1 ELECTRONIC SUPPLEMENTARY MATERIAL FOR THE ARTICLE:

- 2 Risk tolerance and control perception in a game-theoretic bioeconomic model for small-scale
- 3 **fisheries.**
- 4
- 5 Supplementary Material S1 The Payoffs equations.
- 6 Supplementary Material S2 Manipulating the model.
- 7 Supplementary Material S3 Algorithms (software: R)
- 8 Supplementary Material S4 The System.
- 9 Supplementary Material S5 Systems parameter's.
- 10

Supplementary Material *S1* – The Payoffs equations.

- 12 Case 1 Cooperator meets cooperator
- 13

In this case, both individuals are cooperators. For that reason, we can assume that fishing effort for each player is f^* , the maximum effort regulated by law. So, we can calculate how much each of these players will won. If *c* is the cost of a fishing effort unit for the whole season, the total cost for each fisher will be $Cost = c \cdot f^*$. The revenue for the cooperator is $Revenue = H \cdot P$. Here, *H* is the harvest and *P* is the market price of the prey.

 $H = B(1 - e^{-q \cdot f})$

 $H = B(1 - e^{-f^* \cdot q})$

- 19 Harvest equation tell us that
- 20
- 21 But $f = f^*$, so:
- 22
- 23 And then:
- 24 $\pi_{CC} = Revenue Cost = B(1 e^{-q \cdot f^*}) \cdot P c \cdot f^*$
- 25 Finally,

$$\pi'_{CC} = \delta \cdot \left(B \left(1 - e^{-q \cdot f^*} \right) \cdot P - c \cdot f^* \right)$$

27

26

28

29 *Case 2 – Cooperator meets cheater*

Suppose that cooperator meet a cheater. While cooperator is fishing with the fishing effort regulated
 by law, cheater is using all the effort she/he can to maximize her/his profit, despite of the regulation.

32 Payoff for the cheater is

33
$$\pi_{NC} = B(1 - e^{-q \cdot f}) \cdot P - c \cdot f$$

For maximize this equation, lets derivate this function by f and make it zero.

35
$$\frac{\partial \pi_{NC}}{\partial f} = B(0 - (-q \cdot e^{-q \cdot f_{max}}) \cdot P - c = B \cdot P \cdot q \cdot e^{-q \cdot f_{max}} - c = 0$$

36 So,

$$e^{-q \cdot f_{max}} = \frac{c}{B \cdot P \cdot q}$$

38 And then,

$$f_{max} = -\frac{\ln\left(\frac{c}{B \cdot P \cdot q}\right)}{q}$$

40 With the maximum fishing effort, we can calculate the maximum harvest by

41
$$H_{max} = B(1 - e^{-q \cdot f_{max}})$$

42 From that harvest, some part will be for the cooperator and some other part (the bigger part) for the

43 cheater. Harvested biomass will be proportional to each player fishing effort. Then

44
$$H_C = \frac{f_A}{f_{max}} H_{max}$$

45
$$H_N = \frac{f_B}{f_{max}} H_{max}$$

46 But $f_C = f^*$ and $f_C + f_N = f_{max}$. So, $f_N = f_{max} - f^*$. And then, for H_C we have:

47
$$H_C = \frac{f^*}{f_{max}} H_{max}$$

48
$$H_C = \frac{f^*}{f_{max}} B(1 - e^{-q \cdot f_{max}})$$

49
$$H_{C} = \frac{f^{*}}{-\frac{\ln\left(\frac{C}{B \cdot P \cdot q}\right)}{q}} B\left(1 - e^{-q \cdot \left(-\frac{\ln\left(\frac{C}{B \cdot P \cdot q}\right)}{q}\right)}\right)$$

50
$$H_C = -\frac{q \cdot f^*}{\ln\left(\frac{c}{B \cdot P \cdot q}\right)} \cdot B\left(1 - e^{\ln\left(\frac{c}{B \cdot P \cdot q}\right)}\right)$$

51
$$H_{C} = -\frac{q \cdot f^{*}}{\ln\left(\frac{c}{B \cdot P \cdot q}\right)} \cdot B\left(1 - \frac{c}{B \cdot P \cdot q}\right)$$

52
$$H_{C} = -\frac{q \cdot f^{*}}{\ln\left(\frac{c}{B \cdot P \cdot q}\right)} \cdot B\left(\frac{B \cdot P \cdot q - c}{B \cdot P \cdot q}\right)$$

53
$$H_{C} = -\frac{f^{*}}{\ln\left(\frac{c}{B \cdot P \cdot q}\right)} \cdot \left(\frac{B \cdot P \cdot q - c}{P}\right)$$

54
$$H_C = -\frac{\left(B \cdot q - \frac{c}{P}\right) \cdot f^*}{\ln\left(\frac{c}{B \cdot P \cdot q}\right)}$$

56 Similarly, for H_N , we have:

57
$$H_N = \frac{f_N}{f_{max}} H_{max}$$

58
$$H_N = \frac{f_{max} - f^*}{f_{max}} B(1 - e^{-q \cdot f_{max}})$$

59
$$H_N = \frac{-\frac{\ln\left(\frac{C}{B \cdot P \cdot q}\right)}{q} - f^*}{-\frac{\ln\left(\frac{C}{B \cdot P \cdot q}\right)}{q}} B\left(1 - e^{-q \cdot -\frac{\ln\left(\frac{C}{B \cdot P \cdot q}\right)}{q}}\right)$$

60
$$H_N = \frac{-\frac{\ln\left(\frac{C}{B \cdot P \cdot q}\right) - q \cdot f^*}{q}}{-\frac{\ln\left(\frac{C}{B \cdot P \cdot q}\right)}{q}} B\left(1 - e^{\ln\left(\frac{C}{B \cdot P \cdot q}\right)}\right)$$

61
$$H_N = \frac{\ln\left(\frac{c}{B \cdot P \cdot q}\right) - q \cdot f^*}{\ln\left(\frac{c}{B \cdot P \cdot q}\right)} B\left(1 - \frac{c}{B \cdot P \cdot q}\right)$$

62 Now we can calculate π_{CN} and π_{NC} . First π_{CN} :

$$\pi_{CN} = H_A \cdot P - c \cdot f_A$$

64
$$\pi_{CN} = -\frac{\left(B \cdot q - \frac{c}{P}\right) \cdot f^*}{\ln\left(\frac{c}{B \cdot P \cdot q}\right)} \cdot P - c \cdot f^*$$

65
$$\pi_{CN} = -\frac{(B \cdot P \cdot q - c) \cdot f^*}{\ln\left(\frac{c}{B \cdot P \cdot q}\right)} - c \cdot f^*$$

66
$$\pi_{CN} = \frac{(c - B \cdot P \cdot q) \cdot f^*}{\ln\left(\frac{c}{B \cdot P \cdot q}\right)} - c \cdot f^*$$

67 And, further, π_{NC} :

$$\pi_{NC} = H_B \cdot P - c \cdot f_B$$

$$\pi_{NC} = \frac{\ln\left(\frac{c}{B \cdot P \cdot q}\right) - q \cdot f^*}{\ln\left(\frac{c}{B \cdot P \cdot q}\right)} B\left(1 - \frac{c}{B \cdot P \cdot q}\right) \cdot P - c \cdot (f_{max} - f^*)$$

70
$$\pi_{NC} = \frac{\ln\left(\frac{c}{B \cdot P \cdot q}\right) - q \cdot f^*}{\ln\left(\frac{c}{B \cdot P \cdot q}\right)} B\left(1 - \frac{c}{B \cdot P \cdot q}\right) \cdot P - c \cdot \left(-\frac{\ln\left(\frac{c}{B \cdot P \cdot q}\right)}{q} - f^*\right)$$

71 Adding the tendency to cooperate δ we have:

72
$$\pi'_{CN} = \delta \cdot \left(\frac{(c - B \cdot P \cdot q) \cdot f^*}{\ln\left(\frac{c}{B \cdot P \cdot q}\right)} - c \cdot f^* \right)$$

73 and

69

74
$$\pi'_{NC} = (1-\delta) \cdot \left(\frac{\ln\left(\frac{c}{B \cdot P \cdot q}\right) - q \cdot f^*}{\ln\left(\frac{c}{B \cdot P \cdot q}\right)} B\left(1 - \frac{c}{B \cdot P \cdot q}\right) \cdot P - c \cdot \left(-\frac{\ln\left(\frac{c}{B \cdot P \cdot q}\right)}{q} - f^*\right) \right)$$

75

76 *Case 3 – Cheater meets cheater*

In this case both players are cheating upon fishing regulation. We considered, as in [1], zero payoff for 8 both cheaters in this case. When there isn't any regulation above harvest, fishermen act as in an open access 9 fishery and fishes until revenue matches fishery costs. So:

80
$$\pi'_{A_{NN}} = (1 - \delta) \cdot 0 = 0$$

82 Supplementary Material *S2* – Manipulating the model.

We manipulate the model in order to get some independency from stock size. To do so we divided all payoffs by constant *K*, the carrying capacity, introducing, then, two new parameters: $B' = \frac{B}{K}$ and $c' = \frac{c}{K}$.

86
$$\frac{\pi'_{CC}}{K} = \frac{\delta \cdot (B(1 - e^{-18 \cdot q}) \cdot P - c \cdot f^*)}{K}$$

87
$$\frac{\pi'_{CC}}{K} = \delta \cdot \left(\frac{B}{K}(1 - e^{-18 \cdot q}) \cdot P - \frac{c}{K} \cdot f^*\right)$$

88

89
$$\frac{\pi'_{CC}}{K} = \delta \cdot (B' \cdot (1 - e^{-18 \cdot q}) \cdot P - c' \cdot f^*)$$

90 Similarly,

91 For payoffs in case 2 we have:

92
$$\frac{\pi_{CN}'}{K} = \frac{\delta \cdot \left(\frac{18 \cdot (c - B \cdot P \cdot q)}{\ln\left(\frac{c}{B \cdot P \cdot q}\right)} - c \cdot f^*\right)}{K}$$

93

94
$$\frac{\pi_{CN}'}{K} = \delta \cdot \left(\frac{f^* \cdot \frac{(c - B \cdot P \cdot q)}{K}}{\ln\left(\frac{c}{B \cdot P \cdot q}\right)} - \frac{c}{K} \cdot f^*\right)$$

$$\frac{\pi_{CN}'}{K} = \delta \cdot \left(\frac{\left(\frac{c}{K} - \frac{B}{K} \cdot P \cdot q\right) \cdot f^*}{\ln\left(\frac{c}{B \cdot \frac{K}{K} \cdot P \cdot q}\right)} - c' \cdot f^* \right)$$

96

95

97
$$\frac{\pi_{CN}'}{K} = \delta \cdot \left(\frac{(c' - B' \cdot P \cdot q) \cdot f^*}{\ln\left(\frac{c}{B' \cdot K \cdot P \cdot q}\right)} - c' \cdot f^* \right)$$

99
$$\frac{\pi_{CN}'}{K} = \delta \cdot \left(\frac{(c' - B' \cdot P \cdot q) \cdot f^*}{\ln\left(\frac{c'}{B' \cdot P \cdot q}\right)} - c' \cdot f^* \right)$$

101 For the cheater in the same case we have:

$$102 \quad \frac{\pi'_{NC}}{K} = \frac{(1-\delta) \cdot \left(\frac{\ln\left(\frac{c}{B \cdot P \cdot q}\right) - q \cdot f^*}{\ln\left(\frac{c}{B \cdot P \cdot q}\right)} B\left(1 - \frac{c}{B \cdot P \cdot q}\right) \cdot P - c \cdot \left(-\frac{\ln\left(\frac{c}{B \cdot P \cdot q}\right)}{q} - f^*\right)\right)}{K}$$

$$104 \quad \frac{\pi'_{NC}}{K} = (1-\delta) \cdot \left(\frac{\ln\left(\frac{c}{B \cdot P \cdot q}\right) - q \cdot f^*}{\ln\left(\frac{c}{B \cdot P \cdot q}\right)} \cdot \frac{B}{K} \left(1 - \frac{c}{B \cdot P \cdot q}\right) \cdot P - \frac{c}{K} \cdot \left(-\frac{\ln\left(\frac{c}{B \cdot P \cdot q}\right)}{q} - f^*\right) \right)$$

$$106 \quad \frac{\pi'_{NC}}{K} = (1-\delta) \cdot \left(\frac{\ln\left(\frac{c}{B \cdot \frac{K}{K} \cdot P \cdot q}\right) - q \cdot f^*}{\ln\left(\frac{c}{B \cdot \frac{K}{K} \cdot P \cdot q}\right)} \cdot B' \cdot \left(1 - \frac{c}{B \cdot \frac{K}{K} \cdot P \cdot q}\right) \cdot P - c' \cdot \left(-\frac{\ln\left(\frac{c}{B \cdot \frac{K}{K} \cdot P \cdot q}\right)}{q} - f^*\right) \right)$$

$$108 \quad \frac{\pi'_{NC}}{K} = (1-\delta) \cdot \left(\frac{\ln\left(\frac{c'}{B' \cdot P \cdot q}\right) - q \cdot f^*}{\ln\left(\frac{c'}{B' \cdot P \cdot q}\right)} \cdot B' \cdot \left(1 - \frac{c'}{B' \cdot P \cdot q}\right) \cdot P + c' \cdot \left(\frac{\ln\left(\frac{c'}{B' \cdot P \cdot q}\right)}{q} + f^*\right) \right)$$

110 For case 3, not so much work to do:

111
$$\frac{\pi'_{NN}}{K} = \frac{0}{K} = 0$$

112 Note that $B' = \frac{B}{K}$ measures the relative stock size. Then, even if we don't know the real stock size, we 113 can work with overfishing, underfishing and other kinds of scenarios.

115	Supplementary Material S3 – Algorithms (software: R)
116	
117	Algorithm 1
118	*****
119	**********
120	## ##
121	## Strategic game for restricted fishing effort small-scale fisheries ##
122	## ##
123	## Author: Eric Zettermann Dias de Azevedo ##
124	## Date of creation: 16/09/2019 ##
125	## Last update: 22/01/2020 ##
126	## ##
127	****
128	****
129	
130	######################################
131	# #
132	# This algorithm models restricted fishing effort small-scale fisheries #
133	# using game theory. Two fishers decide to cooperate or not to #
134	# cooperate with the fishing effort restriction regulation. To cooperate #
135	# is to follow the restriction and not to cooperate is to fish until #
136	# maximize profit. #
137	# #
138	# This simulations aims to evaluate cooperative behaviour in different #
139	# scenarios of control perception and risk tolerance #
140	# #
141	*****************
142	
143	
144	ls() # List objects
145	rm(list=ls()) # Remove objects

146	if(!require(plot3D)){install.packages("plot3D");library(plot3D)}
147	if(!require(RColorBrewer)){install.packages("RColorBrewer");library(RColorBrewer)}
148	
149	#######################################
150	# Initial Set up #
151	#######################################
152	
153	risk <- 0.3 # risk coefficient
154	# Represents risk profile of the fisher.
155	# Values variate from 0 (high-risk toleration fisher) to 1 (low-risk toleration fisher)
156	
157	alpha <- 1 # Control perception
158	# Represents how much the fisher feel that the fishery is being controled by autorithies
159	# Values variate from 0 (fisher did not feel any regulation enforciment) to 1 (fisher
160	# feel completely controled).
161	
162	
162 163	P <- 23 # Market price of the resourse (currency unit)
	P <- 23 # Market price of the resourse (currency unit)
163	P <- 23 # Market price of the resourse (currency unit) f <-18 # value of fishing units aloud by restriciotn of the fishing effort
163 164	
163 164 165	
163 164 165 166	f <-18 # value of fishing units aloud by restriciotn of the fishing effort
163 164 165 166 167	f <-18 # value of fishing units aloud by restriciotn of the fishing effort q <- 0.023 # Catchability
163 164 165 166 167 168	f <-18 # value of fishing units aloud by restriciotn of the fishing effort q <- 0.023 # Catchability # Prepresent how efficient is the fishing gear used to harvest.
163 164 165 166 167 168 169	f <-18 # value of fishing units aloud by restriciotn of the fishing effort q <- 0.023 # Catchability # Prepresent how efficient is the fishing gear used to harvest.
163 164 165 166 167 168 169 170	 f <-18 # value of fishing units aloud by restriciotn of the fishing effort q <- 0.023 # Catchability # Prepresent how efficient is the fishing gear used to harvest. # (biomass in kg per fishing unit per season)
163 164 165 166 167 168 169 170 171	 f <-18 # value of fishing units aloud by restriciotn of the fishing effort q <- 0.023 # Catchability # Prepresent how efficient is the fishing gear used to harvest. # (biomass in kg per fishing unit per season)
163 164 165 166 167 168 169 170 171 171	<pre>f <-18 # value of fishing units aloud by restriciotn of the fishing effort q <- 0.023 # Catchability # Prepresent how efficient is the fishing gear used to harvest. # (biomass in kg per fishing unit per season) cline <- 2*10^(-5) # cost divided per carrying capacity</pre>

177	# Variable Parameters #
178	#######################################
179	
180	r <- seq(0.01,2,0.01) # growth rate.
181	
182	Bline <- seq(0.01,1,0.01) # relative stock size
183	# represents how is the stock size relative to its carrying capacity.
184	# B'>> 1 means a stock in its maximum potencial
185	# B'>> 0 menas a stock too small compared to this potencial to be.
186	
187	delta <- alpha/(1+risk/r) # tendency to cooperate
188	# represents how much the fisher is tending to cooperate
189	# accouting its control perception, risk tolerance and
190	# the stock growth rate
191	#######################################
192	
193	
194	#######################################
195	# Bulding outcomes #
196	#######################################
197	
198	Resultado <- matrix(nrow=100,ncol=200,data=rep(0,2000))
199	for (i in 1:200){
200	for (j in 1:100) {
201	
202	Game<- matrix(
203	nrow =2,
204	ncol=2,
205	data=c(delta[i]*(Bline[j]*(1-exp(-f*q))*P-f*cline), # cooperate and cooperate payoff
206 207 208	(1-delta[i])*((log(cline/(Bline[j]*P*q))-f*q)/log(cline/(Bline[j]*P*q))*Bline[j]*(1- cline/(Bline[j]*P*q))*P+cline*(log(cline/(Bline[j]*P*q))/q+f)), # non-cooparator's payoff when the other cooperates

209 210	delta[i]*(f*(cline-Bline[j]*P*q)/(log(cline/(Bline[j]*P*q)))-f*cline), #cooparator's payoff when the other not cooperates			
211	0)			
212)			
213				
214	# Checking for possibles outcomes - Strategies' dominance			
215	# Using Nowak (2006) criteria.			
216				
217				
218 219	output<- ifelse(Bline[j]*P*q <cline,0, revenue.</cline,0, 	# no fishing here. Costs are higher than		
220	ifelse(Game[1]>Game[2] & Game[3]>Game[4],1,	# domination of cooperation		
221 222	ifelse(Game[1] <game[2] &="" cooperation<="" game[3]<game[4],2,="" td=""><td># domination of non-</td></game[2]>	# domination of non-		
223	ifelse(Game[1]>Game[2] & Game[3] <game[4]< td=""><td>,3, # biestability</td></game[4]<>	,3, # biestability		
224	ifelse(Game[1] <game[2] &="" game[3]="">Game</game[2]>	e[4],4,5))))) # Coexistence		
225				
226 227	#For the coexistence outcome, we determinate cooperative str (Nowak(2006)).	ategy frequency in the equilibrium point		
228				
229	output<- ifelse(output==4 & (Game[4]-Game[3])/(Game[1]-Game[3]-Game[2]+Game[4])<0.5,3.5,			
230	ifelse(output==4 & (Game[4]-Game[3])/(Game[1]-Gan	ne[3]-Game[2]+Game[4])>0.5,4,output))		
231				
232	Resultado[j,i]<-output # creating output matrix.			
233	}			
234	}			
235	****			
236				
237	****			
238	# Ploting graph #			
239	****			
240				

241	Resultado[1]<-0 # just to set color scale
242	Resultado[2]<-4 # from 0 to 4
243	
244	layout(matrix(c(1,1,2), 3, 1, byrow = TRUE)) # adjust plot window
245 246	image2D(t(Resultado), x = seq(0.01,2,0.01), y = seq(0.01,1,0.01),xlab="r",ylab="B'", lighting = F, main = "Game's outputs") #ploting graph
247 248	mtext(paste("risco=",risk, " alpha1=",alpha," P=",P," q=",q ," c'=",cline, " f*=",f),side=3) # showing parameters
249	plot(0, 0, type = "n", bty = "n", xaxt = "n", yaxt = "n",xlab="",ylab="") # adjust for subtitles
250 251	legend("topleft", legend=c("no fishing", "domination of cooperation","cooperative coexistence"),fill=c("darkblue", "#0071FF","darkred"),cex=1, bty="n") # subtitles
252 253	legend("top", legend=c("domination of non-cooperation", "biestability", "non-cooperative coexistence"), fill=c("palegreen","orange","red"),cex=1, bty="n") # subtitles
254	
255	######
256	
257	
258	#######################################
259	# Evolution of cooperative strategy frequency #
260	*****
261	
262	risk<-0.7
263	alpha<-1
264	layout(matrix(1, 1, 1, byrow = TRUE))
265	r <- seq(0.01,2,0.01)
266	Blinha<- seq(0.1,1,0.1)
267	freq <- c(rep(0,200))
268	plot(freq~r,type="l",lwd=3,col="white",ylim=c(0,1),ylab="Frequency of the cooperative strategy")
269	cores <- c(brewer.pal(n=9,name='PuRd'),"black")
270	
271	# ploting
272	for (j in 1:10){

273			
274	for (i in 1:200){		
275	delta <- alpha/(1+risk*r[i]) #tendency to cooperate		
276			
277	PM <-matrix(# payoff's matrix		
278	nrow =2,		
279	ncol=2,		
280	data=c(delta*(Bline[j]*(1-exp(-f*q))*P-f*cline),		
281 282	(1-delta)*((log(cline/(Bline[j]*P*q))-f*q)/log(cline/(Bline[j]*P*q))*Bline[j]*(1- cline/(Bline[j]*P*q))*P+cline*(log(cline/(Bline[j]*P*q))/q+f)),		
283	delta*(f*(cline-Bline[j]*P*q)/(log(cline/(Bline[j]*P*q)))-f*cline),		
284	0)		
285)		
286			
287			
288 289	fC <- (PM[4]-PM[3])/(PM[1]-PM[3]-PM[2]+PM[4]) # frequency of cooperative strategy in equilibrium Nowak(2006)		
290			
291	fC<-ifelse(fC>1 fC<0,1,fC) # for the case of a domination		
292	freq[i]<-fC		
293			
294	}		
295	par(new=T)		
296	plot(freq~r,type="l",lwd=3,ylim=c(0,1),col=cores[j],ylab="")		
297	}		
298 299	mtext(paste("risk=",risk, "control=",alpha," P=",P," q=",q ," c'=",cline, " f*=",f),side=3) # showing parameters		
300 301	legend("topright",legend=c("B'=0.1","B'=0.2","B'=0.3","B'=0.4","B'=0.5","B'=0.6","B'=0.7","B'=0.8","B'=0.9 ","B'=1.0"),col=cores,lwd=1) # subtitles for B' values.		
302			
303	Algorithm 2		
304	*****		

305	*****		
306	## ##		
307	## Strategic game for restricted fishing effort small-scale fisheries ##		
308	## ##		
309	## Author: Eric Zettermann Dias de Azevedo ##		
310	## Date of creation: 16/09/2019 ##		
311	## Last update: 22/01/2020 ##		
312	## ##		
313	*******		
314	***********		
315			
316	######################################		
317	# #		
318	# This algorithm builds payoff's matrix, generations matrix and a graph #		
319	# for frequency of the cooperative strategy in a evolutive game using #		
320	# Replicator's equation (Nowak, 2006) #		
321	# scenarios of control perception and risk tolerance #		
322	# #		
323	*************		
324			
325			
326	ls() # List objects		
327	rm(list=ls()) # Remove objects		
328	if(!require(plot3D)){install.packages("plot3D");library(plot3D)}		
329			
330	#######################################		
331	# Parameters #		
332	#######################################		
333			
334	risk <- 0.3		
335	alpha <- 1		

336	P <- 23		
337	q <- 3*10^(-6)		
338	cline <- 1.92*10^(-5)		
339	Bline <- 0.3		
340	r <- 1		
341			
342	fC <- 0.1 # initial population frequency		
343	fN <- 0.9 #FC + FN = 1		
344			
345			
346	#######################################		
347	# Payoff's Matrix #		
348	#######################################		
349			
350	delta <- alpha/(1+risk*r) #tendency to cooperate		
351			
352	MP <-matrix(#payoff's matrix		
353	nrow =2,		
354	ncol=2,		
355	data=c(delta*(Bline*(1-exp(-18*q))*P-18*cline),		
356 357	(1-delta)*((log(cline/(Bline*P*q))-18*q)/log(cline/(Bline*P*q))*Bline*(1- cline/(Bline*P*q))*P+cline*(log(cline/(Bline*P*q))/q+18)),		
358	delta*(18*(cline-Bline*P*q)/(log(cline/(Bline*P*q)))-18*cline),		
359	0)		
360)		
361			
362	colnames(MP)<-c("Cooperate","Not cooperate") #names for the columns		
363	rownames(MP)<-c("Cooperate","Not Cooperate") #names for the rows		
364	print("MATRIZ DE PAYOFFS (MP)") #print payoff's matrix		
365	print(MP) #on screen		
366			

367	MP<-MP/max(MP) # adjust matrix values in relation to the bigger value.		
368			
369	#######################################		
370	# Generation's matrix (G) #		
371	#######################################		
372			
373	G <- matrix(nrow=101,ncol=2,data=rep(0,202)) # zero's matrix to start		
374	G[1,] <- c(fC,fN) # first row is the initial condition of te frequencies		
375			
376 377	for (i in 1:100){ #loop for calculate each generation frequencies using replicator's equation (Nowak (2006))		
378			
379	fit_C = G[i,1]*MP[1,1]+G[i,2]*MP[1,2] # cooperative fitness		
380	fit_N = G[i,1]*MP[2,1]+G[i,2]*MP[2,2] # non- cooperative fitness		
381	fit_M = G[i,1]*fit_C+G[i,2]*fit_N # mean fitness		
382			
383	var_C = G[i,1]*(fit_C - fit_M) #cooperative frequency variation for the next generation		
384	var_N = G[i,2]*(fit_N - fit_M) #non- cooperative frequency variation for the next generation		
385			
386	G[i+1,1]<-G[i,1]+var_C # cooperative frequency for next generation		
387	G[i+1,2]<-G[i,2]+var_N # non-cooperative frequency for next generation		
388			
389	k=i+1 #counter		
390			
391	ifelse(G[i+1,1]>1 G[i+1,1]<0 ,break,0) # domination allert		
392	ifelse(G[i+1,2]>1 G[i+1,2]<0 , break,0) #		
393			
394	}		
395			
396	G <- G[seq(1,k,1),] # adjusting matrix		
397	print("Generation Matrix (G)") # printing		

398	print(G)
399	
400	
401	#######################################
402	# Ploting graph #
403	#######################################
404	
405	par(mfrow=c(1,1)) #ajust window
406	x <- seq(1,k,1) # genarations vector
407 408 409	plot(G[,1]~x,type="l",ylim=c(0,1),col="blue",main="Dinamic of the strategies",ylab="Frequency",xlab="generations",lwd=2) # frequency of coperative strategy for each genaration
410	lines(G[,2]~x,col="red",lwd=2) # frequency of non-coperative strategy for each genaration
411	
412 413	legend("right", legend=c("coperative", "non-cooperative"), lty=c(1,1), col=c("blue","red"), lwd=2, bty="n") # subtitles
414	
415 416	ifelse(k<100 & G[k,1]>G[k,2],mtext(paste("Cooperative strategy dominates in ",k," generations"),side=3), # decide between dominance and coexistence and show informations
417 418	ifelse(k<100 & G[k,1] <g[k,2],mtext(paste("non-cooperative dominates="" generations"),side="3),</td" in",k,"="" strategy=""></g[k,2],mtext(paste("non-cooperative>
419 420	mtext(paste("Coexistence with: fC= ",round(G[100,1],digits=2)," e fN= ", round(G[100,2],digits=2)),side=3)))
421	
422	
423 424	mtext(paste("risk=",risk, " alpha=",alpha, " P=",P," q=",q," c'=",cline, " B'=",Bline," r=",r," fC=",fC ," fN=",fN),side=4) #show parameters
425	
426	

427 Supplementary Material S4 – The System.

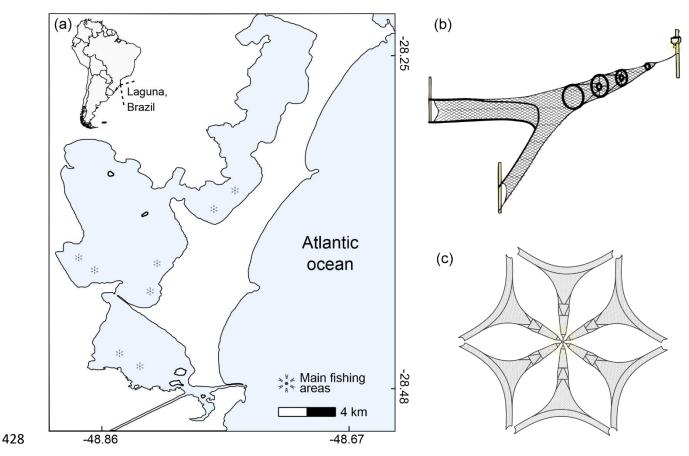
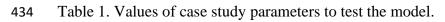



Figure 1. Fishing system characterization. (a) locates the system in the globe showing the mainfishing areas while (c) and (d) illustrates the unusual fishing gear used to capture shrimps.

432 Supplementary Material *S5* – Systems parameter's.

433

Inputs	Description	Values	
Β'	Relative stock size	$0 \le B' \le 1$	[1]
r	Growth rate	$0 \le r \le 2$	[2]
q	Catchability	0.023	Empirical
Р	Fish Market price	23.00	Market price
с′	Fishing unit cost/carrying capacity	2×10^{-5}	Empirical
α	Fisher's sense of control	$\alpha = 1$ (high fisher's perception of regulation) $\alpha = 0.8$ (low fisher's perception of regulation)	Empirical
b	Fisher's risk coefficient	b = 0.3 (high fisher's tolerance of risk) b = 0.7 (low fisher's tolerance of risk)	[1]

Empirical information and personal investigations, as well as data from technical reports from the case study were used to set the parameters for the model.

437 The value of B' had to be from zero to on, since it represents relative stock size (stock biomass 438 divided by carrying capacity).

439 The value of r was taken from zero to two as a range the represents reasonable values for the 440 species [2].

441 We set the catchability coefficient by q = 0.023. We empirically estimated CPUE using technical

report data from one fishing season [3]. Then we extrapolated to estimate total stock size using the

443 area of the gear and the area of the lagoons.

444 The shrimp market price was set in R\$ 23,00. This value was researched on-line on May 05th of 445 2019. We made an arithmetic mean for all values founded.

446 447 448 449	The $c' = \frac{c}{\kappa}$ coefficient was set by $c' = 2 \times 10^{-5}$. The fishing costs for one season, <i>c</i> was estimated using gas prices, vessels prices, gears prices and information of the logistics of the fishery (e.g. days of fishing and trips per day). We use the extrapolated value of the stock as carrying capacity value, <i>K</i> .			
450 451 452	Fishermen's high sense of control was set by $\alpha = 1$. The same parameter was set by $\alpha = 0.8$ for low control perception. Outcomes for the game when the value of this parameter was below 0.8 didn't have any cooperation dominance or cooperative coexistence.			
453 454	Fishermen's risk tolerance was set by $b = 0.3$ and $b = 0.7$ for high and low tolerance, respectively. This values are the same used in Trisak's model [1].			
455				
456	References			
457				
458 459 460	1.	Trisak J. 2005 Applying game theory to analyze the influence of biological characteristics on fishers' cooperation in fisheries co-management. <i>Fish. Res.</i> 75 , 164–174. (doi:10.1016/j.fishres.2005.03.015)		
461 462 463	2.	Silva EF, Calazans N, Nolé L, Viana A, Soares R, Peixoto S, Frédou FL. 2015 Population dynamics of the pink shrimp farfantepenaeus subtilis (PÉREZ-FARFANTE ,1967) in northeastern Brazil. <i>J. Crustac. Biol.</i> 35 , 132–139. (doi:10.1163/1937240X-00002325)		
464 465	3.	Projeto de Monitoramento da Atividade Pesqueira no Estado de Santa Catarina - UNIVALI. 2018 Informativo estadual Nº 04 (Janeiro a Junho/2018). 02 .		