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ABSTRACT

Finding hydrostatic solutions in ellipsoids is a challenging task. An idealised ref-

erence state has been introduced in the main text, which admits simple polynomial

expressions in the Cartesian coordinates. We outline a method to obtain more realistic

background models, which are compatible with the polynomial algorithm.

1. SINGULARITY FOR A VANISHING DENSITY ON THE BOUNDARY

Clausen & Tilgner (2014) modelled planetary polytropic profiles in ellipsoids by

considering power-law profiles in the form

ρ∗0 = ρc [1− F ]Λ , P ∗
0 = Pc (ρ∗0/ρc)

Υ, F = (x/a)2 + (y/b)2 + (z/c)2, (1a–c)

where [Λ,Υ] are positive exponents and [ρc, Pc] the arbitrary central values. In the

stellar context, Υ is referred as the polytropic exponent (Chandrasekhar 1958). The

polynomial profile considered in the main text with α = 1 is recovered from ex-

pressions (1) by setting Λ = 1 and Υ = 2. Reference states (1) are unfortunately

incompatible with the polynomial method. The normal component of ξ (at least),

obtained from the weighted polynomial Helmholtz decomposition of ρ0ζ, diverges

when ρ0 → 0 on the boundary (as first pointed out by Lebovitz 1989). Even if ξ were

singular, we could still obtain solutions with finite kinetic energies 〈ξ, ξ〉ρ0 <∞. Yet,

this approach is not entirely satisfactory to achieve numerical convergence.

To remove the singularity, additional regularity conditions should be enforced on the

boundary. In the ellipsoid, Clausen & Tilgner (2014) obtained a wave-like equation

that is separable for background states (1), such that the regularity conditions can

be easily enforced numerically. However, this approach cannot be implemented with

any global polynomial expansions in the Cartesian coordinates.
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2. POLYNOMIAL REFERENCE STATES

2.1. Hydrostatic state in spheres

Approximate hydrostatic states, which neglect rotational effects but obey Poisson

equation, can be obtained in spheres as follows. We work in dimensional variables for

the sake of generality. Given the polynomial density profile of the main text (equation

(2.4a) in section 2c), the hydrostatic reference state is given by

∇2Φ∗
0 = 4πGρ∗0, ∇P ∗

0 = −ρ∗0∇Φ∗
0, (2a,b)

with g∗ = −∇Φ∗
0 where Φ∗

0 is the self-gravitational potential, and G is the gravita-

tional constant. We solve equations (2) in spherical coordinates, denoting r = r∗/R

the dimensionless radial coordinate. From the Poisson equation, we get

Φ∗
0(r) =

Kc

ρc

(
r2 − 3α

10
r4

)
, Kc =

2πGρ2
cR

2

3
. (3)

Then, we obtain the pressure profile from the hydrostatic equilibrium

P ∗
0 (r) = Pc −Kc

(
r2 − 4α

5
r4 +

α2

5
r6

)
(α 6= 1), (4)

with Pc the central pressure and Kc that is now identified as the isentropic bulk

modulus at the centre. For Jupiter-like models (α = 1), we impose the boundary

condition P ∗
0 (1) = 0, yielding Pc = 2Kc/5 = 4πGρ2

cR
2/15. Hence, profile (4) gives

for Jupiter-like models

P ∗
0 (r) = Pc

(
1− 5r2

2
+ 2r4 − r6

2

)
(α = 1). (5)

The speed of sound C∗
0 is finally obtained from the Equation of State (EoS)

C∗
0

2∇ρ∗0 = (1− Γ)∇P ∗
0 = (1− Γ) ρ∗0 g

∗, (6)

where the stability parameter Γ measures the extent to which the equilibrium density

profile departs from neutral stratification (Pekeris & Accad 1972). We can indeed

introduce the Brunt-Väisälä frequency N∗
0 defined as

N∗
0

2 = S∗
0 · g∗, S∗

0 = (1/ρ∗0)∇ρ∗0 − g∗/C∗
0

2, (7a,b)

where S∗
0 is the (vectorial) Schwarzschild discriminant (Dyson & Schutz 1979). Here,

formula (7a) reduces to N∗
0

2 = −Γ (g∗ · g∗)/C∗
0

2 from equilibrium (6). Therefore,

neutral isentropic interiors (i.e. N∗
0

2 = 0) are obtained with Γ = 0, and stably

stratified ones (i.e. N∗
0

2 > 0) have Γ < 0. The speed of sound is then given by

C∗
0

2 = (1− Γ)C2
c

(
1− 8α

5
r2 +

3α2

5
r4

)
, (8)
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(a) Earth-like model (b) Jupiter-like model

Figure 1. Pressure profiles as a function of the dimensionless spherical radius r. Red solid
line: polytropic-like profile presented in the main text (see equation (2.8) in section 2c).
(a) Earth-like model (α = 0.205). Dashed black line: Earth-like hydrostatic profile (4). (b)
Jupiter-like model (α = 1). Dashed black line: Jupiter-like hydrostatic profile (5). Thin
blue line: analytical polytropic profile with exponent Υ = 2 (Chandrasekhar 1958).

with Cc =
√
Kc/(αρc) the speed of sound at the centre.

We compare in figure 1 the polytropic-like profile of the main text (see equation

(2.4a) in section 2c), with the non-polytropic hydrostatic profile (4) in the sphere.

While the density profile is the same in both reference states, the central difference

between the two reference states is that the gravity does not obey the Poisson equation

in the former case, contrary to the latter reference state (even if the same background

density profile is considered). We have also shown the analytical polytropic pressure

profile with Υ = 2 in figure 1b, obtained from the analytical polytropic density

ρ∗0(r)/ρc = sin (πr) /(πr) (Chandrasekhar 1958). Departures are more pronounced

for the Earth-like model.

2.2. Ellipsoidal re-scaling

The above spherical profiles are converted into ellipsoidal profiles by using the geo-

metrical transformation

r2 = (x/a)2 + (y/b)2 + (z/c)2 = F. (9)

Then, we obtain the approximate ellipsoidal states

ρ∗0 = ρc (1− αF ), (10a)

P ∗
0 = Pc −Kc

(
F − 4α

5
F 2 +

α2

5
F 3

)
, (10b)

g∗ = −αC2
c ∇F

(
1− 3α

5
F

)
, (10c)
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Figure 2. Comparison between the polynomial profiles in the sphere with α = 0.205, for
the acoustic modes in (a) and the inertial modes in (b). Polynomial solutions with n = 15.
Blue curves/circles: polytropic-like hydrostatic reference state of the main text (equations
(2.8)-(2.9) in section 2c). Red curves/squares: non-polytropic hydrostatic reference state
given by expressions (10) with Γ = 0.

C∗
0

2 = (1− Γ)C2
c

(
1− 8α

5
F +

3α2

5
F 2

)
. (10d)

Given density profile (10a), ellipsoidal state (10) exactly satisfies the hydrostatic

balance ∇P ∗
0 = ρ∗0 g and also EoS (6) in the ellipsoid. The second-order terms in

α2 must be considered in expressions (10) for C∗
0 to vanish on the boundary (when

α = 1).

2.3. Numerical results

The comparison between the background states in figure 1 may suggest that the

compressible effects might be stronger in planetary interiors, because the polytropic-

like pressure profile we have considered in the main text actually underestimates the

planetary pressure variations across the fluid domain compared to (4). The normal

modes obtained with both models are superimposed in figure 2, for an Earth-like

model with α = 0.205. We find that the acoustic modes are indeed quantitatively

modified in frequency but, qualitatively, the modal properties are unchanged (e.g.

here the scaling with MΩ). Conversely, the inertial modes in figure 2b are much less

sensitive to the background pressure variations. Actually, the acoustic modes more

strongly depend on the background pressure profile (and so on the speed of sound),

contrary to the inertial modes that are more sensitive to the background density

variations (which are here identical in the two background reference models).
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Therefore, we expect that the results presented in the main text remain qualita-

tively (for the acoustic modes) and quantitatively (for the inertial modes) valid in

considering more accurate planetary models (at least for Earth-like conditions).

3. NON-POLYNOMIAL REFERENCE STATES

The global spectral polynomial method can virtually account for non-polynomial

reference profiles, as long as the density does not vanish on the boundary. To do so,

we could use the change of variables

x = a r sin(θ) cos(φ), y = b r sin(θ) sin(φ), z = c r cos(θ), (11a–c)

introducing the spherical-like coordinates (r, θ, φ). The elementary volume becomes

dV = dx dy dz = abc r2 sin θ dr dθ dφ. (12)

Then, the volume integrals could be computed numerically on the spherical-like mesh,

by using efficient spherical methods (Schaeffer 2013). Therefore, the polynomial de-

scription could accommodate a wide class of density-pressure profiles, either analyti-

cally or numerically.
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