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Summary of Supplementary Material

In this supplementary document, we provide supplemental methods, followed by supplemental results.

Supplementary Methods

Textbooks used

The ten textbooks used in our study [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] have publication dates ranging from 1967
to 2018. The set also includes two texts that were translated from a different language, and two texts that
are made available online for free use.

Considerations for concept extraction

In order to construct a semantic network, it is first necessary to choose which concepts should comprise
the nodes of that network. Much previous work has considered all or most of the individual words in a text
as the network nodes [11, 12]; we avoid this assumption so that we may consider, further than individual
words, higher-level concepts that may be presented in multi-word phrases. Another choice of nodes could
be the topics present in the index of a text, if an index is included. We also choose not to use this method,
as we seek to determine and extract the concepts from the text’s exposition via some more intrinsic metric
of conceptual significance. This choice was motivated by an interest in examining the semantic networks of
concepts that the text poses as significant, rather than simply those of concepts which the author deems
significant. Thus, via this paradigm of intrinsic conceptual significance, we aim to emulate human readers
in their assessment of the significance of concepts. In choosing a methodology of extracting concepts from
the texts for use as the networks’ nodes, we sought to find a method that would maximize the number
of extracted mathematical concepts while minimizing the number of extracted words and phrases that are
not mathematics related. We also sought a method that would be extensible to domains of knowledge and
exposition aside from mathematics, so that our whole methodology can be extended to the analysis of general
textual exposition. These considerations led to our development of the modified RAKE algorithm.

Implementation details for our concept extraction methodology

In our code, we use the python-rake implementation of RAKE (https://github.com/fabianvf/python-rake);
as a stop word list, we use the modified Ranks NL Long stop word list we discuss in the main text, from
which we remove the word “value”,which plays an important role in linear algebra phrases such as “singular
value decomposition”. We also add to this stop list our placeholder words “#”, “VAR”, and “-pron-”
(the pronoun placeholder output by the spaCy lemmatizer), as well as certain words used extensively in
mathematics exposition that do not convey mathematical content, in an effort to ensure that our keyphrases
might better reflect a set of meaningful mathematical concepts (see Supplementary Table S1). We also prune
the candidate pool by specifying that keywords must be comprised of at least 3 characters and must occur at
least 5 times within the text, and keyphrases can be no more than 4 words long. Given these specifications,
RAKE generates a set of candidate keyphrases and their associated scores, which we modify with the
addition of our extra Brown frequency term. We then clean the candidate keyphrases by removing any of
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examples counterexample text texts undergraduate chapter
definition notation proof exercise result

Table S1: Common words in mathematical exposition that we add to the stop word list for concept extraction

square matrix determinant

isomorphism eigenvalues

has a

may be an is the product of

has only nonzero

(a) Unfilled knowledge gap in the network

square matrix determinant

isomorphism eigenvalues

has a

may be an is the product of

has only nonzero

has nonzero

(b) Knowledge gap is filled

Figure S1: A simple example of a semantic network comprised of linear algebra concepts. (a) The lack
of connection between “square matrix” and “eigenvalues” or between “isomorphism” and “determinant”
indicates the presence of a knowledge gap. (b) The knowledge gap is extinguished by the addition of the
relationship between “isomorphism” and “determinant,” thus ensuring that all concepts’ neighbors are also
neighbors themselves.

the numerical, variable, or pronoun placeholders; after this cleaning, if there are any duplicate candidates,
we give the keyphrase in question the highest score from all duplicates. We choose to keep the top-scoring
half of candidate keyphrases, since this threshold appears to include most phrases one might expect to
represent significant linear algebra concepts in each text; thus we take the top half of scored keyphrases to
be the concept set for each text, which we refer to as the index list. This threshold of one-half is similar to
thresholds used in other work, such as the threshold of one-third in RAKE [13] and Textrank [14]. However,
no choice of threshold will perfectly include all relevant concepts and omit irrelevant words.

Considerations for network construction

Once we have determined a set of concepts to use as the nodes of a text’s semantic network, we then wish
to form the semantic network of those concepts and their relationships, as provided by the text’s exposition.
Certain approaches to semantic network construction seek to determine not only whether two entities are
related, but also the semantic nature of the relationship between the entities in question. Fig. S1 gives
an example of such an annotated semantic network, in which each relation has a meaningful label. Such
semantic parsing techniques to generate semantic networks have been applied to scientific texts in several
cases [15, 16], but they generally require involved syntactic parsing rules or data annotation. We did not
use these approaches, as the messy nature of the text-converted mathematics textbooks – with embedded
variables, formulas, and symbols sometimes interjecting sentences – likely would have interfered with effective
inference of semantic relationships. Instead, we use a method of extracting concept relationships that is more
resistant to such noise: co-occurrence frequency [17]. Co-occurrence is a notion specifying the degree to which
words or phrases tend to occur nearby each other in either a text or a set of texts. Statistical metrics based
on co-occurrence have been studied extensively in the field of computational linguistics as a measure of the
semantic relatedness of words or phrases [18, 19, 20]. Because we are interested in relationships between
concepts which are not purely linguistic in nature, and since many of our extracted concepts are multiple-
word phrases, we choose to calculate co-occurrence on the sentence level; this level of granularity will also
ensure that phrases in the same sentence, yet separated by a string of math variables, will be inferred to be
related.

Null models

Here, we describe in more detail the construction and role of each null model we employ in our work. We
begin with the data-level null models: for both the total network and the expositional filtration, we wish to
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determine the extent to which our results might simply be reflective of the topology one would expect from
the growing “semantic network” generated by computing the co-occurrence of a random set of words in our
texts. To this end, we employ a random index null model, in which we select a random set of index terms of
equal size to the original index list, drawn without replacement from the set of words comprising each text
(not including the augmented stop word list we used for RAKE extraction). We use this random index list as
our set of “concepts” for calculating each text’s co-occurrence, yielding both a final weighted network, as well
as an expositional filtration, allowing this null to be used both in the comparison of meso-scale structure and
development, as well as of persistent homology. Note, however, that we may interpret the random index null
model in a different way: that is, since the random index set excludes any stop words, it must be comprised
of meaningful words. Thus, the random index model can be viewed as conveying a semantic network – not
the network that the book intends to convey, but a semantic network nonetheless that may very well include
some mathematically meaningful concepts.

We further seek to establish the extent to which our results on topological development of the networks
are dependent on the order in which relationships are introduced within the texts. We therefore employ
a random sentence order null model, in which for each text, we randomly permute that text’s sentences,
and use the original set of index terms to calculate co-occurrence. This null model yields the same total
network, since the index set is the same and the same sentences are present, and thus the same sentence-level
co-occurrences will occur; however, the filtration it yields will differ in the order of edge introduction, thus
enabling us to study how the meso-scale and topological development of the network differs based on differing
sentence order.

The remainder of our null models are projected network-level nulls. To evaluate the extent to which
the results we observe for the core-periphery and community structure of the empirical networks would be
expected from a random network with a similar joint distribution of node degrees and weights, we use the
continuous configuration model [21]. This model is an extension of the configuration model for random graph
generation, and seeks to preserve the expected degree of each node, as well as the expected strength of the
node, where a node’s strength is the sum of the weights of the edges it participates in. Specifically, if du and
su give the degree and strength, respectively, of a node u, and dT and sT are the sum of all node degrees
and strengths, respectively, then given some graph with node set [n], for any two nodes u, v ∈ [n], we define
duv = dudv

dT
and suv = susv

sT
, as well as {Puv} as some family of probability distributions with mean one.

Then to generate a graph using the continuous configuration model, we iterate through all possible pairs of
nodes u, v, introducing an edge between u and v with probability duv; if an edge is introduced, then the
edge is given weight wuv = suv

duv
ξuv where the normalized weight random variable ξuv ∼ Puv. For the sake of

simplicity, we assume that all distributions Puv are identical, so that all ξuv
iid∼ P ; we discuss our fitting of

the distribution P for each network in the supplement.
To examine how our results on persistent homology differ from a model of exposition in which connections

are drawn completely at random – that is, with a filtration of the empirical total network that adds edges
randomly – we employ the random edge null model. In this model, edges present in the empirical total
network are introduced in a random order, and nodes are introduced immediately preceding their first
inclusion in an added edge. Next, to determine how our persistent homology results differ from a model of
exposition in which concepts are iteratively introduced and connected to all already-introduced concepts,
we examine a node-ordered filtration [22, 23]. In this null model, nodes are added by order of introduction
in the text; if multiple nodes were originally added in a single sentence, then those nodes will be added to
the node-ordered model in a random order. After each node is added to the null, all edges between it and
previously-added nodes that are present in the total network are added in a random order.

Finally, we must consider a caveat for the filtration null models: in particular, while the original expo-
sitional filtration, the random index null, and the random sentence order null have some intrinsic sense of
“time” of introduction due to the presence of the sentence structure of the text, the latter two null models do
not, as they introduce nodes and edges one at a time. As such, in order to meaningfully compare persistence
barcodes amongst all these models, we must “unfurl” the expositional filtrations of the real network and
the random index networks. To this end, we introduce the one-at-a-time (OAAT) filtration process; this
methodology takes a filtration in which multiple nodes and edges might be introduced in single sentences,
such as the expositional filtration of a text, and transforms it so that only a single node or edge is added
at each step in the filtration. Specifically, for each sentence, the OAAT process examines what nodes and

Christianson, Blevins, and Bassett 3



Supplement to “Architecture and evolution of semantic networks in mathematics texts”

edges are added to the network in that sentence; if multiple nodes are added, then they are added first, one
at a time, in a random order; then edges are added, one at a time, in a random order. For our empirical
expositional network, we compute 100 instantiations of this OAAT filtration in order to account for stochas-
ticity in the random ordering (we do not do this for each random index or sentence order filtrations, since we
already compute 100 distinct such graphs). With this method, we may examine the topological development
that occurs not just over the course of the text with a sentence-level granularity, but also on a sub-sentence
scale.

There are certain tradeoffs we make in using the OAAT filtration for our expositional filtrations. In par-
ticular, we lose the direct relationship of cavity persistence length to “time”, or sentence duration throughout
the text, since we instead simply introduce one node or edge at each “timestep” in the OAAT filtration.
However, long cycles should still tend to be long, under the assumption that there is relatively consistent
introduction of nodes and edges throughout the texts. Furthermore, this “unfurling” of the expositional
filtration gives us the ability to do a tête-à-tête comparison of our latter two null models to the expositional
filtrations. These two nulls have no built-in notion of time, and introduce a single node or edge at each step
of their filtration; as such, putting our expositional filtrations on equal footing makes the qualitative and
quantitative comparison of the persistent homologies of these filtrations more direct.

Supplementary Results

Estimating the normalized weight distributions for the continuous configuration
model

The parametrization of the continuous configuration null model for weighted undirected graphs rests
upon the choice of a family of probability distributions Puv that specifies the distribution of the possible
“normed weight” values for each edge connecting nodes u and v in a network’s node set. Specifically, where
du and su are the degree and strength, respectively, of a node u, and dT and sT are the sum of degrees and
strengths respectively over all nodes in a network, and duv = dudv

dT
and suv = susv

sT
give a normalized view

of to what extent two nodes are both high (or low) in degree or strength, then the continuous configuration
model assumes that the weight of an edge between two nodes u and v, if such an edge exists, will be

wuv =
suv
duv

ξuv

where ξuv ∼ Puv, some probability distribution on what we call the “normalized weight” of an edge. In our
work, for the sake of simplicity, we make the assumption that all normalized weight distributions are the
same distribution P . With this assumption, we may choose a parametrization of P and fit this distribution
on the empirical normalized weights of all edges in a given network. In particular, if the empirical edge
weights are given as ŵuv for all u, v in the set of edges, then the empirical normalized weights are simply
given by ŵuvduv

suv
.

Once we have the normalized weights, we may choose a parametrization. Because the normalized weights
of a network are positive and not restricted to the integers, we attempted maximum likelihood fits of a
number of continuous probability distributions with support on the positive real line on each of the networks’
normalized weights. Specifically, we focused on long-tailed distributions: the Pareto, Log-normal, Lévy, Burr,
Fisk, Log-gamma, Log-Laplace, and power-law distributions. We also calculated the Kolmogorov-Smirnov
(K-S) statistic D of each best-fit distribution in order to determine how well the distribution fit the empirical
normalized weight data. Distributions were fit and K-S statistics were calculated in Python with the SciPy
library, version 1.1.0 [24]. In all networks, the K-S statistic was quite low (D < 0.025) with p-values
all significantly greater than 0.05, indicating good fit between the empirical and best-fit distributions, or
insufficient evidence to reject the null hypothesis that the empirical normalized weight distribution and the
best-fit distribution are identical. The best-fits and statistics for each text’s network are reported in Table S2.

Concepts that appear in more than half the semantic networks’ cores

See Table S3.

Christianson, Blevins, and Bassett 4



Supplement to “Architecture and evolution of semantic networks in mathematics texts”

Text Best-fit distribution K-S statistic K-S p-value

Treil Burr 0.0163 0.303
Axler Burr 0.00997 0.795

Edwards Log-normal 0.0232 0.195
Lang Log-normal 0.0140 0.687

Petersen Burr 0.0165 0.174
Robbiano Fisk 0.00964 0.847
Bretscher Burr 0.00870 0.758

Greub Burr 0.0146 0.436
Hefferson Burr 0.00696 0.910

Strang Burr 0.00762 0.759

Table S2: Best-fit distributions and corresponding K-S statistics and p-values for the normalized weight
distribution of each text.

Concept Frequency in cores

multiplication 8
vector space 7

scalar 7
vector 8
inverse 8
matrix 9

polynomial 7
coefficient 8

linear transformation 6
linear 8

linearly independent 9
diagonal 9
theorem 9

projection 6
orthogonal 9
invertible 6
subspace 9

determinant 9
diagonal matrix 6

eigenvalue 9
eigenvector 8
orthonormal 7

orthonormal basis 6
equation 7

symmetric 6

Table S3: Concepts that occur in more than half of the texts’ cores.
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Community Example concepts

1 commutative, associative, dual space, dual map, duality, column rank, row rank
3 finite dimensional subspace, orthogonal, orthogonal complement
4 inverse, additive inverse, additive identity
6 null space, injective, surjective, isomorphism, invertibility, identity map
7 induction hypothesis, division algorithm, factorization
8 linearly dependent, linear combination, orthonormal list, gramschmidt procedure
9 euclidean inner product, dot product, continuous real value[d] function, derivative
10 positive operator, adjoint operator, complexification, complex spectral theorem
11 transpose, permutation, determinant, square matrix

Table S4: Example concepts present within communities in the Axler periphery.

Example concepts in the Axler periphery communities

See Table S4.

Development of the meso-scale core-periphery and community structures

Similar to our analysis of the development of each text’s core and periphery, we further wish to examine
the development of the community structure in the semantic networks through the addition of edges between
particular groups over the course of exposition. Specifically, we consider four edge types: ‘core-periphery’
edges, or those connecting a core node with a periphery node; ‘intra-core’ edges, connecting two core nodes;
‘inter-periphery’ edges, connecting nodes in two different periphery communities; and ‘intra-community’
edges, connecting two nodes in the same periphery community. We examine the relative introduction of
each group of edge types by calculating, at each point in the texts’ expositions, what fraction of edges in
a particular group have been introduced. We show in Fig. S2 the mean ± 2 standard deviations of these
group introduction curves across all texts; for the intra-community curves, we plot two examples: one of
an early-introduced community, which attains a value near 1 indicating near-completion relatively quickly,
and one of a late-introduced community, which takes longer to be fully developed, and remains closer to 0
throughout much of the text.

Note that while the core-periphery, inter-community, and intra-core edge sets appear to be introduced
steadily, showing little deviation from the diagonal y = x, which reflects constant introduction over time, the
early and late intra-community examples shown have significant variability and deviate greatly from such a
rule of constant introduction. We may quantify this behavior of deviation from constant introduction with
the Kolmogorov-Smirnov (K-S) distance: in particular, for any of the edge group development curves c(·),
we examine its K-S distance, or greatest vertical distance, to the line y = x on the interval (0, 1):

K-S(c) = max
t∈(0,1)

|c(t)− t|.

Note that we chose our early- and late-introduced communities in Fig. S2 as those communities with the
most positive and negative values of c(t) − t on the interval (0, 1), respectively. We plot the resulting K-S
metrics for each edge group type across all texts and corresponding null models in Fig. S2b-e. We find relative
consistency across texts in relatively low K-S values for the intra-core, core-periphery, and inter-community
groups, and notably, in many cases it appears as though the actual texts exhibit lower K-S values, and thus
more constancy in edge introduction in these groups, than the bulk of the random index and random sentence
order graphs (Fig. S2b-d). Notably, we also observe that while many of the texts exhibit lower mean intra-
community K-S values than the bulk of the random index networks, they also generally lie well above the
distribution of values for the random sentence order null graphs. Thus, this pattern of findings suggests that
while the texts generally exhibit significant variability in when intra-community edges are introduced during
the exposition, the reordering of sentences that occurs in the random sentence order model disrupts this
variability, causing a community’s edges to, on average, be introduced in a more distributed fashion over the
course of the reordered ‘exposition’. In turn, these findings suggest that the periphery communities extracted
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Correlate Spearman corr. coef. Spearman p-value Pearson corr. coef. Pearson p-value

NACL, dim. 0 0.143 0.760 0.466 0.291
NACL, dim. 1 0.036 0.939 -0.334 0.464
NACL, dim. 2 0.0 1.0 -0.145 0.757
Avg. NACL 0.071 0.879 -0.187 0.689

OAAT NACL, dim. 0 -0.857 0.0137 -0.821 0.0237
OAAT NACL, dim. 1 -0.500 0.253 -0.575 0.177
OAAT NACL, dim. 2 -0.893 0.00681 -0.846 0.0163
Avg. OAAT NACL -0.821 0.0234 -0.828 0.0213

Table S5: Spearman and Pearson correlation coefficients and p-values for Goodreads ratings and normalized
average cycle lifetimes (NACLs).

from the empirical networks do indeed represent distinct groups of related concepts that are localized in their
position in text, as we might expect from a chapter focusing on a particular topic (Fig. S2e).

Barcodes and Betti curves for all texts and null models

For the barcodes and Betti curves of the sentence-granularity text filtration, random index model, and
random sentence order model, see Figs. S3, S4. For barcodes and Betti curves of the OAAT text filtration
and all null ensembles, see Figs. S5, S6.

Normalized average cycle lifetime for texts and all null ensembles

For normalized average cycle lifetimes of the sentence-granularity filtrations for the empirical texts,
random index model, and random sentence order model, see Fig. S7. For the normalized average lifetimes
of the OAAT filtrations for the empirical texts and all null models, see Fig. S8.

Extended correlation analysis

In the main text, we report results of a brief exploratory analysis assessing the relationship between
structural features of exposition and community ratings of the textbooks from which the expositions are
taken. Here, we provide the complete statistics for the Spearman and Pearson correlations between average
rating on Goodreads and normalized average cycle lifetime (NACL) in Table S5. We also note that while we
consider average rating across editions, the default rating presented by Goodreads for textbooks, this metric
should reasonably approximate the rating of each specific text edition we consider, since textbook editions
tend to be similar.

We furthermore examine additional correlations between text features, both structural and otherwise, in
Fig. S9, with associated p-values in Fig. S10. Notably, while we observe correlations between average and
dimension-2 OAAT NACL and both number of sentences and node count of each text, neither of the latter
structural features are significantly correlated with the average text rating. Furthermore, though the number
of ratings for each text is highly variable (Table S6), we find that this number does not significantly correlate
with text rating (Spearman ρ = 0.464, p = 0.294). Finally, we find that both dimension-0 and average OAAT
NACL are negatively correlated with the frequency of the word “proof” in the texts’ sentences (Spearman
ρ = −0.782, p = 0.00755 and ρ = −0.697, p = 0.0251, respectively), suggesting that theoretically-focused
linear algebra texts might minimize the extent to which knowledge gaps are created and persist, compared
to more applied texts. All correlations and p-values reported here and in the corresponding section of the
main text were calculated using the Pingouin Python library, version 0.2.8 [25].
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Figure S2: Community development curves across texts, and associated K-S distance between community
development curve types and the line y = x across all texts and null ensembles. (a) Mean ± 2 standard
deviations of community development curves (fraction of edges within a particular group present at a partic-
ular normalized time in the exposition) across all texts, (b) K-S distances for the core-core edge introduction
curve, (c) K-S distances for the core-periphery edge introduction curve, (d) K-S distances for the periphery-
periphery edge introduction curve, and (e) mean K-S distances across intra-community edge introduction
curves.
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Figure S3: Sentence-filtration barcodes and Betti curves for the first half of the texts. Each pair of rows
shows an example barcode and Betti curves for a given text, with text results in the leftmost column and
null models in the other columns.
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Figure S4: Sentence-filtration barcodes and Betti curves for the second half of the texts. Each pair of rows
shows an example barcode and Betti curves for a given text, with text results in the leftmost column and
null models in the other columns.
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Figure S5: OAAT barcodes and Betti curves for the first half of the texts. Each pair of rows shows an
example barcode and Betti curves for a given text, with text results in the leftmost column and null models
in the other columns.
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Figure S6: OAAT barcodes and Betti curves for the second half of the texts. Each pair of rows shows an
example barcode and Betti curves for a given text, with text results in the leftmost column and null models
in the other columns.

Christianson, Blevins, and Bassett 12
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Figure S7: Normalized average cycle lifetime for 0-, 1-, and 2-dimensional persistent homology across all
texts’ sentence-granularity filtrations and random index and random sentence order null models. From top
to bottom: dimensions 0, 1, and 2.

Text Average Goodreads rating Number of ratings

Treil 3.83 6
Axler 4.26 673
Lang 4.23 31

Bretscher 3.37 71
Greub 3.43 7

Hefferson 3.96 25
Strang 4.21 891

Table S6: Average rating and total number of ratings on Goodreads for texts with more than 5 ratings.

Christianson, Blevins, and Bassett 13
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Figure S8: Normalized average cycle lifetime for 0-, 1-, and 2-dimensional persistent homology across all
texts’ OAAT filtrations and all null models. From top to bottom: dimensions 0, 1, and 2.
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Figure S9: Spearman correlation matrix for text features, including sentence- and OAAT-normalized average
cycle lifetime (NACL), core-ness and modularity statistics, core - periphery area, intra-community edge
development K-S, word frequencies, average text ratings and number of ratings, and text length, node
count, and edge density. “NACL d” refers to NACL in dimension d.
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Figure S10: Spearman correlation p-values for text features, including sentence- and OAAT-normalized
average cycle lifetime (NACL), core-ness and modularity statistics, core - periphery area, intra-community
edge development K-S, word frequencies, average text ratings and number of ratings, and text length, node
count, and edge density. “NACL d” refers to NACL in dimension d.
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