.4 39.4 39.4 39.4 39.4 39.4 39.4 39.4 39.4 39.4 39.4 39.4 39.4 38.7 39.4 38.7 38.7 38.8 38.8 38.8 38.8 39.4 38.8 38.7 39.4 39.4 38.8 38.8 38.7 38.8 38.8 38.8 38.8 38.8 38.8 38.8<	43.3 44.1 43.8 43.7 43.6 44.6 43.9 43.6 43.0 43.9 43.9 44.3 43.5	48.78 49.86 49.27 49.52 49.29 50.09 49.34 49.13 48.67 49.46
6 9.9 13.9 18.0 22.2 26.4 30.6 34.9 39.2 5 5.9 9.6 13.5 17.6 21.7 25.9 30.3 34.6 39.1 1 5.9 9.6 13.3 17.1 21.1 25.3 29.4 23.8 38.3 1 6.00 6.00 6.00 6.00 13.3 17.1 21.1 25.3 29.4 23.8 38.3 .9 39.3 .7 39.4 .2 38.7 .2 38.7 .2 38.8 .2 .2 38.8 .2 .2 38.8 .2 .2 38.8 .2 .2 38.8 .2 .2 38.8 .2 .2 38.8 .2 .2 38.8 .2 .2 .3 .2 .3 .2 .3 .2 .3 .2 .3 .2 .3 .2 .3 .2 .3 .2 .3 .2 .3 .2 .3 .2 .3 .2 .3 .3 .2 .3 .2	44.1 43.8 43.7 43.6 44.6 43.9 43.6 43.0 43.9 43.9 44.3 43.5	49.86 49.27 49.52 49.29 50.09 49.34 49.13 48.67 49.46
6.0 9.9 13.9 18.0 22.2 26.4 30.6 34.9 39.2 5.9 9.6 13.5 17.6 21.7 25.9 30.3 34.6 39.1 5.9 9.6 13.3 17.1 21.1 25.3 29.4 23.8 38.3 6.00 6.00 6.00 6.00 6.00 7 39.4 39.4 2 38.7 2 38.7 2 38.8 2 38.7 2 38.8 2 38.7 2 38.8 2 38.8 2 38.8 2 38.8 2 38.8 2 38.8 2 38.7 2 38.8 2 38.8 2 38.8 2 38.8 2 38.8 2 38.8 2 38.7 2 38.8 2 38.8 2 38.8 2 38.8 2 38.8 2 38.8 2 38.8 2 38.8 2 38.8 2 38.8 2 38.8 2 38.8 2 38.8 2 38.8 2	43.8 43.7 43.6 44.6 43.9 43.6 43.0 43.9 44.3 43.5	49.27 49.52 49.29 50.09 49.34 49.13 48.67 49.46
6 9.9 13.9 18.0 22.2 26.4 30.6 34.9 39.2 5 5.9 9.6 13.5 17.6 21.7 25.9 30.3 34.6 39.1 1 5.9 9.6 13.3 17.1 21.1 25.3 29.4 23.8 38.3 1 6.00 6.00 6.00 6.00 13.3 17.1 21.1 25.3 29.4 23.8 38.3 .9 39.3 .7 39.4 .2 38.7 .2 38.7 .2 38.8 .2 .2 38.8 .2 .2 38.8 .2 .2 38.8 .2 .2 38.8 .2 .2 38.8 .2 .2 38.8 .2 .2 38.8 .2 .2 .3 .2 .3 .2 .3 .2 .3 .2 .3 .2 .3 .2 .3 .2 .3 .2 .3 .2 .3 .2 .3 .2 .3 .2 .3 .3 .2 .3 .2	43.7 43.6 44.6 43.9 43.6 43.0 43.9 44.3 43.5	49.52 49.29 50.09 49.34 49.13 48.67 49.46
6 9.9 13.9 18.0 22.2 26.4 30.6 34.9 39.2 5 5.9 9.6 13.5 17.6 21.7 25.9 30.3 34.6 39.1 4 5.9 9.6 13.3 17.1 21.1 25.3 29.4 23.8 38.3 4 6.00 6.00 6.00 6.00 6.00 6.00 9.9 39.3 .7 39.4 6.00 6.00 6.00 6.00 6.00 6.00 6.00 9.9 39.3 .7 39.4 6.00 6.0	43.6 44.6 43.9 43.6 43.0 43.9 44.3 43.5	49.29 50.09 49.34 49.13 48.67 49.46
6 9.9 13.9 18.0 22.2 26.4 30.6 34.9 39.2 4 5.9 9.6 13.5 17.6 21.7 25.9 30.3 34.6 39.1 5 0.6 13.3 17.1 21.1 25.3 29.4 23.8 38.3 4 6 6.00 6.00 6.00 6.00 6.00 9.9 13.3 17.1 21.1 25.3 29.4 23.8 38.3 .9 39.3 .7 39.4 .2 38.7 .2 38.7 .2 38.8 .2 38.8 .2 38.8 .2 38.8 .2 38.8 .2 38.8 .2 38.7 .2 38.8 .2 38.8 .2 38.8 .2 38.8 .2 38.7 .2 38.8 .2 38.8 .2 38.8 .2 38.8 .2 38.8 .2 38.8 .2 38.8 .2 38.8 .2 38.8 .2 38.8 .2 38.8 .2 38.8 .2 38.8 <	44.6 43.9 43.6 43.0 43.9 44.3 43.5	50.09 49.34 49.13 48.67 49.46
6 9.9 13.9 18.0 22.2 26.4 30.6 34.9 39.2 4 5.9 9.6 13.5 17.6 21.7 25.9 30.3 34.6 39.1 5 0.6 13.3 17.1 21.1 25.3 29.4 23.8 38.3 4 6 6.00 6.00 6.00 6.00 6.00 9.9 13.3 17.1 21.1 25.3 29.4 23.8 38.3 .9 39.3 .7 39.4 .2 38.7 .2 38.7 .2 38.8 .2 38.8 .2 38.8 .2 38.8 .2 38.8 .2 38.8 .2 38.7 .2 38.8 .2 38.8 .2 38.8 .2 38.8 .2 38.7 .2 38.8 .2 38.8 .2 38.8 .2 38.8 .2 38.8 .2 38.8 .2 38.8 .2 38.8 .2 38.8 .2 38.8 .2 38.8 .2 38.8 .2 38.8 <	43.9 43.6 43.0 43.9 44.3 43.5	49.34 49.13 48.67 49.46
4 5.9 9.6 13.5 17.6 21.7 25.9 30.3 34.6 39.1 5 5.9 9.6 13.3 17.1 21.1 25.3 29.4 23.8 38.3 4 6 6.50 6.50 6.00 6.00 9.6 13.3 17.1 21.1 25.3 29.4 23.8 38.3 6 6.00 6.00 6.00 6.00 6.00 9.6 13.3 17.1 21.1 25.3 29.4 23.8 38.3 9.9 39.3 3.7 39.4 39.4 2 38.7 2 38.7 2 38.8 2 38.8 2 38.8 2 38.8 2 38.8 2 38.8 2 38.7 2 38.8 2 38.8 2 38.8 2 38.8 2 38.8 2 38.8 2 38.8 2 38.8 2 38.8 2 38.8 2 38.8 2 38.8 2 38.8 2 38.8 2 38.8 2 38.8	43.6 43.0 43.9 44.3 43.5	49.13 48.67 49.46
5 5 0.6 12.2 17.1 21.1 25.2 20.4 23.8 38.3 4 6 6.50	43.0 43.9 44.3 43.5	48.67 49.46
6.50 .9 39.3 6.60 .7 39.4 6.00 .2 38.7 .2 38.8 .2	43.9 44.3 43.5	49.46
4 6 8 6.00 6.00 6.00 6.00 6.00 6.00 6.00	44.3 43.5	
6.00 6.00 .2 38.7 .2 38.8	43.5	49.92
8 6.00 .2 38.8 ·		
		48.92
	43.4	48.80
5.30 5.00 4.50 4.00		
3.50 H1 H2 H3 H4 H5 H6 H7 H8 H9 H10		
5.87 3.77 3.77 3.87 4.03 4.13 4.27 4.40 4.47 4.60 5.72		
• 5.87 3.77 3.87 4.03 4.13 4.27 4.40 4.47 4.60 5.72 • NEWYORK 5.97 3.70 3.80 3.90 4.10 4.17 4.23 4.30 4.60 5.71 • BRUSSELS 5.98 3.69 3.78 3.92 4.08 4.12 4.25 4.68 5.05 5.77		

5. Institutional Knowledge

Measurement

Decide what matters

Measure it

maintain

Apply

The role of sport science

SUPPORTED BY SCIENCE

Athletes and coaches are experts

Observe, listen, learn, analyse...then suggest

Source, interpret, filter information

Contribute ideas and act as sounding board

Thank you for listening

Let's discuss!

helen.bayne@up.ac.za @HelenBayneZA