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ABSTRACT

Boo, Jeongjoon Ph.D., Purdue University, August 2020. Utilizing Data-Driven Ap-
proachesto Evaluate and DevelopAir Tra�c Controller Action Prediction Models.
Major Professor: Steven J. Landry.

Air tra�c controllers (ATCos) monitor flight operations and resolve predicted

aircraft conflicts to ensure safe flights, making them one of the essential human op-

erators in air tra�c control systems. Researchers have been studying ATCos with

human subjective approaches to understand their tasks and air tra�c managing pro-

cesses. As a result, models were developed to predict ATCo actions. However, there

is a gap between our knowledge and the real-world. The developed models have never

been validated against the real-world, which creates uncertainties in our understand-

ing of how ATCos detect and resolve predicted aircraft conflicts. Moreover, we do

not know how information from air tra�c control systems a↵ects their actions. This

Ph.D. dissertation work introduces methods to evaluate existing ATCo action predic-

tion models. It develops a prediction model based on flight contextual information

(information describing flight operations) to explain the relationship between ATCo

actions and information. Unlike conventional approaches, this work takes data-driven

approaches that collect large-scale flight tracking data. From the collected real-world

data, ATCo actions and corresponding predicted aircraft conflicts were identified by

developed algorithms. Comparison methods were developed to measure both qual-

itative and quantitative di↵erences between solutions from the existing prediction

models and ATCo actions on the same aircraft conflicts. The collected data is fur-

ther utilized to develop an ATCo action prediction model. A hierarchical structure

found from analyzing the collected ATCo actions was applied to build a structure

for the model. The flight contextual information generated from the collected data
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was used to predict the actions. Results from this work found that the collected

ATCo actions do not show any preferences on the methods to resolve aircraft con-

flicts. Results found that the evaluated existing prediction model does not reflect the

real-world. Also, a large portion of the real conflicts was to be solved by the model

both physically and operationally. Lastly, the developed prediction model showed a

clear relationship between ATCo actions and applied flight contextual information.

These results suggest the following takeaways. First, human actions can be identified

from closed-loop data. It could be an alternative approach to collect human subjec-

tive data. Second, the importance of evaluating models before implications. Third,

potentials to utilize the flight contextual information to conduct high-end prediction

models.
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1. INTRODUCTION

Ensuring safe flights by controlling air tra�c is the primary reason for having air

tra�c controllers (ATCos) to supervise aircraft activities just as equivalent to hav-

ing tra�c lights and signs on the road. However, we do not know how ATCos are

“actually” manage aircraft conflicts that were predicted during air tra�c control op-

erations in real-time. Many aspects of ATCos were studied for a long time by many

researchers in various perspectives and directions. However, the reason for claiming

such a statement is in the characteristics of those conventional studies about ATCos

actions for resolving predicted aircraft conflicts.

Air tra�c control systems are critical to safe flight operations, and tasks of ATCos

take a significant portion of it. One of their primary tasks to ensuring safe flights is

detecting possible aircraft conflicts that either violate the rule of separation between

aircraft or predicted to cause a collision. Another one is resolving the predicted

conflicts by making aircraft to alter them from original flight trajectories. An aircraft

conflict resolution can be achieved by changing flight path, altitude, speed, or applying

two or more of these methods together. These two tasks are called conflict detection

and resolution (CD&R), and researchers focused on understanding these two tasks to

use such knowledge to improve air tra�c control systems. However, results from these

studies do not represent ATCo actions. These studies are based on human subjective

approaches. They are direct and e↵ective ways to study human subjects. However,

this type of approach has an issue regarding generalization. To generalize a result

from a study, it requires a reasonable number of samples considering the target’s

total population. Human subjective studies require the sampling of participants.

Recruiting participants on any experiment is not an easy task, and targeting a specific

group of people is more challenging. ATCo is not a common type of job. It is
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impractical to recruit a statistically reasonable number of ATCo to a study. Therefore,

the results of the study have to confront generalization issues. Their designs or

experiments also a↵ect knowledge about the ATCos. These human subjective studies

were taken place in experiments with simulated environments and scenarios designed

and developed by researchers, not the ATCos. Moreover, regardless of the fidelity of

a simulation, it is distanced from the real-world. Laboratory works are often tested

outside to address the discussed issues. However, the studies on ATCos never been

validated against actual controller actions in the real world. Along with safety issues

on flight operations, researchers did not have a proper method back then.

Knowledge about ATCo actions on CD&R can be implemented to improve air

tra�c control systems. One way of the development is in automating the current tasks

of ATCo to reduce human errors. At the same time, researchers and stakeholders aim

to build an automated system to perform like ATCos. However, the results of the

conventional studies have limitations in satisfying this condition. Recent technological

advances and changes in policies allowed a di↵erent approach to the study. This work

introduces a method contributing to our knowledge about ATCo actions on aircraft

conflict resolution. The approaches utilize a large scale of real-world flight data that

reflects actual ATCo actions. With such information, this work proposes a method

to evaluate existing aircraft conflict resolution models against actual ATCo actions.

Also, it implements contextual information regarding the actions to develop a model

to predict ATCo actions on predicted aircraft conflicts.

This work includes a series of three parts: collecting necessary information, eval-

uating the models, and developing a model. Frist part identifies predicted aircraft

conflicts and accompanying actual ATCo actions from flight data. The second part

takes this information to evaluate the conflict resolution performance of existing mod-

els against ATCos. The third study uses the results of the first part to conduct a

prediction model.

The first part of this work is about collecting actual ATCo actions. Collecting

real-world data is the fundamental part of this work to proceed evaluation of exist-
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ing aircraft conflict resolution models and conducting a prediction model based on

actual ATCo actions. This part collects the actions from flight tracking data, which

collected for a period. A set of algorithms was developed to extract ATCo actions

from the data since it just presents how an aircraft flew and planned to operate. The

algorithms assume an ATCo alters an aircraft from its planned route, only when it

is necessary. Furthermore, one of the conditions that satisfy it is when an aircraft

conflict is predicted. Developed algorithms search two specific situations from the

collected flight data. First, they look for a deviation from a planned route by com-

paring it against the flown trajectories of an aircraft. Then it searches the existence

of another aircraft that is expected to cause a conflict with the first aircraft if it was

flying as planned. Results of these algorithms provide a pair of aircraft that was

expected to cause a conflict and ATCo altered their operations. Eventually, how an

aircraft deviated shows what kind of ATCo action was taken to resolve a conflict.

The second part of this work introduces a method to evaluate existing aircraft

conflict resolution models against actual ATCo actions. As stated above, the conven-

tional studies on ATCo actions never been validated against actual ATCo actions.

This part of the study proposes a method to evaluate such models with the ATCo

actions collected from the first part. The proposed method consists of three measure-

ments to answer the following questions to evaluate an existing model from various

perspectives. First, does a solution generated by a prediction model is di↵erent from

a corresponding ATCo action? If they are di↵erent, what makes them di↵erent? Also,

can we apply the model solution to an aircraft conflict instead of applied ATCo action?

The first measurement qualitatively compares an ATCo action on a collected conflict

against model solution generated by inputting a conflict case to an existing model.

The second measurement investigates results from the first measurement to identify

di↵erences between an ATCo action and a model solution on the corresponding con-

flict. Then it finds explanations on the identified information. The last measurement

checks whether a model solution is plausible on the cases where a model solution and

its counterpart are resulted as di↵erent from the first measurement.
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The third part of this work develops a prediction model based on the collected

ATCo actions. The discussed conventional studies focused on studying the relation-

ship between an aircraft conflict and how ATCo resolve it to come up with the res-

olution models. Instead of investigating the relationship, the developed model looks

into a statistical relationship between ATCo actions and contextual information that

represents predicted aircraft conflicts. The developed model depicts the structure of

ATCo actions. It contains sub-models that are hierarchically connected to each other.

Each sub-model makes one decision, and the following sub-model makes another de-

cision to fill the detail of an ATCo action. These decisions include a selection of an

aircraft to deviate, which type of maneuver to apply, and how to apply the selected

maneuver.

As a result, this work introduces a method to collect actual ATCo actions. Then

it utilizes the information to evaluate existing aircraft conflict, resolution models. By

conducting a model based on the collected information, this work eventually compares

the performance of two di↵erent types of models to present strengths and limitations

coming from di↵erences in conducted approaches. Additionally, the result contributes

to our knowledge about understanding ATCo more accurately for improving air tra�c

control systems.

This document includes five main sections besides the Abstract and Introduction

in the main content. The following section is the Background to provide readers the

necessary information to support methods used in each part of this work. After the

Background, methodologies, and results of each part of this work are presented in

order. Lastly, takeaways of this work are discussed to summarize findings from each

part and as an overall. After the main sections, the Appendix lists additional details

of this work of the previous sections.
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2. BACKGROUND

The first form of air tra�c control system was flagging aircraft to signal whether

they are clear to land or need to wait at Lambert Field by Archie W. League in

1929 [1]. In 1930, Cleveland Hopkins International Airport launched a milestone

of current airport tra�c control by constructing a control tower with radio devices

for communication purposes. Along with the control systems at airports, en-routing

(mid-air) tra�c control started with a method called “paper strip” [2]. At that

time, the controllers did not have technologies and infrastructures to monitor and

communicate with en-routing aircraft. Thus, they had to assume aircraft are following

their original route and estimate their progress or adjust the pace by getting reports

from pilots while communications were possible with ground stations. This manual

method was possible at that time because there was not much tra�c as nowadays,

and they were not as fast as jets.

The current system is not fundamentally di↵erent from the paper strip method,

except now we can track and communicate with aircraft in real time. The paper strip

method utilized a physical map to indicate locations of aircraft, but the current tra�c

control system uses displays to show them automatically. Also, three di↵erent types of

radars transit signals with flights and their frequencies become higher, and coverages

become shorter as aircraft approach to airports and vice versa. An ATCo manages

an airspace sector, and there are multiple sectors in one airspace (currently, the U.S.

has 22 airspaces). We define a pair of aircraft conflicts when they are expected to

invade each other’s zone which is called the protected airsapce zone. In the U.S,

each en-routing aircraft in high altitude has the standardized zone that other aircraft

are not recommended to enter. Researchers describe this zone as a flat and vertical



6

cylinder around an airplane, which is 5 nautical miles wide horizontally and 1000 feet

tall vertically.

FAA provides a guideline to train ATCos to resolve aircraft conflicts [3]. However,

details in training may di↵er by instructors and trainees. Also, individual ATCos use

di↵erent methods to resolve conflicts based on their experience or characteristics.

Moreover, there is little information about ATCo actions. There are three methods

to collect ATCo actions: 1) finding ATCo controls from communication with pilots,

2) conducting human subjective experiments, and 3) utilizing air tra�c data. ATCos

communicate with pilots to deliver various information, including controls, to alter

the current routes as regulated by the Federal Aviation Administration (FAA) [4].

Researchers use the last two methods more frequently than the first one due to dif-

ficulties in accessing the information. There are two practical ways to obtain com-

munications. The first one is obtaining information recorded by aircraft. There are

FAA advisory circulars and international standards for recording the communication

from aircraft [5–7]. On the other hand, there are studies to focus on studying the

actions of the pilots [8, 9]. The second one is using the communications captured by

a third-party personnel. The strength of this method is in collecting specific ATCo

actions. However, not all communications are public, and some records may not exist.

Also, the recordings include many di↵erent conversations, which make it di�cult to

locate the desired conversation from the records.

Researchers studying tasks of ATCo are taking qualitative and quantitative ap-

proaches to explain and model them. Qualitative studies focused on understanding

the cognitive elements of ATCo actions for the tasks by directly observing samples

of ATCos. For example, Wickens, 1984 applied methods of psychology to understand

how human operators perform tasks cognitively [10]. Other qualitative researches in-

troduced the situation awareness and mental model [11–13]. Sarter and Woods, 1991

suggested a relationship among findings of human subjective studies [11], and Niessen

et al., 1998 introduced a complete form of the ATCo mental model [14]. Meanwhile,

aviation organizations such as FAA, NASA, and Eurocontrol were interested in exter-
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nal ones. They observed and interviewed ATCos to identify and list ATCo strategies

on performing the CD&R [15–17]. Studies integrated individually collected behaviors

to form prescribed models. Quantitative approaches viewed the CD&R as a geometry

problem and applied optimization perspective to minimize various operational costs.

Tomlin, Pappas, and Sastry, 1998 introduced an optimization model that can provide

horizontal resolutions [18]. Other quantitative methods utilize stochastic approaches

and force field modeling methods, but they may not resolve a conflict. The most ad-

vanced approach so far is combining both prescribed and mathematical models. The

Auto Resolver is one of the most advanced models. It utilizes a prescribed method

to prioritize which mathematical model to provide solutions [19].

Most human subjective models of the CD&R are unable to measure their per-

formance quantitatively due to their qualitative and macroscopic descriptions. Pre-

scribed models could check their conflict resolution performance, but they were uti-

lized for other purposes. Borst et al., 2016 tested whether the “best practice” strate-

gies to novice ATCo a↵ect their performance [20]. The study measured human per-

formance under two di↵erent criteria: correctness of the CD&R and related response

time. Optimization models such as Bilimoria, 2000 tested their model with a set

of scenarios that has only two aircraft to check if the models can function ade-

quately [21]. Some studies tested their models with flight data under limited cir-

cumstances. Granger, Durand, and Alliot, 2001 applied their algorithm into a flight

simulator to measure detection and resolution ratio with related time cost [22]. NASA

conducted a series of studies to adopt automated CD&R [23–25]. The studies mea-

sured the performance of the models regarding response time and accuracy, and their

primary purpose was to see if ATCos can adequately operate the automation.

The human subjective studies indicated that perceived information plays a critical

role in ATCo tasks. Starting with Leplat and Bisseret, 1966, many studies identified

factors influencing the tasks [26]. However, their identification was not the primary

purpose of studies. FAA’s report, on the concept of ATCo, lists explicit information

that ATCos utilize to perform their tasks [27]. Studies like Chatterji and Sridhar,
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2001 measured the workload of ATCo based on perceived information (e.g., the num-

ber of aircraft at the moment) [28]. Also, Wickens et al., 1997 lists information in

each part of the proposed model of the human subjective process [29]. Significant

points from these studies are proposing the existence of a pool of information, and

ATCos prioritize or select a specific set for their decision-making processes. Unlike

these studies, most mathematical models only adopt geometric information such as

coordination of aircraft and its vector on their algorithms.

The majority of previous studies researching CD&R of ATCos took human sub-

jective approaches to collect the information. In general, there are three methods:

survey, observation, and experiment. One example for the use of survey/observation

is a FAA report regarding reducing the standard of runway separation [30]. FAA

conducted a field test to study di↵erences in ATC equipment that a↵ect strategies of

controllers at airports. After the observation, they surveyed ATCos to collect their

opinions about the new standard. Recent studies involving human subjective exper-

iments focus on human and computer interaction for future systems. Mercer et al.,

2014 recruited ATCos to test the performance of the proposed tra�c management

system designed for expected future air tra�c [31]. Rantanen and Nunes, 2009 expe-

rienced ATCos and college students to test their hypothesis regarding the actions [32].

These approaches have known limitations in generalizing their results. Overall, this

type of approach requires expert participants, which have di�culties in recruiting

participants due to a smaller pool size. Individually, results from the survey can

be too generalized or di↵erent from what participants do. Also, participants of the

human subjective experiments may not act as they are in the real situation due to

controlled environments.

Research utilizing air tra�c data use various types and state of it. Martin et al.,

2016 generated air tra�c scenarios based on flight plans and radar information [33].

Rantanen and Wickens, 2012 adapted specific cases of aircraft conflict data [34]. Also,

studies like Reynolds and Hansman, 2005 are designed to use real-time data [35]. To

study ATCo actions, Martin et al., 2016 conducted a human subjective experiment
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using their scenarios, while the other two studies analyzed the data directly under

their hypothesis. The hypothesis from Rantanen and Wickens’s 2012 is based on its

previous studies that found preferences on the actions [36]. Based on the preferences,

this study designed classes of ATCo actions and categorized each conflict according to

them. The classification is based on recorded trajectories of aircraft, which involves

lateral and vertical maneuvers. Another group of researchers studied based on a

hypothesis about intentions behind aircraft that deviated from its original route [37–

39]. These studies design a set of maneuver models that describe the intention of

particular aircraft motion to predict corresponding ATCo actions. Recently, a similar

group of researchers applies machine learning methods to classify ATCo actions [40].

This study developed a supervised learning-based method developed by using large-

scale air tra�c data.
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3. PART 1: METHODS

The fundamental of collecting ATCo actions from the flight tracking data is in tracing

back chronologically ordered series of events. These events imply how an ATCo ma-

neuver an aircraft to resolve predicted aircraft conflict. Also, there are two assump-

tions associated with ATCos. Figure 3.1 illustrates these events and assumptions.

The first assumption is about the CD&R process by ATCos. Chronologically, ATCo

has to predict a pair of aircraft that are expected to cause conflict while monitoring air

tra�c from the assigned region. Then, the ATCo takes action to the current aircraft

activities. This action includes a maneuver that makes pilots deviate their aircraft

from the original route to avoid the predicted conflict. After the deviation is executed

and operation is done, flown trajectories in the flight tracking data represents these

changes. Another assumption is about the flown trajectories. The trajectories not

only show how an aircraft flew, but also results of ATCo actions because aircraft

must follow their actions. Based on these two assumptions, the proposed method

tracing back flown trajectories of aircraft to find any deviation from their planned

trajectories. The proposed method would consider a pair of aircraft as a predicted

aircraft conflict if one deviated and another one is expected to cause a conflict within

the deviated region. Then it considers applied deviation as an ATCo action to resolve

the conflict.

The process to identify predicted aircraft conflicts and corresponding ATCo ac-

tions includes six significant parts: data collection and process, applied algorithms,

aircraft filtration, and analysis. This method assumes flown trajectories of aircraft re-

flect air tra�c management operations of ATCos. Thus, the proposed method collects

and processes flight tracking data of aircraft that must be guided by ATCos. Two

algorithms take the processed data. The algorithms identify deviations from aircraft’s
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Figure 3.1.: An overview of Part 1: Methods

initial routes then search another aircraft to be paired for an expected conflict. Filtra-

tion techniques were developed to make the process e�cient to manage a large-scale

of the collected data. Lastly, the output from the algorithms is analyzed to inference

ATCo actions and provide general statistical analysis of their characteristics.

3.1 Data Collection

FlightAware collects real-time flight tracking data from their automatic depen-

dent surveillance-broadcast (ADS-B) ground stations. The data collection utilized

two types of flight data that they collect from aircraft: the open and closed-loop

data. Unlike a general flight plan, the open-loop data from FlightAware only includes

a series of waypoint codes from departure to arrival. The codes can be decoded to

provide their coordinates and other information. The open-loop data is always in-

cluded in the transmitted data if an aircraft have them. However, the closed-loop

data updates approximately every 30 seconds until its arrival. It includes eight vari-



12

ables: timestamp, latitude, longitude, speed, altitude, altitude change (whether an

aircraft is climbing, cruising, or descending), altitude status (whether an aircraft is

away from its ATC-assigned altitude), and update type (how the information was

updated). With the closed-loop data, heading and pitching angles can be calculated

by projecting the records.

The data collection targeted the high-altitude of airspaces for three air tra�c

control centers. Selected zones are ZLA (Los Angeles), ZOB (Cleveland), and ZTL

(Atlanta). These sectors are selected due to their tra�c density. Logically, there is a

higher chance of having conflicts if there are more aircraft at a place at the same time.

Also, if the method cannot find a conflict from those airspaces, it will not find from

other places also. Additionally, aircraft flying at high-altitude sectors have open-loop

data. According to the regulations, IFR aircraft must possess flight plans to fly in

the high-altitude sector.

A query tool was developed to collect the data automatically. It continuously

monitors real-time information from FlightAware. The query tool must specify an

area and an altitude to scan aircraft within a targeted space. Shapes of the airspaces

are complicated polyhedron, as presented in Figure 3.2 in orange lines. Search boxes

were created to wrap the target airspaces based on the minimum and maximum

latitudes and longitudes of each space, as shown in Figure 3.2 in red lines. Since the

boxes include spaces that are not the targeted spaces, it could include aircraft that

did not pass the target airspaces. Additionally, searching altitude is set to be above

250FL, which is the minimum altitude of high-altitude sectors.

The first task of the query tool is scanning unique identification (ID) of aircraft

instead of their open and closed-loop data. The scanning process only captures the

flown trajectories from the departure to the moment. Therefore, the tool initially

collects their IDs only until the scanning is over. The second task is retrieving open

and closed-loop data by searching the database of FlightAware with the collected

IDs. The tool performs the scanning task every 1 minute. For continuous and secure
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Figure 3.2.: A visual example of the boxed airspace (ZOB)

scanning, the query tool was operated on Amazon Web Service that provides an

on-demand cloud platform.

3.2 Data Processing

The open and closed-loop data collected is not processed. Eight cleaning processes

were conducted to filter un-usable ones. Frist process is identifying empty data.

Sometimes quarried ID does not contain any information, or either open or closed-

loop data does not exist. The first process identifies these three cases of empty data

and removes them from the list. The second process matches open and closed-loop

data. Some empty close and open-loop data is removed from the previous process.

Thus, the second process needs to make sure that both types of data are there for an

aircraft. If an aircraft does not have one of them, it was filtered.

From the third process, the rest of the cleaning process checks content in each

type of data. Even though the flight data was queried by altitude above 250FL, it

is still possible that recorded data may be di↵erent. The third process checks all

closed-loop data to make sure that aircraft were recorded to fly at high-altitude. The
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fourth process checks whether there is an empty data point in both types of data.

Sometimes un-processed data records a data point twice. The fifth process checks

any duplicated data point by comparing the predecessor and successor of each data

point.

Occasionally, an aircraft may not arrive at the designated airport due to various

reasons. In this case, a flight plan is no longer valid for the proposed method. Also,

it is possible that the submitted flight plan may have di↵erent departure points. The

sixth process compares the departure and arrival points of the closed and open-loop

data. Each raw of closed-loop data is collected approximately every 30 seconds. If

data contains a value that exceeds maximum projection from the previous state, the

seventh process checks if the value can be adjusted. If the situation occurs consecu-

tively, corresponding data is excluded.

The last process investigates fluctuations in recorded speed and altitude of aircraft.

Closed-loop data present the speed of aircraft in terms of ground speed. As the

ground speed includes wind speed, it fluctuates over the period while aircraft is in

constant airspeed. This fluctuation a↵ects the performance of the deviation detection

algorithm. Since the collected data does not include wind information, this process

stabilizes collected speeds by averaging them. Figure 3.3 shows the raw and processed

speed of an aircraft from departure to arrival. It averages ground speeds every 5-

minute intervals, which is equivalent to 10 consecutive data points. Recorded altitudes

were tested with the same method.

Figure 3.3.: A visual example of the speed leveling
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3.3 Deviation Detection

In this work, a deviation is defined as a di↵erence between the flight plan and

flown trajectories. Detecting a deviation of an aircraft is one of the significant algo-

rithms developed for Part 1. A deviation can be calculated because of the unique

characteristics of flight operations. In general air tra�c operations, ATCos put a de-

viated aircraft back to its original route and status when predicted conflict is resolved.

Logically, an aircraft must come back to its original route if its arrival airport does

not change. This part defines an area generated by initiating a deviation and closing

by returning to the planned operation as a deviated region. An aircraft can deviate

from its flight plan in terms of three di↵erent dimensions: lateral, vertical, and speed.

It can deviate with changes in one or more of the listed dimensions at the same time.

Di↵erent method is required to detection deviations in each dimension. Notably, the

deviation detection algorithm is heavily dependent on a distant calculation between

two points on the surface of the earth. A Geodesic calculation on ellipsoid WSG84 is

applied to calculate the shortest distance between two coordinates [41]. To calculate

distance from deviated trajectories to the first ones, the o↵-track distance calculation

that calculates the shortest distance between a point and a line segment was used.

3.3.1 Lateral deviation

Figure 4 illustrates the detection of lateral deviations. Both open and closed-loop

data includes coordinates, and a combination of latitudes and longitudes explains the

lateral dimension. Coordinates in open-loop data are the waypoints that an aircraft

is planned to pass, but those in closed-loop are recorded locations that an aircraft

was positioned. Coordinates of closed-loop data are recorded approximately every 30

seconds. Thus, open-loop data have a much smaller number of coordinates compare

to those of the closed-loop data. They were meant to be connected to generate a

planned route.
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Figure 3.4.: A visual example of the lateral deviation detection

The algorithm for the lateral deviation calculates a distance from those closed-

loop data to a planned route generated by the open-loop coordinates. The algorithm

first generates segments out of open-loop waypoints. A segment is a straight line

between two consecutive open-loop waypoints. Then, it calculates a distance from a

closed-loop coordinate to the generated segments. Equation 1 shows a calculation of

the distances; it calculates a geodesic between a segment of open-loop waypoints and

a closed-loop coordinate. The equation computes a triangle by connecting the first

open-loop waypoint to the closed-loop point then projecting perpendicular line to the

segment between the waypoints. After calculating distances for each segment, the

algorithm picks the minimum value from the distance list. For one closed-loop coor-

dinate, the algorithm generates several distances, which is equivalent to the number of

segments in open-loop waypoints. The selected distance is the shortest distance from

a closed-loop coordinate to its planned route. Also, it shows how much a closed-loop

coordinate has deviated from its planned route. If the distance is zero, it implies that

the aircraft was on the planned route at that moment. The algorithm loops this cal-

culation to every coordinate in the closed-loop data on those of open-loop waypoints.

As a result, the algorithm generates how far each closed-loop coordinate has deviated

from the planned route by open-loop waypoints.

After the distance calculation, the algorithm finds a deviated region. It searches

for a series of coordinates that the distances were continuously increasing until a
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certain point then decrease back to the planned route. Even though an aircraft is

trying its best to stay on the planned route, it can be slightly o↵ the track due to

other circumstances such as weather, recording, and calculation errors. The algo-

rithm neglects any deviation of fewer than fifty meters to mitigate this issue. Also,

the algorithm only considers deviations that consist of at least two consecutive points.

Identified two consecutive deviations are equivalent to four consecutive records, ap-

proximately 2 minutes of flight operation, by adding additional points to the front

and back. These additional points act as the starting and returning points.

Altitude and Speed deviations

Algorithms to detect deviations in vertical and speed dimensions are di↵erent to

that of lateral deviations. Both open and closed-loop data include lateral information.

However, collected open-loop data does not include planned altitudes nor speeds at

specific waypoints. Thus, there is no base value from open-loop data to perform a

comparison against that of closed-loop data. The algorithms use the status of an air-

craft when it is in the cruise phase, steady-state, as a base value for the comparison.

In a flight operation, ATCo assigns an altitude and airspeed to an aircraft for cruis-

ing after it finished to ascend and enter a high-altitude sector. The steady-state is

unknown, but the algorithm finds it from the closed-loop data. Figure 3.5 illustrates

the process to identify the steady-state. The algorithm looks for at least ten consec-

utive records that have identical altitudes and speeds. The region enclosed by two

red dotted line is the identified steady-state. The green dotted line represents 250FL,

which is the minimum altitude for the high-altitude airspace sectors. Instead of the

recorded speed, the algorithms take leveled speed from the Data Processing. Ten con-

secutive records are equivalent to 5 minutes of flight operations. If they cannot find

any steady-state, it looks for one less consecutive records until the searching range

becomes two consecutive records. Also, if they find multiple sections of closed-loop

data that satisfy the conditions for a steady-state, the algorithms select the earliest
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one. Once a steady-state of an aircraft is determined, the algorithm uses the values

to find any deviations in corresponding dimensions.

Figure 3.5.: A visual example of the steady-state calculation

Figure 3.6 illustrates the process of altitude and speed deviation of detections.

The algorithms find the di↵erence between the steady-state and recorded altitude

and speed separately. Unlike the lateral detection, it only checks from the time when

an aircraft entered a high-altitude sector when it is flying above 250FL. Similar to

the lateral detection, the algorithms search regions where altitude and speed either

increase above those of aircraft’s steady-state and return to it. Since altitude and

speed can be decreased, the algorithms also look for the reversed deviations. The

deviated regions also must be longer than two consecutive points.
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Figure 3.6.: A visual example of the altitude and the speed deviations

3.4 Conflict Detection

The conflict detection algorithm takes the deviated region collection from the

previous algorithm to predict an aircraft conflict pair. Figure 3.7 illustrates the

process of the algorithm. First of all, the algorithm boxes the lateral dimension of

the deviated region regardless of deviated dimensions. A pair of aircraft is expected

to violate a separation, and it needs to violate both lateral and vertical separations to

cause a conflict. The algorithm finds any other aircraft that passed the boxed deviated

area to check the lateral separation first. The box is generated by the maximum

and minimum values of longitudes and latitudes from the closed-loop coordinates

that correspond to the deviated region. After the box is generated, the algorithm

stretches the box by 1 degree from both latitudes and longitudes on both sides. The

stretching is a technique to widen the searching area. It is critical in a case where the

deviated region is relatively small or narrow. For example, lateral deviation results in

a polygon defined as a deviated region. However, if an aircraft deviated by changing

either altitude or speed, the enclosed region can be a line in the lateral dimension.

Then, the algorithm cannot find any other aircraft because the searching region does

not exist. After stretching the box, the algorithm searches any other aircraft that

their closed-loop data passed the region. After collecting a list of aircraft that passed
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the boxed area, the algorithm checks the vertical dimension of the aircraft. It removes

aircraft that was not in the high-altitude sector. It filters aircraft that did not enter

a high-altitude sector, above 250FL, during their flights inside of the box.

Figure 3.7.: A visual example of the altitude and the speed deviations

After the lateral and vertical filtration, the algorithm checks how close the other

aircraft is to the deviated one. The distance calculation from the deviation detection

was adapted for the calculation. The algorithm calculates the shortest distance be-

tween open-loop coordinates of the deviated aircraft and closed-loop coordinates of

the second aircraft within the box. In lateral deviation, a deviated aircraft will no

longer have a lateral separation violation. It is expected to fly on the planned route,

so the closed-loop coordinates are on those of open-loop. In a vertical violation,

both aircraft also must violate lateral separation. For the speed, the violation can

be either one. After calculating the shortest distances between them, the algorithm

checks whether the distance violates a lateral separation. If it does violate the rule,

the open-loop position of the deviated aircraft and closed-loop position of the second

aircraft is considered as conflict points. If the distance does not violate the rule, the

second aircraft was not considered for a conflict pair. Lastly, the algorithm calculates

arrival time to the conflict points. The second aircraft directly use its corresponding

timestamp from its closed-loop data. For the deviated aircraft, both vertical and

speed deviations directly use corresponding timestamps. In the case of the lateral

deviation, the algorithm takes the timestamp of closed-loop data. It takes timestamp

from the deviated points that are perpendicular to its conflict point as predicted ar-
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rival time. The algorithm calculates the di↵erence between the two arrival times. If

the di↵erence is less than 5 minutes, the corresponding aircraft is considered as a

predicted aircraft conflict pair.

3.5 Data Filtration

The purpose of utilizing flight tracking data to collect ATCo actions is in the col-

lection of large-scale data e�ciently. Methods used in this part includes trigonometric

calculations and various nested loops. As a result, each calculation takes a long com-

putational time. Special techniques were developed for e�ciency. These techniques

apply filters to the data so that each calculation does not have to be conducted on

every entity. The first technique was specifying the closed-loop data when the target

aircraft was flying in the target airspace. Aircraft can be passing, arriving, or depart-

ing to the airspace. Since the study is only interested in the target airspaces, it does

not need to worry about the rest.

Additionally, airspace in and out the time of an aircraft is collected to filter other

aircraft that did not fly in the same airspace at the relatively same time. Average

flight time is calculated for each airspace to come up with a filter window. This value

was subtracted from the airspace in time and added to the time for airspace out.

The second technique goes along with the previous one. It locates closed-loop

trajectories that were above 250FL to make sure deviation detection calculations to

be conducted when aircraft were on high-altitude sectors and the en-routing phase.

These two techniques help to narrow down meaningful processing data from the de-

viation detection. The last technique helps to find candidates for the conflicting pair.

When the box for a deviation region is stretched, recorded timestamps representing

entering and exiting the box by a deviated aircraft and other aircraft can be calculated

from their closed-loop data. The calculation is finding the closest recorded points to

the borders of the box. This technique reduces the number of conflict pair candidates

and decreases the load on calculation for the predicted aircraft conflict pairing.
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3.6 Categorical Analysis

Analyzing collected data includes two significant methods. The first method inves-

tigates collected controller actions to decide whether its corresponding conflict was

resolved by one action or else. The deviation detection algorithm finds deviations

in three di↵erent dimensions separately. It is possible that an aircraft conflict was

resolved by either one action or multiple. The first method finds unique pairs. It

separates collected data into two groups: one with a single maneuver and another

with multiple maneuvers. If a pair is detected times, the analyzing method checks

their deviated regions. If some portion of the regions are overlapping or one region

either identical or belongs to another, the corresponding pair is considered to get a

mixed maneuver from their ATCo.

The second method categorizes the collected actions based on their characteris-

tics. Based on literature reviews, the categorization results forming the actions into

a hierarchical structure with three layers. Table 1 describes the categorization. The

top layer is the target layer. Each ATCo action is categorized to specify targeted

aircraft from the corresponding pair. Distances between a predicted point and a

conflict point were used to standardize the target. Predicted point is defined as the

location where a deviated aircraft started a maneuver. Since untargeted aircraft did

not deviate, recorded points with the least di↵erence in recorded time are consid-

ered as its predicted point. Thus, aircraft are categorized into four groups in this

layer: closer to conflict and targeted, closer to conflict and un-targeted, not closer

to conflict and targeted, and not closer to conflict and un-targeted. The following

layer, Type, corresponds to how an aircraft has deviated. It directly utilizes the

three dimensions applied to collect deviations. This layer has three groups based on

deviated dimensions: lateral, vertical, and speed. The last layer deals with specifics

of the applied type maneuver. From the literature review, many di↵erent options

were existed to apply a maneuver. Those options can be categorized into two groups.

One option eventually reduces a value that has a direct relationship with the corre-
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sponding dimension of the Type and vice versa. For example, all options that result

in reducing speed correspond to a group and increasing to another. Travel distance

is the base value for lateral deviations, and altitude is that of vertical deviations.

General statistics were applied to calculate the portion of each layer and its groups.
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4. PART 1: RESULTS

4.1 Data Collection

Flight tracking data was collected from January 14 to 18 of 2019. The data must

be collected by a given access code to use the database of FlightAware. Also, the

given access code is only valid for specified days assigned by the provider. The access

was only provided for three days due to the company’s policy. Also, it can only be

provided during work hours. Thus, initial access to the database was from January 14

to 16 of 2019. However, the access was extended additional three days from January

16 due to a technical issue that occurred on that day. As a result, the data collection

period became five consecutive days.

The data was collected from three US airspaces: ZLA (Los Angeles), ZOB (Cleve-

land), and ZTL (Atlanta). The data was collected from those five consecutive days,

which is equivalent to 120 flight operation hours. During the time, the data was

queried from the database of FlightAware. The targeted airspaces were queried 7,200

times. Figure 4.1 shows an overview of the collected flight tracking data. About the

same number of aircraft activities were collected across the airspaces: ZLA with 3,644

aircraft, ZOB with 3,454 aircraft, and ZTL with 3,499 aircraft. In total, activities of

10,5097 aircraft in high-altitude sectors of the target airspaces were collected.

Figure 4.2 shows the daily analysis of the collected data. Except for day1 and

day4, a similar number of aircraft were flown in each airspace. The low total number

of flights on day1 is caused by the data collection time that started from the afternoon

of the day. Thus, it lost about half of the flights on the day. Besides the total number

of daily flights, each airspace shows similar results on each day.
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Figure 4.1.: An overview of Part 1: Results

Figure 4.2.: A daily analysis on the overview of Part 1: Results

4.2 Data processing

The data cleaning process filtered 848 aircraft from the list, which is about eight

percent of the collected data. Two types of collected data corresponded to the filtered
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data. The retrieved flight identification did not include either open or closed-loop

data. The search query was conducted to find aircraft that have flown on the high-

altitude sectors of the targeted airspaces. The high-altitude airspace sectors locate

above 250FL. However, the closed-loop data of some aircraft did not include any

locational information that indicates they were flying above 250FL. The cleaning

process identified other issues that can be corrected. Some open-loop data included

duplicated waypoints. Those points were removed from the open-loop data. Lastly,

both open and closed-loop data do not show any omitted data points. As expected

from the methods, speed from the closed-loop data showed continuous fluctuation.

They were leveled by identifying steady states of each aircraft. The altitudes recorded

in the closed-loop data did not show fluctuations like the speeds; the methods did

not level them.

4.3 Deviation Identification

After the data processing and filtration, the deviation identification algorithm

found 69,300 deviations from the collected data. Figure 4.3 shows the results of the

algorithm. The algorithm found over twenty thousand deviations from each airspace.

The total number of lateral deviations is slightly less than twenty thousand, while

those of vertical and speed deviations are about twenty-five thousand each. The

proportion of altitude deviations is the largest among them. Each airspace shows

similar trends: the proportions of lateral deviations are the least, while those of

altitude deviations are the largest across the airspaces. In total, these deviations were

identified from about twenty-five thousand aircraft. About three thousand aircraft

were identified by the algorithm across three deviation types and airspaces. There are

about nine thousand unique aircraft, which is about ninety percent of the collected

aircraft. On average, an aircraft deviated three times during its flight operation

regardless of the deviation type.
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Figure 4.3.: An overview of the deviation identification

4.4 Conflict Identification

Figure 4.4 shows the identified conflicts and ATCo action. The conflict identifi-

cation algorithm identified a total of 1,312 individual predicted aircraft conflicts. In

detail, 418 conflicts from ZLA, 427 from ZOB, and 467 from ZTL were identified.

The identified 1,312 conflicts were caused by 1,238 unique predicted aircraft conflicts.

ZLA resulted in 360 unique aircraft conflict pairs, ZOB resulted in 409 pairs, and

ZTL resulted in 469 pairs. The number of identified individual predicted aircraft

conflicts are less than the number of unique aircraft conflict pairs. It implies that

there are conflicts that ATCo applied multiple maneuvers. In total, 914 conflicts were

resolved with a single maneuver, while 324 conflicts involved more than one maneuver.

In ZLA, there are 147 single-maneuver conflicts and 89 multiple-maneuver conflicts.

ZOB has 125 single maneuvers, and 107 conflicts with multiple maneuvers. Lastly,

ZTL has 126 single maneuvers while there are 128 multiple maneuvers. There is a
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small di↵erence between ZLA and ZOB and ZOB and ZTL. However, the di↵erence

between ZLA and ZTL is slightly bigger. In percentages, the di↵erence among the

airspaces is less than four percent. Both ZLA and ZOB showed a bigger portion in

single maneuvers, while ZTL has slightly more cases on the multiple maneuvers.

Figure 4.4.: An overview of the identified aircraft conflicts

Figure 4.4 shows the proportions of unique aircraft in the identified aircraft con-

flicts. There are 2,624 aircraft that are involved in the identified aircraft conflict pairs.

However, there are 831 unique aircraft in pairs. It implies that there are aircraft in-

volved in more than one conflict, even considering the multiple maneuvers. ZLA has

194 unique single maneuvers aircraft and 128 unique aircraft for multiple maneuvers.

ZOB has 158 unique aircraft for single and 139 aircraft for multiple maneuvers, while

ZTL has 163 and 173 for the corresponding types. These results also tell that about

thirty to forty percent of the total aircraft conflicts include aircraft involved in an-

other conflict across the airspaces. The discussed ratio between the mathematical
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number of aircraft involved in the conflicts and those of the unique number of aircraft

on the singles and multiples are within ten percent di↵erence.

Figure 4.5.: An overview of the identified aircraft conflicts

4.5 ATCo action categorization

Table 4.1.: An overview of the individual air tra�c controller actions

Target
Lateral Vertical Speed

358 472 482

Closer

AC
708

166 132 171

52 118 102

Further

AC
604

45 88 83

128 134 126
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Table 4.1 shows the categorized ATCo actions counted individually. The di↵er-

ence between the selected target is less than ten percent. The proportions among

the type maneuvers show portions of both vertical and lateral maneuvers are similar

while lateral is slightly smaller. The proportions of option maneuvers show some clear

di↵erences. The numbers on the top cells represent negative options while the bottom

ones represent positive options. For targeting aircraft closer to their conflict points,

negative options of each type of maneuver were more used. However, the di↵erence

from vertical is smaller than the other two maneuver types. For targeting aircraft fur-

ther away from their conflict points, positive options were used more frequently than

the negative ones. These results show that di↵erent from option selection depends on

the target selection regardless of the selected type maneuvers.

Table 4.2 shows the results of each airspace. The trends from Table 1 can also be

observed from the data. However, results from ZOB has a slight di↵erence in their

option maneuvers. Unlike other airspaces, ATCos from ZOB selected positive options

more when the targets are the closer aircraft, and the selected type maneuvers are

vertical.

Table 4.3 shows the categorized ATCo actions that only involve single maneuvers.

Like the individual maneuvers, the closer aircraft were selected more often. The

di↵erence between the proportions of the selected target is even greater than that

of the individuals. Also, the speed maneuver takes the largest portion among type

maneuvers. The option maneuvers showed similar trends as the individual ones. The

only di↵erence can be found from the proportions of options for speed maneuvers

when the further away target is selected.

Table 4.4 shows the categorized ATCo actions involving single maneuvers for each

airspace. The categorized actions from each airspace also show similar trends. The

results from ZOB has the least di↵erence between the selected target. There are

small di↵erences, but the trends in proportions of the type maneuvers show identical

results. The trends in the option maneuvers show generally similar trends. In the

options for the vertical maneuvers, others have the same trends except for those of
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Table 4.2.: An overview of the individual air tra�c controller actions by each

airspace

Airspace Target Lateral Vertical Speed

ZLA 108 164 146

Closer

AC
232

48 59 57

14 30 24

Further

AC
286

15 34 33

31 41 32

ZOB 117 145 165

Closer

AC
222

37 33 61

14 43 34

Further

AC
205

16 23 27

50 46 43

ZTL 133 163 171

Closer

AC
254

48 40 53

24 45 44

Further

AC
213

14 31 23

47 47 51

Table 4.3.: An overview of the single-maneuver air tra�c controller actions

Target
Lateral Vertical Speed

115 122 161

Closer

AC
251

41 51 82

25 32 20

Further

AC
147

13 15 35

36 24 24
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Table 4.4.: An overview of the single-maneuver air tra�c controller actions by each

airspace

Airspace Target Lateral Vertical Speed

ZLA 39 46 62

Closer

AC
96

17 26 30

8 8 7

Further

AC
51

6 5 16

8 7 9

ZOB 39 36 50

Closer

AC
73

11 11 27

8 12 4

Further

AC
52

3 5 9

17 8 10

ZTL 37 40 49

Closer

AC
82

13 14 25

9 12 9

Further

AC
44

4 5 10

11 9 5

ZOB. It also shows opposite trends on the speed maneuvers while selecting the further

away targets.

Table 4.5 shows categorized ATCo actions with multi-maneuvers. Unlike the indi-

vidual and single maneuvers, multi-maneuvers were categorized based on the selected

target and the combination of maneuvers. It shows that there is no significant dif-

ference between target selection. From the results, the combination of vertical and

speed maneuvers and all together are used the most regardless of the targets. Table

4.6 shows the results of each airspace. Each airspace has di↵erences in the multi-

maneuvers. In ZLA, combinations between lateral and vertical and lateral and speed
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Table 4.5.: An overview of the multi-maneuver air tra�c controller actions

Target

Lateral

+

Vertical

Lateral

+

Speed

Vertical

+

Speed

All

12 13 23 123

Closer 20 30 51 42

Further 18 19 50 66

on closer targets were applied more often than the further away ones. However, the

opposite trend appears on the other two combinations. In ZOB, only the combi-

nation between vertical and speed maneuvers on the closer targets was more used,

but other combinations result di↵erently. In ZTL, the combinations between lateral

and vertical, and vertical and speed on the closer targets were applied more than

the future ones. Other combinations show an opposite trend. Unlike individual and

single maneuvers that do not have any significant di↵erences among the airspaces,

the categorization of multi-maneuvers shows regional di↵erences.
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Table 4.6.: An overview of the multi-maneuver air tra�c controller actions by each

airspace

Lateral

+

Vertical

Lateral

+

Speed

Vertical

+

Speed

All

ZLA 16 12 29 26

Closer 10 9 12 9

Further 6 3 17 17

ZOB 8 12 36 42

Closer 2 5 20 17

Further 6 7 16 25

ZTL 14 25 36 40

Closer 8 16 19 16

Further 6 9 17 24
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5. PART 2: METHODS

Existing prediction models have never been validated against ATCo actions. The

introduction discussed one reason, which is the absence of actual ATCo actions. Not

only the ATCo actions but also the corresponding predicted aircraft conflicts are re-

quired for validation. The validation can be accomplished by comparing them. Also,

actual aircraft conflicts are required for the comparison because it must be between

solution from the model based on a conflict against ATCo action for that conflict.

Part 1 collected both ATCo actions and corresponding predicted aircraft conflicts.

Part 2 utilizes the collected information to evaluate an existing prediction model on

ATCo actions. The evaluation includes three contents. First, existing prediction

models must be listed and select one to evaluate. The selected model must satisfy a

series of conditions so that it can be properly evaluated. Then, the model is trans-

formed into a form that can take the collected aircraft conflict. The transformation is

required not only to take the designed input but also to generate solutions that enable

comparisons. Three di↵erent measurements were applied to provide a comprehensive

evaluation of the performance of the model. The first measurement, qualitative com-

parison, categorically compares model solutions against ATCo actions. The second

measurement, feature comparison, identifies causations of di↵erences between them.

The third measurement, quantitative comparison, checks the applicability of model

solutions to the conflicts, which is having ATCo actions di↵erent from the model

solutions.

5.1 Model Selection

Researchers have studied CR for a long time. From the studies, many models are

developed and reviewed. Part 2 of this work selected an existing model for evaluating
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its performance against ATCo actions on the corresponding predicted conflicts. The

evaluation was conducted on one of the models instead of multiple of them. This

kind of evaluation has never been conducted before, and conducted methods are

novel. Also, the conducted method is not designed to be case-specific. The methods

can be applied to other models if they satisfy a set of conditions.

The first step for the model selection is collecting a list of them. Keywords related

to CR was used to search literature about the models. After locating literature de-

scribing the models, characteristics of the models were listed. The second step checks

eligibility of the listed models to see whether they are capable of being evaluated. A

series of conditions must be satisfied to proceed with the evaluation process. Following

list shows the major conditions that the candidates must satisfy to be considered.

• A model provides a solution for en-routing aircraft

• A model provides a solution for aircraft conflict pairs

• A model is based on a human-subjective study

• A model solution is executable

• A model can take input information in a format

• A model has a structured process for solution generation

Part 1 collected ATCo actions and their corresponding predicted aircraft conflict

pairs on high-altitude flight operations. Aircraft in this type of operation is in the

en-routing phase. It collected the data on aircraft in this phase only due to its applied

algorithms. The algorithms include a comparison between open and closed-loop data

to find ATCo actions, and their conflicts and aircraft planned to fly at high-sector

altitude must possess open-loop data by air tra�c regulations. Thus, the collected

data cannot be applied to the models that are not developed for en-routing aircraft.

Aircraft conflict is defined as a conflict involving more than two aircraft. There

are models focused on complicated conflicts involving multiple aircraft. The data
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collection from Part 1 did not consider complicated conflicts. Thus, models for those

conflicts cannot be evaluated against the collected data. Besides human subjective

approaches to develop the models, other researchers took mathematical approaches.

Their studies consider aircraft conflict as a trigonometric problem by substituting

movements of aircraft as vectors. These models also provide reasonable solutions.

However, their solutions have a week relationship with ATCo actions due to the

fundamentals of the models. Also, they do not contribute to the knowledge about

ATCo, which is the main purpose of this work. Lastly, the mathematical approaches

are out of the scope because this work is targeted to suggest new directions to the

conventional human subjective approaches to studying human controls.

Existing prediction models have a wide range of fidelity. Some models can provide

precise trajectories, while others suggest vague solutions. Part 2 defines a fidelity of

the models by three abilities of the models. The first ability to check is the quality

of solutions from the models. The solutions must be executable. For the comparison,

the model solutions must be in a format that can be transformed in terms of the

categorization of the ATCo actions applied from Part 1. A model should provide some

information about target aircraft and maneuvers. For example, if a model solution is

“change altitude,” the model fails the condition because it does not provide a target.

Also, if another solution is “deviate a slower aircraft,” the corresponding model does

not qualify due to the absence of a maneuver. The best case is a model that can

provide at least a target and type from its solution in terms of the categorization

methods applied in Part 1. The clarity in input information is another essential

characteristic that a↵ects a model’s fidelity. Generating model solution to compare

with an ATCo action, they must originate from identical aircraft conflict. If the

information required to generate a solution is unclear, a conflict cannot be adequately

utilized. For example, if a model’s input is defined as “low tra�c,” it does not qualify

because both “low” and “tra�c” is relative and vague terms. However, there is an

exception to the qualification if a model provides the following types of information on

the side. It should provide how those terms are defined in the study, such as an area
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around a target to calculate tra�c and a numeric scale for the tra�c density. Also,

the required input for a model could be generated from the collected data. Lastly, a

model must have a structured process of generating solutions. A model becomes a

black box without this information, and it cannot be transformed for the evaluation.

For example, if a model states “use current altitude of an aircraft to change its speed,”

how to process altitude to make a solution is unknown. Thus, at least any description

that can be transformed into if-statement must be provided, such as “if the current

altitude of an aircraft is above 350FL, increase the speed of aircraft.”

Many of existing prediction models can satisfy the discussed significant conditions.

A list of minor conditions was applied to narrow down the model candidates qualifying

the significant conditions. The significant conditions are designed to focus on essential

capabilities for the evaluation against ATCo actions. However, the minor conditions

deal with the expected performance of the selected model on the evaluation. A

comprehensive model will be favored among the candidates. The performance of a

model is highly dependent on its limitations. First, a model that can be applied

to aircraft in various situations. If a model can only be applied to a specific case,

the total portion of the aircraft that can be evaluated decreases accordingly. For

example, if a model can only resolve aircraft conflict pairs that are cruising, any

conflicts involving ascending or descending aircraft cannot be considered. It also

directly related to the constraints that a model has regarding their statuses, such as

altitude and speed. For example, the model does not have any constraints on the

altitude of aircraft to be applied favored than others with such restrictions. Not only

the range of situations and the number of constraints but also the range of solutions

a↵ect the model selection. According to Part 1, an ATCo action can be categorized

into at least twelve di↵erent maneuvers. If a model can generate solutions for various

targets and types of maneuvers in terms of the categorization method applied in Part

1, the probability of better performance on the evaluation compares to other models.

There are other aspects to consider other than the limitations of the prediction

models. A model based on ATCo in the United States will be favored among the
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candidates. There are international flight operation regulations, but each country

manages airspace by itself. Thus, di↵erences in resolving aircraft conflicts can be

expected among ATCos from di↵erent countries. The data is collected from US

airspaces, and it is more likely to results in better performance with the models

developed by studying US ATCo actions. The model reflects the characteristics of

US ATCo, which also can be expected from the collected ATCo actions.

Along with a source of the candidates, how a model was conducted is investigated

for the selection. There are various methods in human subjective approaches. Part 2

assumes that studies experimented with ATCos to identify their actions in simulated

environments could reflect their strategies more than other approaches. Lastly, mod-

els from well known and more referenced studies are prioritized than others, which

considers their fame reflects the overall quality of the models.

5.2 Model Transformation

Besides a fidelity of an existing prediction model, how a model is transformed

a↵ects its performance. The applied transformation method starts with mapping the

model. Formats of the models vary, but essential information can be extracted. The

transformation utilizes the extracted information for constructing computer programs

for each portion of a model separately. Individual components of the transformed

models connected to function as one after the parts were programmed.

The transformation of input for the selected model requires three processes. First

of all, components of the model must be mapped. The models take di↵erent formats.

For example, some models are descriptive, while others are constructed in the form of

flow charts. The extraction of essential components for input, process, and output of

a model is needed to unify the format. After the extraction, the method maps them

to reproduce the model. After the mapping not only information to provide as an

input, other additional information from other parts of the model can be identified.

The identified information is listed to obtained from the collected data. Some of the
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listed information can be directly taken from the data, but others require calculations.

This type of information includes di↵erences between the status of paired aircraft or

operational information such as the proximity of an aircraft to its destination.

Figure 5.1.: A visual example of the deviation and prediction points

After deciding how to obtain the information, the method makes a decision on

where to obtain the information from the collected data. Part 1 collected predicted

aircraft conflicts from the process of identifying ATCo action from flight tracking

data. Flown trajectories from closed-loop data that deviated from its flight plan in

open-loop data are called deviation point, as shown in Figure 5.1. The point where

a deviated aircraft initiated its deviation is called the deviation point. The actual

deviation of the aircraft occurred somewhere between the deviation point and its

previous one. Also, the corresponding ACTo’s action delivered to the target aircraft

should have occurred before the deviation point. There are approximately 30 seconds

between the deviation point and its previous one. This method takes a conservative

approach and considers the previous point as to where the deviated aircraft took
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the corresponding action. This point is called a prediction point. Information from

the prediction points of the deviated aircraft is utilized for the input of the deviated

aircraft. Aircraft from the conflicting pair that did not deviate does have the deviation

point so that the discussed assumption cannot be applied. Figure 5.2 shows a method

to assign a prediction point to the aircraft. The method assumes information of the

non-deviated aircraft from the conflict pair when they were positioned at the same

time as the prediction points of a deviated aircraft was at its prediction point. It takes

a timestamp of the prediction points of the deviated aircraft from its closed-loop data

and compares it with all timestamps of its counterpart to find one with the minimum

di↵erences.

Figure 5.2.: A visual example of the prediction point of non-deviated aircraft

Transforming the solution generation process of a model is about building a hi-

erarchical structure that takes input information from top and output solutions at

the bottom. Mapped information from the input transformation applied again to

understand how to input information is processed to generate solutions. Before the

transformation, the method generates a network of the mapped information. Its nodes
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represent information processors, and edges represent the flow of information. Each

node has two outgoing edges: one corresponds to the following processor and another

one for terminating the solution generation process due to failure to satisfy condi-

tions. Figure 5.3 illustrates the transformation of the solution generation process.

The method builds if-statements out of each processor from the network to transform

the solution generation process. It checks whether a processor requires multiple types

of information to generate a decision and build if-statements for each type of infor-

mation. For example, if a processor is “target a slower aircraft,” there is only one

statement to find which aircraft is slower. If a processor is “target a slower aircraft

with lower altitude,” then the method separates it into two statements: one for the

speed and another one for the altitude. Second, the method checks the relationship

between statements in a processor. The purpose of defining their relationship is to

decide which outgoing edge that an outcome should take. If there are multiple state-

ments in a processor, it can output two to the power of the number of the statements.

In this example, there are four possible outcomes from the processor. Depends on

the number of the statements, a set of other statements must be generated to decide

which type of outcomes proceeds to the next processor and others to be terminated.

The transformation process iterates the discussed process until it transforms all nodes

in the network.

Figure 5.3.: An illustration of the model transformation process
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The method transforms the generated model solution into two di↵erent forms.

The first form is for the qualitative comparison. Part 1 sorted collected ATCo actions

with three categories: target, type, and option. Identical categorization method is

applied to model solutions. The second form is generating solution trajectories for the

quantitative comparison. If a model provides specific guidelines, the method directly

generates trajectories accordingly from the prediction point of a model solution’s tar-

get aircraft. In other cases, a developed simulation generates trajectories to maintain

minimum separation at the corresponding conflict point. The trajectory generation

has three parts. Figure 5.4 illustrate the process. The first parts identify a point in

airspace that resolves the corresponding aircraft conflict if the target aircraft devi-

ates from its original route to head to the point and passing it. A simulation places

a cylinder that represents minimum separation distances in the three-dimensional

space centering at the conflict point. The dimension of the cylinder is five nautical

miles wide from the center point and twenty flight levels above and below the point.

The next step finds a point on the surface of the cylinder. A point on its surface

meets the minimum requirements to resolve the corresponding conflict. The location

of the point depends on a maneuver used in the model solution. After this point is

decided, a simulation connects the point to the prediction point. A segment created

by these two points becomes the first half of the solution trajectory. The second half

is from the surface point back to the original route. Lastly, a simulation dissects the

segment by every 30 seconds interval than fills dimensional information and expected

arrival time for each point accordingly. Details of the output transformation further

discussed in the results based on the selected model.

5.3 Qualitative Comparison

Qualitative comparison measures categorical di↵erences between ATCo actions

and model solutions on corresponding predicted aircraft conflict pairs collected from

Part 1. The transformed model generates its solution in terms of the ATCo action
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Figure 5.4.: A visual example of the minimum distance trajectory calculation

categorization method applied for Part 1. The comparison investigates di↵erences in

target, type, and option. If the selected model does not provide clear guidance on the

option, the comparison is conducted on target and type. Figure 5.5 illustrates a form

of results from the qualitative comparison. Within the collected predicted aircraft

conflicts, the selected model can provide solutions. The model may not fully cover

the conflicts due to its characteristics. Within the space that the model can be applied,

there will be two major portions: one for having identical or similar solutions for the

corresponding ATCo actions and another that are di↵erent. The Identical solutions

are ones having identical targets and maneuvers. However, similar solutions are ones

with identical maneuvers but the di↵erent target. The di↵erent solutions are having

either identical targets, but di↵erent maneuvers or both targets and maneuvers are

di↵erent. Equivalent in maneuver is weighted more than the selected target aircraft

because it is the actual method taken to resolve the corresponding conflict. Also,

it is possible to apply a maneuver with the identical type but di↵erent options and

details to the di↵erent target. For example, if a conflict can be resolved by moving

one aircraft to a higher altitude, ideally the same type of maneuver but lowering the
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altitude of another aircraft could resolve the conflict too. Thus, having a di↵erence

only on the target is considered a similar solution.

Figure 5.5.: An illustration of the result from qualitative comparison

5.4 Feature Comparison

Feature comparison investigates di↵erences among the grouped solutions from

the Qualitative comparison. More specifically, the comparison method investigates

di↵erences from the identical group resulted from the qualitative comparison to other

groups. The comparison conducts series of clustering analysis between the sub-groups.

Binomial classification tree was applied for the analysis. The modeling method is

based on Breiman et.al (1984) [42]. The analysis takes binomial form by assigning

one sub-group’s response variables assigned as positive (one) and another sub-group

as negative (zero). For the analysis, all collected data responses to each sub-group are

taken as input variables. Tree plots for each comparison were conducted to show how

each explanatory variable a↵ect the clustering. Tree pruning technique is applied to

avoid overfitting. The cross validation was applied for the pruning. The technique

selects a size of tree based on the original tree that minimizes the cross validated

error by computing the minimum complexity parameter.

Table 5.1 shows a list of the flight contextual information extracted from the col-

lected data. Flight contextual information is defined as information that describes
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both physical and operational information of an aircraft during its operation. For

example, the location and speed of aircraft correspond to physical information, while

its departure and arrival are operational information. Flight contextual information

is part of flight data. Its portion is shared with flight tracking data (open and closed-

loop data of aircraft) and air tra�c data (operational information about air tra�c

control systems as airspace information). Part 1 collected flight tracking data and

some portion of tra�c data related to it. Thus, applied flight contextual informa-

tion is extracted from both flight tracking data and air tra�c data, which is not a

comprehensive list of it.

The extraction of the flight contextual information is based on three states of each

aircraft: prediction, deviation, and conflict points. The point where an aircraft devi-

ated from its planned route to avoid a predicted aircraft conflict is called a deviation

point. Since the closed-loop data were collected approximately every thirty seconds,

the actual deviation of the aircraft occurred somewhere between the deviation point

and its previous one. Also, the corresponding ACTo’s action delivered to the target

aircraft should have occurred before the deviation point. This method takes a con-

servative approach and considers the previous point as to where the deviated aircraft

took the corresponding action. This point is called a prediction point. Lastly, a con-

flict point is a location on the original route of an aircraft, where it is predicted to

have a conflict with another aircraft.

Three di↵erent extraction methods were applied to obtain the listed information.

The first type of contextual information is directly given by flight tracking data.

Altitudes and ground speeds of aircraft at their prediction points are included in the

closed-loop data. Ground speed is a summation of airspeed, actual speed generated

by an aircraft, and wind speed. It does not use airspeed since it was not given by

the data and the wind speed at the moment is unknown. Both variables continuous

variables from zero to infinite and both aircraft in a conflict pair have their variables.

The second type of information is the variables generated by computing flight tracking

data. Distance and heading calculations belong to this group. Geodesic was applied
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to calculated distances among three di↵erent locations: the prediction to the conflict

points, the conflict to the destination points, and the prediction to the destination

points. They are continuous variables ranging from zero to infinite, and there are

variables for each aircraft in a conflict pair. Heading angles were calculated based

on the projection angle between two points. The angle can be a relative value, so

bearing was applied to standardize it. There are three angular variables for each

aircraft, and they are categorical. Instead of precise degrees, a degree from zero to

three hundred and sixty was separated into eight pieces in a clockwise direction. Each

section is forty-five degrees wide, starting from zero degrees. The operational phase

of aircraft presents a stage of an aircraft from its operations. There are five main

stages in a flight operation: departing, ascending, cruising, descending, and landing.

Part 3 utilizes stages from ascending to descending since departing and landing stages

are not responsible for the targeted ATCos for high-altitude airspace sectors. The

method added intermediate stages in-between the three phases as a preparation phase

to shift the stage of flight operations. These intermediates are right before and after

aircraft enter or leave high-altitude sectors. Variables for the operational phases are

categorical. Each aircraft has one for their prediction and conflict points because

their operation phase can be di↵erent at those points, and it can a↵ect ATCo actions.

Another indicator for the operation phase is included to show whether aircraft change

its phase if it is at their conflict points at the point of prediction point. The last type

of flight contextual information results from computing flight tacking data with air

tra�c data. Unlike other variables that each aircraft has their own, there is one

only categorical variable for the corresponding airspace for the conflict pairs because

both aircraft are always in the same airspace at their prediction points. Airspace

information is generated by comparing boundary coordinates of targeted aircraft and

locational information in the closed-loop data to check whether an aircraft is inside

the boundaries at its prediction point. There are three categories for the variables,

which indicate three airspaces where the flight tracking data was collected. Tra�c

information is a special form of this type. In air tra�c control systems, tra�c is
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defined as the number of aircraft in a sector. An airspace sector is the smallest unit

of airspace that an ATCo manages its tra�c. Sector information can be found from

the airspace map, but the coordinates are unknown. Arbitrary sectors were developed

based on the information gained from the map. From the map, the area of the sectors

in the targeted airspace can be measured. The size of the arbitrary sectors is set to

be equivalent to the average of actual sectors’ sizes. The average is a hundred square

nautical mile square. The arbitrary sectors are shaped in squares, and its center is

located on the prediction points. Calculation of the tra�c counts aircraft that passed

the arbitrary sector and checks whether their operation times is within five minutes

from the timestamps of the prediction points. There is one tra�c variable for both

aircraft in a pair, and it is categorized into three levels: low, medium, and high, based

on statistical analysis on the calculated variables for all conflict pairs.

5.5 Quantitative Comparison

Quantitative comparison investigates whether model solutions can be applied to

the aircraft conflicts with ATCo actions categorically di↵erent from the solutions.

From the qualitative comparison, three di↵erent groups of the model solutions are

identified. The quantitative comparison focused on the groups with di↵erences in

maneuvers. It does not check applicability on the group of aircraft conflicts that

cannot take model solutions because they are outside of the solution boundary for

the selected model. The comparison measures three di↵erent aspects of applicability.

First, it checks whether there are any operational limitations to apply the model so-

lutions to aircraft conflicts. Situations including one or both aircraft either ascending

or descending at their prediction points fall into this case. The second measurement

checks the conflicts that qualify from the first measurement. It calculates whether

the target aircraft from the corresponding model solution has enough distance from

its conflict point to take the solution maneuver and safely avoid its predicted conflict.
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The secured distance for a deviation is measured based on the type of model solution

and further discussed from the result with the selected model.

The last measurement checks to the solutions satisfy the first two measurements to

check the occurrence of secondary conflicts. A secondary conflict is a conflict between

a deviated aircraft and other aircraft that are not the counterpart of the deviated

aircraft. It is possible to cause another problem if a maneuver that is di↵erent from

the corresponding ATCo action was applied. Based on the collected information

from Part 1, the only problem that this study can detect is the secondary conflict.

Detection of the secondary conflict utilizes the method used for detection Atco actions

and the corresponding predicted aircraft conflicts from Part 1. Like the aircraft

conflict pair detection algorithm of Part 1, the secondary conflict detection algorithm

takes a deviated region of the model solution to predict conflict. The algorithm

finds any other aircraft that passed the boxed deviated area to check the lateral

separation first. The box is generated by the maximum and minimum values of

longitudes and latitudes from the closed-loop coordinates that correspond to the

deviated region. After the box is generated, the algorithm stretches the box by 1

degree from both latitudes and longitudes on both sides. The stretching is a technique

to widen the searching area. It is critical in a case where the deviated region is

relatively small or narrow. The algorithm checks how close the other aircraft is to

the deviated one. The distance calculation from the deviation detection was adapted

for the calculation. The algorithm calculates the shortest distance between open-loop

coordinates of the deviated aircraft and closed-loop coordinates of the second aircraft

within the box. In lateral deviation, a deviated aircraft will no longer have a lateral

separation violation. It is expected to fly on the planned route, so the closed-loop

coordinates are on those of open-loop. In a vertical violation, both aircraft also must

violate lateral separation. For the speed, the violation can be either one. After

calculating the shortest distances between them, the algorithm checks whether the

distance violates a lateral separation. If it does violate the rule, the open-loop position

of the deviated aircraft and closed-loop position of the second aircraft is considered
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as conflict points. If the distance does not violate the rule, the second aircraft was

not considered for a conflict pair. Lastly, the algorithm calculates arrival time to the

conflict points. The second aircraft directly use its corresponding timestamp from its

closed-loop data. For the deviated aircraft, both vertical and speed deviations directly

use corresponding timestamps. In the case of the lateral deviation, the algorithm

takes the timestamp of closed-loop data. It takes timestamp from the deviated points

that are perpendicular to its conflict point as predicted arrival time. The algorithm

calculates the di↵erence between the two arrival times. If the di↵erence is less than

5 minutes, the corresponding aircraft is considered as a predicted secondary conflict

pair.
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6. PART 2: RESULTS

6.1 Model Selection

A prediction model called best practice was selected. Many models are targeting

en-routing aircraft based on human subjective studies. However, the models did not

qualify the major conditions, mostly due to being unable to transform them. Those

models did not specify target aircraft, details for the deviations, or both. Other candi-

dates satisfied the major conditions, but only the best practice satisfied the conditions

for the following reasons. First, the method can generate qualitative and quantita-

tive solutions based on the given descriptions from the literature. Also, all required

input data can be retrieved from the collected data. Third, the method provides

clear guidance to process input data to generate solutions. Two other candidates also

satisfy the discussed conditions. One of them was not selected because the model

only deals with an operational situation that aircraft are preparing for descending

while they are in high-altitude sectors. Another model was excluded because even

though it can generate more various solutions. It was based on European air tra�c,

while the selected model resulted from studying US ATCos. The method assumes

that regional characteristics exist and reflected in the ATCo actions. Thus, models

based on a specific region cannot be compared against ATCo actions from a di↵erent

region. Lastly, the purpose of this work is to develop an evaluation method for the

existing prediction models against actual ATCo action. Thus, the decision was made

to focus on the quality of the evaluation rather than input quantity.

The best practice is a set of strategies that expert ATCos tend to apply to pre-

dicted aircraft conflict pairs [15,16,20,32,34,43,44]. The main strategy is placing one

aircraft behind another to minimize workload coming from continuous monitoring.

The strategies can set the aircraft and may not require further attention and actions.



53

Existing prediction models were found by searching them with related keywords and

reviewed with the conditions. The model satisfies the significant conditions. The

best practice is based on human subjective studies. It is designed for aircraft conflict

pairs by en-routing aircraft in high-altitude sectors. The model generated nine di↵er-

ent conflict resolutions based on the physical and operational status of aircraft when

ATCos detected the conflicts. It makes decisions based on speed, proximity to their

conflict points, and the angle between the aircraft to decide which model solution to

apply. Among the nine possible solutions, three of them are vague on the target to

deviate from its original route. Also, the model generates lateral deviations only.

6.2 Model Transformation

Figure 6.1 illustrated the transformed model. The selected existing prediction

model was separated into three parts: input, process, and output. As input, the

model requires an angle between the pair of aircraft. Depends on the angles, the model

separates the aircraft conflicts into five cases. The angle was generated by calculating

the bearing between the heading angle of two aircraft at their prediction points.

Heading angle was calculated by projecting a bearing from a point before a conflict

point to it. Processors of the selected model require the current speed of aircraft and

distances from the prediction points to the conflict points. The processors utilize the

information to decide the targets and solutions. The recorded speed at the prediction

points is retrieved, and the distances were calculated based on geodesic between the

prediction and conflict points. The output of the selected model was transformed into

two forms: qualitative and quantitative solutions. The qualitative solutions follow the

ATCo categorization method. The selected model only generates lateral maneuvers,

so the type layer from the categorization is fixed. Also, the model did not specify

the option, and the option layer was not considered. The selected target from the

prediction model was reinterpreted in terms of the target categorization that is defined

by distances to their conflict points.
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Figure 6.1.: An illustration of the selected model
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Figure 6.2.: An illustration of the quantitative solution generation process

The quantitative model solution generates trajectories that deviate the target

aircraft laterally from its prediction points. The output of the selected model guide

how to put the selected aircraft behind another one. The solution first locates the

point that resolves the predicted conflict by the minimum separation distance at

the conflict point. Figure 6.2 illustrates the process. It generates two points that

are perpendicular to a conflict point and distanced five nautical miles away from it.

Based on the angle between a pair of aircraft, the quantitative solution finds a point

that will put the deviated aircraft behind another one. The rest of the process to

generate trajectories follows processes introduced from Part 2: Methods.

6.3 Qualitative Comparison

The qualitative comparison measures di↵erence between the model solutions and

actual ATCo actions from the same predicted aircraft conflict pairs in terms of the

categorization method developed for analyzing the collected ATCo actions. Figure 6.3

shows the results of the individual conflicts from the collected ATCo actions. Among
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Figure 6.3.: An overview of the qualitative comparison on individual aircraft

conflicts

1,312 maneuvers, the selected model can generate solutions on eighty-two percent

(1,081 conflicts) of them. The non-applicable maneuvers are due to unclear solutions

to specific cases. Twenty-one percent (284 conflicts) results in their ATCo actions

are either identical or similar to the corresponding model solutions. The last sixty

percent (786 conflicts) of the maneuvers are having di↵erent results between the model

solutions and the ATCo actions. From the identical and similar group, twelve percent

(160 conflicts) are identical, while another nine percent is having a di↵erence in the

target selection, but the maneuvers are identical. Among the di↵erent groups, thirty-

two percent (422 conflicts) is having an identical target but di↵erent maneuvers. The

last twenty-eight percent (364 conflicts) have di↵erent target aircraft and di↵erent

maneuvers.

Figure 6.4 shows the qualitative comparison of the collected individual maneuvers

by each airspace. The results show a similar trend as Figure 6.3. The proportion

of the applicable sets is about 80 percent. Both ZLA and ZOB has slightly higher

numbers (eighty-four percent) than ZTL (seventy-nine percent). The proportions
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Figure 6.4.: An overview of the qualitative comparison on individual aircraft

conflicts by each airspace

of the identical groups are at least ten percent across the airspaces. That of ZOB

(fourteen percent) is slightly higher than the others. The proportions of similar groups

are similar. The group with di↵erent targets from ZLA has the highest proportion

(thirty-five percent) among all. Lastly, the proportions of the groups with di↵erences

in both target and maneuver are approximately similar among the airspaces.

Figure 6.5 shows the qualitative comparison of the predicted aircraft conflicts

with single maneuvers. The selected model can generate solutions to slightly less

than eighty percent (306 conflicts) of the conflicts from a total of 398 conflicts. Like

the results above, about ten percent (44 conflicts) of the conflicts have identical

model solutions and ATCo actions. Nine percent (36 conflicts) of the conflicts have a

di↵erence in the selected target. Twenty-six percent (104 conflicts) of conflicts have

identical targets between their model solutions and ATCo actions, but the applied

maneuvers are di↵erent. The last twenty-nine percent (114 conflicts) have di↵erences

in both targets and maneuvers.
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Figure 6.5.: An overview of the qualitative comparison on single-maneuver aircraft

conflicts
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Figure 6.6.: An overview of the qualitative comparison on single-maneuver aircraft

conflicts by each airspace

Figure 6.6 shows the results of each airspace. Results on each airspace show

slight di↵erences, but significant trends in the proportions are the same. Unlike the

comparison on the individual conflicts, the proportions of the applicable sets are

slightly lower except for ZOB (eighty-one percent). However, those of the identical

groups are higher except for ZLA (seven percent). ZLA has the highest proportion

of the group with a di↵erent target (eleven percent), while others are below ten

percent. Also, ZLA shows a significantly high proportion (31 percent) on the group

with identical targets but di↵erent maneuvers. Lastly, the proportions of the group

with the di↵erent targets and maneuvers are similar across the airspaces.

6.4 Feature Comparison

Figure 6.7 shows the tree graph of the feature comparison between the identical

group and the group with di↵erent targets. The first node of the tree is the altitude of

aircraft that was not selected by ATCo. If the altitude is below 107 FL, there is a high
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Figure 6.7.: A tree graph of the identical group vs. the target group

probability that a model solution is identical to ATCo actions on the corresponding

aircraft conflict. The altitude parameter at the prediction point implies that the

aircraft is ascending. IT can be interpreted as if the untargeted aircraft is not in such

condition, ATCo may apply the maneuver to it. Following list shows the influential

flight contextual information that explains the relationship between the groups among

24 variables. The complete list of the table is in Appendix.

• Distance from the prediction to the conflict point of the untargeted aircraft:

20%

• Speed of aircraft at the prediction point of the untargeted aircraft: 17%

• Distance from the prediction to the conflict point of the targeted aircraft: 15%

• Altitude at the prediction point of untargeted aircraft: 14%
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Figure 6.8.: A cross-validation graph of the identical group vs. the maneuver group

Figure 6.8 shows the cross-validation results of the comparison between the identi-

cal group and group with identical targets but di↵erent maneuvers. The graph shows

that the first node of the tree has the lowest complexity parameter. Also, relative

error (root mean square error) does not improve as the node continues. It implies that

the clustering method failed to find explanatory variables to explain the di↵erence

between the groups. It can be interpreted as the applied flight contextual information

was not comprehensive enough for explain the di↵erence between the groups.

Figure 6.9 shows the tree graph of the feature comparison between the identical

groups and the group with di↵erent targets and maneuvers. Like the comparison

between the identical groups and the group with di↵erent targets, the applied clas-

sification tree selected altitude at the prediction point of the untargeted aircraft by

ATCos as the first variable to cluster the results. The parameter of the variable also

indicates whether the untargeted aircraft by ATCos are in ascending phases. These

two results imply that the processes of the selected prediction model eventually does
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Figure 6.9.: A tree graph of the identical group vs. the di↵erent group

not select aircraft that is in critical conditions without direct consideration of them

since its processes do not consider them. Following list shows the most influential

flight contextual information. The list is identical to the list above but the order is

slightly di↵erent.

• Distance between the prediction and conflict points of untargeted aircraft: 29%

• Altitude at the prediction point of untargeted aircraft: 19%

• Speed at the prediction point of untargeted aircraft: 19%

• Distance between the prediction and conflict points of targeted aircraft: 14%
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6.5 Quantitative Comparison

The quantitative comparison checks whether the model solution can be applied

to the broader range. The qualitative comparison found a group of conflicts having a

di↵erence between model solutions and ATCo actions in applied maneuvers or both

targets and maneuvers. The quantitative comparison checks the applicability of the

model solutions to this group. Figure 6.10 shows the results of the comparison of

individual conflicts. Out of 786 individual conflicts, forty-one percent can take their

model solutions. However, fifty percent (394 conflicts) cannot take the model solution

due to at least one aircraft in a conflict pair is in critical condition at the point of

prediction. The critical conditions include aircraft either ascending or descending. If

an aircraft is in such a phase, ATCos tends not to apply an action to the aircraft

unless there are no other options. Even the targeted aircraft are not in one of the

conditions, it still limits possible options and resulting in putting the pair in a di↵erent

situation compared to the pairs without those conditions. Five percent (39 conflicts)

of the individual conflicts cannot take the model solutions because they cannot secure

enough distance to deviate and ensure minimum distance at the conflict points. In

other words, these aircraft are too close to their conflict points. Two percent (17

conflicts) cannot take the model solutions due to unable to secure distance to come

back to the original route. Aircraft that are close to its descending phase corresponds

to this portion. Their conflict points are close to the point where aircraft must start

descending for preparing to land. Even if they can avoid the conflicts, the minimum

distance required to come back is not secured since the aircraft must start descending

and landing. Lastly, 1 percent (10 conflicts) cannot take the model solution due to

secondary conflicts. The secondary conflict is a conflict caused by deviating aircraft

to avoid its primary conflict.

Figure 6.11 shows the results of each airspace. Results from ZLA and ZTL shows

similar results to the overall results. However, ZOB shows di↵erent results. Thirty-

seven percent (95 conflicts) of the individual conflicts from ZOB can take their model
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Figure 6.10.: An overview of the quantitative comparison on the individual aircraft

conflicts
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Figure 6.11.: An overview of the quantitative comparison on the individual aircraft

conflicts by each airspace

solutions. Its proportion is about twenty percent less than those of the other two

airspaces. Also, ZOB has the highest proportions of the conflicts excluded due to

the critical conditions. The numbers of the conflicts causing secondary conflicts are

similar across airspaces. The conflicts causing issues due to ensuring distanced to

or from the conflict points show similar results. However, the total number of cases

according to these categories is significantly lower than others. Thus, it is di�cult to

conclude from the comparison among the airspaces.

Figure 6.12 shows the results from the ATCo actions with single maneuvers. Out

of 218 conflicts, forty-six percent (101 conflicts) of them are applicable without any

issues. However, forty-two percent (92 conflicts) cannot take the model solutions due

to aircraft in the conflict pairs are in critical condition. Also, eleven percent (24

conflicts) of the conflicts cannot take the model solutions due to failure to secure

distance to or from the conflict points. There is only one conflict that causes a

secondary conflict if the targeted aircraft takes its model solution. Figure 6.13 shows

the results of each airspace. Like individual conflicts, ZOB has the lowest proportion
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Figure 6.12.: An overview of the quantitative comparison on the single-maneuver

aircraft conflicts

of the conflicts that can take their model solutions. Three airspaces result in about

the same number of conflicts causing issues due to one aircraft in one of the critical

conditions and issues in securing distance to the conflict points. Only ZTL has a

conflict that causes the secondary conflict from its model solution. Also, ZTL does

not have a conflict that has a distance issue coming back from its model solution.

However, the total number of conflicts that correspond to the distance issues are very

low to make conclusions.
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Figure 6.13.: An overview of the quantitative comparison on the single-maneuver

aircraft conflicts by each airspace
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7. PART 3: METHODS

The conventional studies on ATCo actions with human subjective approaches fo-

cused on the relationship between aircraft conflicts and ATCos. Researchers utilized

knowledge gained to understand ATCo actions and developed prediction models. The

studies were not directly focused on the ATCo actions but as a result of the inter-

action between air tra�c and ATCos. Thus, we can conclude that the relationship

between existing prediction models and ATCo actions are indirect. Unlike them,

Part 3 developed a prediction model based on the direct relationship between ATCo

actions and predicted aircraft conflict pairs. Part 3 generated flight contextual in-

formation to represent the predicted aircraft conflicts. This information is a list of

variables that describes both operational and physical states of aircraft. This infor-

mation was used as explanatory variables, while the collected ATCo actions from

Part 1 as response variables. Part 3 developed a prediction model with a hierarchical

structure of sub-models to reflect the structure of ATCo actions that were applied to

categorize collected data from Part 1. Three di↵erent statistical prediction modeling

methods were conducted as a method to investigate whether the contextual variables

play di↵erent roles due to di↵erences from the applied modeling method.

7.1 Flight Contextual Information

Flight contextual information is defined as information that describes both physi-

cal and operational information of an aircraft during its operation. For example, the

location and speed of aircraft correspond to physical information, while its departure

and arrival are operational information. Figure 7.1 illustrates the relationship be-

tween information within flight data, which is relevant to the topic. Flight contextual

information is part of flight data. Its portion is shared with flight tracking data (open
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and closed-loop data of aircraft) and air tra�c data (operational information about

air tra�c control systems as airspace information). Part 1 collected flight tracking

data and some portion of tra�c data related to it. Thus, applied flight contextual

information is extracted from both flight tracking data and air tra�c data, which is

not a comprehensive list of it.

Figure 7.1.: An illustration of relationship among information in the flight data

The extraction of the flight contextual information is based on three states of each

aircraft: prediction, deviation, and conflict points. The point where an aircraft devi-

ated from its planned route to avoid a predicted aircraft conflict is called a deviation

point. Since the closed-loop data were collected approximately every thirty seconds,

the actual deviation of the aircraft occurred somewhere between the deviation point

and its previous one. Also, the corresponding ACTo’s action delivered to the target

aircraft should have occurred before the deviation point. This method takes a con-

servative approach and considers the previous point as to where the deviated aircraft

took the corresponding action. This point is called a prediction point. Lastly, a con-
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flict point is a location on the original route of an aircraft, where it is predicted to

have a conflict with another aircraft.

Table 1 shows a list of the flight contextual information extracted from the col-

lected data. Three di↵erent extraction methods were applied to obtain the listed in-

formation. The first type of contextual information is directly given by flight tracking

data. Altitudes and ground speeds of aircraft at their prediction points are included

in the closed-loop data. Ground speed is a summation of airspeed, actual speed gen-

erated by an aircraft, and wind speed. It does not use airspeed since it was not given

by the data and the wind speed at the moment is unknown. Both variables con-

tinuous variables from zero to infinite and both aircraft in a conflict pair have their

variables. The second type of information is the variables generated by computing

flight tracking data. Distance and heading calculations belong to this group. Geodesic

was applied to calculated distances among three di↵erent locations: the prediction to

the conflict points, the conflict to the destination points, and the prediction to the

destination points. They are continuous variables ranging from zero to infinite, and

there are variables for each aircraft in a conflict pair. Heading angles were calculated

based on the projection angle between two points. The angle can be a relative value,

so bearing was applied to standardize it. There are three angular variables for each

aircraft, and they are categorical. Instead of precise degrees, a degree from zero to

three hundred and sixty was separated into eight pieces in a clockwise direction. Each

section is forty-five degrees wide, starting from zero degrees. The operational phase

of aircraft presents a stage of an aircraft from its operations. There are five main

stages in a flight operation: departing, ascending, cruising, descending, and landing.

Part 3 utilizes stages from ascending to descending since departing and landing stages

are not responsible for the targeted ATCos for high-altitude airspace sectors. The

method added intermediate stages in-between the three phases as a preparation phase

to shift the stage of flight operations. These intermediates are right before and after

aircraft enter or leave high-altitude sectors. Variables for the operational phases are

categorical. Each aircraft has one for their prediction and conflict points because
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their operation phase can be di↵erent at those points, and it can a↵ect ATCo actions.

Another indicator for the operation phase is included to show whether aircraft change

its phase if it is at their conflict points at the point of prediction point. The last type

of flight contextual information results from computing flight tacking data with air

tra�c data. Unlike other variables that each aircraft has their own, there is one

only categorical variable for the corresponding airspace for the conflict pairs because

both aircraft are always in the same airspace at their prediction points. Airspace

information is generated by comparing boundary coordinates of targeted aircraft and

locational information in the closed-loop data to check whether an aircraft is inside

the boundaries at its prediction point. There are three categories for the variables,

which indicate three airspaces where the flight tracking data was collected. Tra�c

information is a special form of this type. In air tra�c control systems, tra�c is

defined as the number of aircraft in a sector. An airspace sector is the smallest unit

of airspace that an ATCo manages its tra�c. Sector information can be found from

the airspace map, but the coordinates are unknown. Arbitrary sectors were developed

based on the information gained from the map. From the map, the area of the sectors

in the targeted airspace can be measured. The size of the arbitrary sectors is set to

be equivalent to the average of actual sectors’ sizes. The average is a hundred square

nautical mile square. The arbitrary sectors are shaped in squares, and its center is

located on the prediction points. Calculation of the tra�c counts aircraft that passed

the arbitrary sector and checks whether their operation times is within five minutes

from the timestamps of the prediction points. There is one tra�c variable for both

aircraft in a pair, and it is categorized into three levels: low, medium, and high, based

on statistical analysis on the calculated variables for all conflict pairs.

7.2 Hierarchical structure

ATCo action has many components in it. One ATCo action can include more than

one maneuver. In one maneuver, there are targeted aircraft, maneuver types, options,
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and other details. Part 1 applied a categorization method that separates ATCo actions

with single and multiple maneuvers. Then, each maneuver was sorted into three

categories, and this categorization results in a hierarchical structure for components

of ATCo actions. An ATCo action is too complicated to be modeled as a single

entity considering this characteristic. Part 3 developed a hierarchically structured

prediction model, as shown in Figure 7.2. The structure follows the categorization

method applied in Part 1. The model has three levels of sub-models. Each sub-

model predicts a component of ATCo actions. The sub-model located at the top

of the structure predicts the target of a maneuver. After the target is decided, its

following sub-model predicts maneuver type for the predicted target. Like the ATCo

action categorization method, the output of the sub-model is lateral, vertical, and

speed maneuvers. Based on the predicted maneuver type, a dedicated sub-model for

each type of output predicts the option of the predicted maneuver type. After the

prediction from the sub-models for option predictions, predicted components from

the sub-models are combined to generate an ATCo action with a single maneuver.

7.3 Input Variables

Collected data about predicted aircraft conflict pairs and their corresponding air-

craft conflicts from Part 1 is applied as input to the developed prediction model. Table

2 shows the response variables for each sub-model. The variables take a particular

form, which represents groups of ATCo actions in each layer of the collected ATCo

actions. The models take di↵erent information from the collected ATCo actions. The

sub-models for target prediction takes target from the categorized ATCo actions. A

format of response variables for the sub-model of target prediction is binomial. The

categorization separates targets in terms of closeness to the conflict. There are two

aircraft in a pair, and one aircraft is selected by ATCo to apply an action. However,

there is no systematic way to indicate the targeted aircraft. Aircraft have unique

identifications, and their model numbers, manufacturer, and corresponding airliners
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Figure 7.2.: An illustration of the hierarchical structure of the prediction model

are varied. Part 1 takes their proximities from their prediction point to their conflict

points as the indicator. The targeted aircraft that are closer than their paired air-

craft are grouped as one type of the target. The ones that are further away from their

conflict points as another. Unlike the target prediction, the type of prediction takes

multinomial responses. There are three types in the maneuvers, and each method

applied to deviate the targeted aircraft considered as one type of response for the

model. Like the sub-model for target prediction, the option prediction models for

each response of the type prediction have binomial responses. Part 1 generalized

options of maneuvers into two groups. There are many di↵erent options to apply a

maneuver. It categorizes the options by whether it negatively or positively a↵ect the

variables representing each type of maneuver.

The listed twenty-five flight contextual information in Table 1 is applied as ex-

planatory variables. The unit and type of the variables representing each information
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take the form that is listed in Table 1. Except for the air tra�c and airspace informa-

tion, each other in a pair has its own variables for the listed contextual information.

7.4 Training and Testing Dataset

Datasets created from the collected data pairs categorized ATCo actions with

their corresponding flight contextual information. Two filters were applied to the

collected data for preparing a dataset for the model development. There are two

di↵erent types of ATCo actions: one with a single maneuver while another type

with multiple maneuvers. These two types of actions cannot be applied to the same

model because their dimensions are di↵erent. According to the results from Part

1, ATCo action with both single and multiple maneuvers have targeted one aircraft

from the corresponding conflict pairs. However, the actions with multiple maneuvers

include combinations of more than two types of maneuvers and their options. The

target prediction could be conducted for both types of ATCo actions since there is one

target regardless of the number of applied maneuvers for each ATCo action. However,

predicting a type of maneuver and its associated one option is di↵erent from predicting

multiple types and options. Unlike the single maneuvers, two additional models must

be included to predict how many maneuvers to be applied and its combinations if

its prediction is two maneuvers since there are three di↵erent combinations among

maneuver types. As a result, a structure for the multiple maneuvers is di↵erent from

that of the single maneuvers. Additionally, multiple maneuvers need further studies

to understand them in detail for applications. Eventually, about twenty-five percent

(about twenty-five hundred actions) of the collected ATCo actions were filtered due

to having multiple maneuvers.

The filtered dataset was separated into two groups for training the prediction

model and testing them. As shown in the results of Part 1, proportions of each

layer in the ATCo action categorization generally do not have significant di↵erences.

However, the method applied four data selection techniques to prevent any bias that
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can come out from the input dataset. First, the method set the equal number of

training dataset for each response in a sub-model. It calculates the number of the

dataset that is seventy percent of the positive response for a binomial sub-model. If

it is a multinomial model (the type prediction), the first response group is selected

for the calculation. If the total number of the corresponding negative responses is

greater than the calculated number, it is applied as the number of training dataset

for the model. However, if the calculated number is higher than the total number of

negative responses than seventy percent of the total number of negative responses is

applied. For the type prediction with multinomial responses, seventy percent of the

first group must be smaller than the total number of each other response group. If

the condition does not satisfy, find another response’ seventy percent that qualifies it.

As a result, the total number of training datasets for each sub-model is the number of

response types in sub-model times seventy percent of the selected response type. After

selecting the portion of the training set, rest overs from the selecting portion for the

training set are used as the testing set. Thus, the testing set becomes thirty percent

of the selected response type and the total number of other response types subtracted

by seventy percent of the selected response type for each other response types in a

sub-model. After the total number of both training and testing sets is decided, the

last technique randomly selects the data for each response from the dataset. There are

many techniques to split data for training and testing purposes. There is no universal

rule for splitting the data due to the arbitrary nature of data. Fundamentally, data

may be split into three sets: training, validation, and testing. However, splitting data

into two sets (training and testing) is common for measuring the prediction accuracy

of the model. Moreover, the ratio of the split or application of techniques such as

k-fold and “leave one out” cross-validations are highly dependent on characteristics

of the dataset. This part developed twenty-four prediction models (eight sub-models

with three di↵erent modeling methods). They use the same dataset, but their volumes

and types of subsets for each sub-model are di↵erent. Customized data splitting

techniques could generate more accurate results from each sub-model. However, the
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modeling methods will lose consistency in its process. Then the generalization of

the results becomes an issue because results from each sub-model are case-specific.

Also, results from each sub-model and modeling methods cannot be compared to each

other due to having di↵erent structures. As a result, Part 3 decides to apply the most

used data splitting technique (ratio of 70/30) with a matching number of response

variables from each of the response types for minimizing biases.

7.5 ATCo Action Prediction Modeling

Three modeling methods were applied to develop a prediction model. The ap-

plied modeling methods are logistic regression, regression tree, and classification tree.

These methods were applied due to following reasons. First, the purpose of this

modeling is not developing a high-fidelity model. Instead, the essential purpose is

to investigate whether the flight contextual information can be used toward ATCO

action prediction. Second, the investigation require explanation between the explana-

tory and response variables. These modeling methods are basic methods that provide

statistical explanation between the response and explanatory variables. Lastly, the

applied modeling methods utilizes their unique functions to conduct models. Thus,

resulted models have a↵ected them and could show di↵erent results. Comparing re-

sults from the various methods enables whether the performance of prediction models

is a↵ected by the modeling methods or by the input variables.

Applied logistic regression used generalized linear modeling methods by McCul-

lagh and Nelder (1989) and Chatfield et. al (2010) [45,46]. The binomial sub-models,

target and type prediction sub-models, was developed with S function introduced

from Hastie and Pregibon (1992) [47]. The multinomial sub-model, type prediction

sub-model, was developed with fitting multinomial logistic linear modeling method

by Venables and Ripley (2002) [48]. Both regression and classification trees take

the method, recursive PARTitioning, based on the ideas and functions introduced

by Breiman et. al (1984) for both binomial and multinomial sub-models [42]. The
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method builds a tree with a general two-stage procedure. The first procedure finds

an explanatory variable to best split the data into two groups in terms of applied

splitting functions. Then, this process is applied to each of the separated group re-

cursively until the fine sub-group either reach a minimum size of the data or following

sub-group no longer improves the performance of the model. Tree plots for each com-

parison were conducted to show how each explanatory variable a↵ects the clustering.

A tree pruning technique is applied to avoid overfitting. After the recursive proce-

dure, the next procedure cross-validates the model to check any over-fitting from the

branches of a tree to trim it. The technique selects a size of tree based on the original

tree that minimizes the cross-validated error by computing the minimum complexity

parameter.

7.6 Analysis

In general, confusion matrix was conducted to analyze performance of each model

and its sub-models. The matrix show how well each model make prediction on the

testing data set [49]. The table shows prediction accuracy on each response class and

also can be used to calculate classification error. In addition to the confusion matrix,

the prediction model and its sub-models by logistic regression modeling method was

analyzed with receiver operating characteristic curve to observe relationship between

rates of true positive and negative responses [50]. Lastly, concordance values are

calculated, which shows ratio between concordance pairs and total possible pairs of

responses to check existence of agreement in generating predected ATCo actions [51].

Two other aspects of the prediction model were investigated. First influential

flight contextual information in each sub-model from each modeling methods were

observed. The logistic regression modeling method calculated weight of evidence

(WOE) and information value (IV) from the analysis. The WOE describes predictive

power of an explanatory variable in relation to its response variable, which shows

separation between di↵erent types of response variable [52]. Information value is
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a technique generally applied to select explanatory variables for the modeling by

ranking each variable by its predictiveness of response variable. The methods applied

interpretation of information value by Siddiqi (2006) used for credit scoring [53]. The

tree modeling methods utilize explanatory variables that was used to branch the tree.

The order of the variables in the tree from the top describes how well each variable and

its parameter separates the data to explain di↵erence between the response variables.

Also, table that shows importance of variables in the prediction from calculating the

sum of the goodness of split measures for each split based on Breiman et.al (1984)

was applied for the investigation [42].

Another investigation is dependency between sub-models. The developed predic-

tion model takes hierarchical structure among its sub-models that describes layers

of the ATCO action categorization methods developed in Part 1. This investigation

checks whether prediction from a predecessor a↵ect the performance of the following

sub-model. Prediction performance of the type and the option prediction sub-models

are tested with two di↵erent datasets. First dataset is identical to the dataset given

to the target prediction sub-model, which is not a subset of any other input dataset.

The second dataset is a subset based on the results from the predecessor. For exam-

ple, the type prediction sub-model is divided into two models that each take a subset

of results from the predecessor that corresponds to one type of the response variable.

If the prediction performance of the sub-models does not show significant di↵erence,

the investigation concludes a sub-model is not dependent to its predecessor
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8. PART 3: RESULTS

Figure 8.1 shows the resulted structure of the prediction model. The results show

that the type prediction sub-model is not dependent to the target prediction model,

but the option prediction sub-models are dependent to the type prediction sub-model.

The overall performance of all three models is low due to poor prediction performance

in type and lateral option predictions. The prediction model by the regression tree

modeling method results in the worst performance due to inferior performance on its

type prediction. Besides, there are some di↵erences between the logistic regression

model and tree models. The accuracy of the target sub-model by logistic regression

is better than other methods. The di↵erences are smaller than ten percent. However,

consistency in predicting its types of responses have significant di↵erences. The lo-

gistic regression model shows consistent prediction accuracy, while others show forty

percent di↵erences between the response types. The di↵erences among the modeling

methods are clearly represented from the type predictions. One factor that is ex-

pected to cause them is being multinomial models. However, prediction accuracies of

speed maneuvers are consistent across the methods. Additionally, both the logistic

regression and the regression tree are greatly su↵ered by the prediction of the vertical

maneuvers. Only the speed maneuver prediction show consistency across the models.

The performance of option prediction sub-models by the tree modeling methods show

identical results. In general, their performance is lower than those of the logistic re-

gression. However, the prediction accuracy of vertical option prediction sub-models

shows exceptional performance, which needs attention on relationships among the

responses and influential explanatory variables.

Table 8.1 shows the misclassification errors of the type prediction by training with

the subset created by responses from the target predictions. From the comparison
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Figure 8.1.: An overview of Part 3: Results

between their counterparts presented above, the performance of the prediction sub-

models with the subset is slightly worse than the one without it. It implies that

the type prediction may not be dependent on its upper layer of the ATCo action

categorization. However, it is di�cult to conclude since their prediction accuracies

are too low. It is not clear whether the relationship between response and explanatory

variables are clearly explained in the sub-models.

Table 8.2 shows the misclassification errors of the option prediction sub-models

without subsets created by responses from the type predictions. The average misclas-

sification errors of sub-models of three options from the above (the logistic regression:

15.56%, the classification, and regression trees: 24.59%) are better than the perfor-
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Table 8.1.: Prediction performance of type prediction sub-models for the

dependency test

No Subset Subset (Positive) Subset (Negative)

Logistic Regression 63% 71% 58%

Regression Tree 71% 91% 61%

Classification Tree 41% 69% 69%

mance shown in Table 2. The results can be concluded as the option predictions are

dependent on the type predictions.

Table 8.2.: Prediction performance of option prediction sub-models for the

dependency test

No subset
Subset

(Lateral)

Subset

(Vertical)

Subset

(Speed)

Logistic Regression 28% 67% 55% 55%

Regression Tree 28% 100% 91% 91%

Classification Tree 26% 87% 80% 80%

Table 8.3 shows the information values of each sub-model. Values greater than

zero were listed in the table. Values above 0.3 are interpreted as the corresponding

variables are strong predictors. The target prediction has five strong predictors while

the type prediction has three, the lateral option prediction has two, the vertical option

prediction has six, the speed option prediction has two. The speed of untargeted

aircraft at their prediction points for the target prediction model has the highest

value. However, the type prediction has the greatest number of strong predictors,

and it does not have any weak predictors. The speed option prediction only has

weak predictors. Lastly, lateral option prediction does not have a predictor with a

value above one, and it has the shortest list. The speed at the prediction point from
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the target, type, and vertical option predictions is selected as the most influential

predictor. However, the target prediction selects those of untargeted aircraft while

other sub-models choose from the targeted aircraft. Also, either the speed or the

altitude at the prediction points is selected as the most influential predictor. At the

same time, another one follows the next except for the lateral option prediction. The

lateral option prediction is the only sub-model that has predictors about distance

variables. Generally, the distance variables follow the speed and altitude variables.

However, the speed option prediction only deals with the altitude and speed variables

of both aircraft.

Table 8.3.: Information values of the flight contextual information from prediction

modeling

Target Type Option (Lateral) Option (Vertical) Option (Speed)

VARS IV VARS IV VARS IV VARS IV VARS IV

se2 3.0473 se1 2.8558 dec1 0.8133 se1 2.8558 ae1 2.5932

ae2 2.3746 ae1 2.5302 dcd2 0.4199 ae1 2.5302 se1 1.5442

ded1 0.3789 dec2 2.0006 dec2 0.2337 dec2 2.0006 ae2 0.154

ded2 0.3167 ded1 1.5184 ded1 1.5184 se2 0.1113

dec1 0.3145 dec1 1.2266 dec1 1.2266

se1 0.2531 dcd2 0.5558 dcd2 0.5558

Table 8.4 and 8.5 shows the essential variables selected by the regression and

classification tree modeling methods. The variables with values of less than five

percent are filtered. The listed variables of both methods for the target prediction

is almost identical. The results show that the speed of untargeted aircraft at their

prediction points is the most influential variable from both modeling methods. The

altitude of untargeted aircraft follows next. Besides the distance variables showed

at the information variables, variables about operational phases and heading angle

appears in the list. The operational phase of untargeted aircraft at the prediction

points takes twelve percent, which is the third place, and the heading angle of that

targeted aircraft at the prediction points follows with eleven percent. The resulted

trees from both modeling methods also selected the speed of untargeted aircraft at
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the prediction points as the first node. The type prediction models show di↵erences

in their lists. The regression tree has four variables with proportions higher than ten

percent, while the classification tree model has two. The proportions of variables are

slightly di↵erent.

Table 8.4.: Influential variables of the flight contextual information from target and

type prediction modeling

Target Type

Regression Tree Classification Tree Regression Tree Classification Tree

VARS Reg Tree VARS Class Tree VARS Class Tree VARS Class Tree

se2 16% se2 16% dec1 15% dec2 13%

ae2 15% ae2 15% dec2 13% dec1 13%

pe2 12% pe2 12% ded1 10% se1 9%

bec1 11% bec1 11% ae1 10% ae1 9%

dec2 9% dec2 10% se1 7% ae2 8%

dec1 7% dec1 7% dcd1 7% se2 6%

pc2 7% pc2 7% se2 6% bec1 6%

ps2 6% ps2 6%

bed1 5%

Moreover, the regression tree sub-model has two variables that are not in the

list of the classification tree sub-model. The distance from the conflict point to the

destination and from prediction point to the destination of targeted aircraft appeared

in the list as third and sixth places. At the same time, the classification tree sub-

model has a heading angle of targeted aircraft in the last place. Unlike their most

important variables, both modeling methods choose the speed of targeted aircraft

at the prediction points as the first node to branch. The lateral option prediction

sub-models of both methods have an identical list for the first five variables. Both

proportions and types of variables are di↵erent after then. However, both methods

choose the distance between prediction and conflict points of targeted aircraft as the

first node in their trees. The variables list for the vertical option predictions of the

two methods shows identical results. The listed variables all the full list and the least

essential variables take at least twice more proportions than those from other sub-
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models. Their trees select the altitude of targeted aircraft at the prediction points

as the first node. The results from the speed option prediction sub-models show an

identical list for both methods. Their top three variables are identical to those of the

vertical option predictions. Also, their trees select the altitude of targeted aircraft at

the prediction points as the first node.

8.1 Logistic Regression Model

The overall performance of the prediction model developed with logistic regression

modeling methods is twenty-seven percent. The performance accuracy is low due to

sub-models related to predicting lateral maneuvers. Table 8.6 shows the confusion

matrix of the target prediction sub-model. The misclassification error of the sub-

model is about thirteen percent. In other words, its prediction accuracy is about

eighty-eight percent. The prediction on target aircraft that is further away from

their conflict points is about eighty-eight percent, and that of closer aircraft is about

eighty-six percent. Their performances are similar. However, the closer aircraft has

a much larger number of testing datasets compare to their counterparts. Figure 8.2

shows the receiver operating characteristics (ROC) curve of the target prediction sub-

model. The area under the roc curve (about eighty percent) and its shape of the curve

support the high performance of the sub-model. The concordance value being about

eighty-eight percent also supports other evidence since the concordance value of the

perfect model is a hundred percent.

Table 8.6.: Confusion matrix of the target prediction sub-model by logistic

regression

Responses
Actual

Further Closer

Predicted
Further 22 3

Closer 23 146
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Figure 8.2.: A receiver operating characteristics curve of the target prediction

sub-model

Table 8.7 shows the confusion matrix of the type prediction sub-model. Its mis-

classification error is about sixty-two percent. The prediction accuracy of the lateral

maneuver is forty-two percent. In comparison, those of the vertical and speed ma-

neuvers are twenty-six and fifty-three percent each. Their performances are low.

The probability of randomly selecting from three categorical responses is thirty-three

percent. Accuracies for lateral and speed maneuvers are higher than the random

probability. However, the performance of a vertical maneuver is about twice lower

than others. Also, the overall performance of the type prediction sub-model can be

lower than others since it is a multinomial model while others are binomial. However,

its overall performance being thirty-seven percent is no better than random selection.

Table 8.8 shows the confusion matrix of the option prediction sub-model for lateral

options. Its misclassification error is about thirty-three percent. As the performance

of the type prediction sub-model, option prediction for the lateral maneuvers is also
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Table 8.7.: Confusion matrix of the type prediction sub-model by logistic regression

Reponses
Actual

Lateral Vertical Speed

Predicted

Lateral 14 8 11

Vertical 13 21 46

Speed 8 13 24

low. The prediction performance of negative options is a hundred percent, but the

tested number of data is small. The performance accuracy of positive option is sixty-

seven percent. Figure 8.3 shows a ROC graph of the model. The area under the curve

is about sixty-four percent of the area, and the shape of the curve is almost linear.

This evidence concludes that the performance of this model is low.

Table 8.8.: Confusion matrix of the lateral option prediction sub-model by logistic

regression

Responses
Actual

Negative Positive

Predicted
Negative 2 0

Positive 10 19

Table 8.9 shows the confusion matrix of the option prediction sub-model for ver-

tical maneuvers. Its misclassification error is zero percent. It tells flight contextual

information is perfectly explaining and predicting the data. ROC curve in Figure

8.4 also supports the results by filling the area with its curve. Lastly, the concor-

dance value is also a hundred percent. All results show that the performance of the

sub-model is too high. Two investigation methods were conducted to understand the

perfect accuracy. First, when the fitted probability is one, there is a high possibility

that one or more predictor is segregating the responses perfectly. The IV values of the
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Figure 8.3.: A receiver operating characteristics curve of the lateral option

prediction sub-model

model do not show any di↵erence compare to those of other models, as shown in Ta-

ble 8.3. Next, a stepwise logistic regression was conducted to identify any predictors

that perfectly separates the response variables. The results of the regression analysis

showed that stepwise logistic regression selected four variables (speed and altitude

of target aircraft, distances to the conflicts points on both aircraft) are a↵ecting the

model the most. However, Table 8.10 shows that the P-value of the null model is

low while that of residual is one. It implies that the model does not make a good

prediction with the predictors but with its intercept. The value of the intercept is

about three thousand, and the coe�cients of predictors are low except for the altitude

of the target (about -8). It tells us that the model is highly dependent on the value

of the altitude of the target. If the altitude is low, the model predicts option as a

positive, which results in climbing up and vice versa.
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Table 8.9.: Confusion matrix of the vertical option prediction sub-model by logistic

regression

Responses
Actual

Negative Positive

Predicted
Negative 27 0

Positive 0 17

Table 8.10.: An analysis from the stepwise logistic regression on the vertical option

prediction

NULL Residual

Degree of Freedom Deviance P-value Degree of Freedom Deviance P-value

77 108.1 0.011 73 0.0000000005228 1

Table 8.11 shows the confusion matric of the option prediction sub-model for speed

maneuvers. Its misclassification error is about thirteen percent. Prediction accuracy

of the negative responses is eighty-six percent, and its positive response is eighty-

seven percent. Figure 8.5 shows a ROC curve of the prediction sub-model. The area

under the ROC curve is about eighty-nine percent, and the shape of the curve is

stable concave up. Lastly, its concordance value is about eighty-nine percent. This

evidence shows that the prediction performance of the sub-model is high and reliable.

Table 8.11.: Confusion matrix of the speed option prediction sub-model by logistic

regression

Responses
Actual

Negative Positive

Predicted
Negative 87 14

Positive 8 55
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Figure 8.4.: A receiver operating characteristics curve of the vertical option

prediction sub-model

8.2 Regression Tree Model

The overall performance of the prediction model developed with regression tree

modeling methods is eighteen percent. Like the prediction model by logistic regression

modeling, the performance accuracy is low due to sub-models related to predicting

lateral maneuvers. Table 8.12 shows the confusion matrix of the target prediction

sub-model. Its misclassification error is about eighteen percent. Prediction accuracy

of negative responses is fifty-seven percent, and its positive response is ninety-six

percent. The accuracy of the negative responses is close to the probability of random

selection for binomial responses. Figure 8.6 shows the cross-validation graph of the

sub-model. The relative error values continuously decrease before the last branch of

the tree and slightly increase at the end. It implies that there is evidence of weak

overfitting.
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Figure 8.5.: A receiver operating characteristics curve of the speed option prediction

sub-Model

Table 8.12.: Confusion matrix of the target prediction sub-model by regression tree

Responses
Actual

Further Closer

Predicted
Further 40 30

Closer 5 119

Table 8.13 shows the confusion matrix of the type prediction sub-model. Its

misclassification error is about seventy-one percent. Except for the speed maneuver

prediction, the other two types show significantly low accuracies compare to the prob-

ability of random selection from three options. Figure 8.7 shows the cross-validation

graph of the sub-model. The changes in the relative errors increase from the first
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Figure 8.6.: A cross-validation graph of the target prediction sub-model by

regression tree

branch of the tree. It implies that the performance of the model is insu�cient to

make predictions.

Table 8.13.: Confusion matrix of the type prediction sub-model by regression tree

Reponses
Actual

Lateral Vertical Speed

Predicted

Lateral 10 18 17

Vertical 16 12 40

Speed 9 12 24

Table 8.14 shows the confusion matrix of the option prediction sub-model for

lateral options. Its misclassification error is about forty-five percent. As the perfor-
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Figure 8.7.: A cross-validation graph of the type prediction sub-model by regression

tree

mance of the type prediction sub-model, option prediction for the lateral maneuvers

also shows low performance. However, it shows worse prediction accuracy compare to

the sub-model by the logistic regression modeling method. The Prediction accuracy

of the negative response is forty-five percent, while its counterpart is seventy-eight

percent. Figure 8.8 shows the cross-validation graph of the sub-model. Its relative

error values only decrease after the first node then goes above the value of the first

nodes.

Table 8.15 shows the confusion matrix of the option prediction sub-model for

vertical options. Its misclassification error is about fourteen percent. Prediction

accuracy of the negative options is ninety percent, while its positive option is ninety-

three percent. Figure 8.9 shows the cross-validation graph. Relative error drops

significantly at the second branching. It decreases after the first node then slightly

increases afterward, which implies evidence of overfitting.
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Table 8.14.: Confusion matrix of the lateral option prediction sub-model by

regression tree

Responses
Actual

Negative Positive

Predicted
Negative 10 12

Positive 2 7

Figure 8.8.: A cross-validation graph of the lateral option prediction sub-model by

regression tree

Table 8.16 shows the confusion matrix of the option prediction sub-model for speed

options. Its misclassification error is about twenty percent. Prediction accuracy of the

negative options is eighty-five percent, and its positive option is seventy-five percent.

Figure 8.10 shows the cross-validation group of the sub-model. The relative error
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Table 8.15.: Confusion matrix of the vertical option prediction sub-model by

regression tree

Responses
Actual

Negative Positive

Predicted
Negative 26 3

Positive 1 14

Figure 8.9.: A cross-validation graph of the vertical option prediction sub-model by

regression tree

significantly reduces after the first branching and continuous to decrease until the

fourth, then the parameter increases back and flattens.
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Table 8.16.: Confusion matrix of the speed option prediction sub-model by

regression tree

Responses
Actual

Negative Positive

Predicted
Negative 77 14

Positive 18 55

Figure 8.10.: A cross-validation graph of the speed option prediction sub-model by

regression tree

8.3 Classification Tree Model

The overall performance of the prediction model developed with classification tree

modeling methods is about twenty-five percent. The results are like the prediction

model by the regression tree except for the type prediction and the results from
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cross-validation. Like other prediction models, the performance accuracy is low due

to sub-models related to predicting lateral maneuvers. Table 8.17 shows the confu-

sion matrix of the target prediction sub-model. Its misclassification error is about

eighteen percent. The prediction accuracy between its responses is significant. How-

ever, the closer aircraft has a much larger number of testing datasets compare to their

counterparts. Prediction accuracy of negative responses is fifty-seven percent, and its

positive response is ninety-six percent. Figure 8.11 shows the cross-validation graph

of the sub-model. The relative error values continuously reduce, which means there

is no evidence of overfitting.

Table 8.17.: Confusion matrix of the target prediction sub-model by classification

tree

Responses
Actual

Further Closer

Predicted
Further 40 30

Closer 5 119

Table 8.18 shows the confusion matrix of the type prediction sub-model. Its mis-

classification error is about fifty-nine percent. The sub-model shows similar results

as the sub-model by the logistic regression modeling method. Again, its low perfor-

mance is due to the lateral type prediction. The prediction accuracy of the lateral

maneuvers is thirty-one percent. The prediction accuracy of the vertical maneuvers is

thirty-two percent. Lastly, the prediction accuracy of the speed maneuvers is fifty-five

percent. Accuracies of lateral and vertical maneuvers are lower than the probability

of random selection. Figure 8.12 shows the cross-validation graph of the sub-model.

The curve fluctuates as the branching of the tree continues.s

Table 8.19 shows the confusion matrix of the option prediction sub-model for

lateral options. Its misclassification error is about forty-five percent. As the perfor-

mance of the type prediction sub-model, option prediction for the lateral maneuvers



99

Figure 8.11.: A cross-validation graph of the target prediction sub-model by

classification tree

Table 8.18.: Confusion matrix of the type prediction sub-model by classification tree

Reponses
Actual

Lateral Vertical Speed

Predicted

Lateral 13 10 19

Vertical 8 16 26

Speed 14 16 36

also shows low performance. However, it shows worse prediction accuracy compare to

the sub-model by the logistic regression modeling method. The Prediction accuracy

of the negative response is forty-five percent, while its counterpart is seventy-eight

percent. Figure 8.13 shows the cross-validation graph of the sub-model. Its relative

error values only decrease after the first node than continuously goes up slightly.

Table 8.20 shows the confusion matrix of the option prediction sub-model for

vertical options. Its misclassification error is about fourteen percent. Prediction
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Figure 8.12.: A cross-validation graph of the type prediction sub-model by

classification tree

Table 8.19.: Confusion matrix of the lateral option prediction sub-model by

classification tree

Responses
Actual

Negative Positive

Predicted
Negative 10 12

Positive 2 7

accuracy of the negative options is ninety percent, while its positive option is ninety-

three percent. Figure 8.14 shows the cross-validation graph. Relative error drops

significantly at the second branching. The values decrease over time, but the size of

the tree is significantly smaller than other trees.

Table 8.21 shows the confusion matrix of the option prediction sub-model for

speed options. Its misclassification error is about twenty percent. Prediction accuracy

of the negative options is eighty-five percent, and its positive option is seventy-five
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Figure 8.13.: A cross-validation graph of the lateral option prediction sub-model by

classification tree

Table 8.20.: Confusion matrix of the vertical option prediction sub-model by

classification tree

Responses
Actual

Negative Positive

Predicted
Negative 26 3

Positive 1 14

percent. Figure 8.15 shows the cross-validation group of the sub-model. The relative

error significantly reduces after the first branching and increases back slightly, then

flattened.
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Table 8.21.: Confusion matrix of the speed option prediction sub-model by

classification tree

Responses
Actual

Negative Positive

Predicted
Negative 77 14

Positive 18 55
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Figure 8.14.: A cross-validation graph of the vertical option prediction sub-model by

classification tree

Figure 8.15.: A cross-validation graph of the speed option prediction sub-model by

classification tree
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9. CONCLUSIONS AND DISCUSSIONS

The goal of this work is to design a method to evaluate existing ATCo action predic-

tion models and developing an ATCo action prediction model. The evaluation was

conducted by comparing the performance of solutions from an existing prediction

model against actual ATCo actions on associated predicted aircraft conflicts. The

model development was conducted based on utilizing contextual flight information.

The collection of ATCo actions from flight data enables these two parts of the goal.

The collected data was applied to a series of algorithms that identified ATCo actions

and their corresponding predicted aircraft conflicts from open and closed-loop data

of flight tracking data. The data collection phase of this study took a di↵erent path

from conventional studies to overcome their limitations. It showed that a large scale

of ATCo actions could be collected from data-driven approaches. The data-driven

approach can technically and practically collect all ATCo actions. Also, the collected

data is actual ATCo actions that are not from experiments or simulations like con-

ventional studies. Lastly, the data collected in this way enables validation of the

conventional studies that did not have methods to check the validity of their models

in the real-world. So far, we do not know how ATCos are managing aircraft con-

flicts. One of the purposes of studying ATCo is to use the knowledge to improve air

tra�c control systems. Results and methods from this work suggest how data-driven

approaches contribute to our knowledge about ATCos.

Part1 introduced a method to identify predicted conflict pairs and corresponding

deviations and found the information from public flight tracking data. The algo-

rithms and the data used for this study presented that resulted in aircraft trajectory

data can be utilized to predict and to trace back an invisible intention behind the

scene. Also, the method showed a case that ATCo actions could be collected with
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public information. Lastly, the structure of the method outputs can be used to con-

duct a more sophisticated analysis. Besides investigating characteristics coming from

each airspace, those three airspaces were selected to measure the generalization of

the results from the collected data. Collecting data from all airspaces is technically

plausible, but it is not practical. Thus, the airspaces were selected for the following

reasons. They are far away from each other. If airspaces were adjacent or close to each

other, there is a higher chance of having overlapping aircraft. Also, these airspaces

are geologically located on the di↵erent sides of the U.S continent. It makes them

include major airports on the corresponding portion of the states, which results in

di↵erent types of air tra�c. For example, most of the tra�c in ZOB is going from

the west to east and vice versa, while that of ZTL is north to south. The results

from Figure 4.1 also supports the generalization issue. About the same number of

flights were collected from each airspace. The total number between ZOB and ZTL is

almost the same, and ZLA has approximately 20% more flights than others. The only

two factors that share among the airspaces are that they are the busiest airspaces,

and the data was collected in an identical time period. Moreover, the filtration pro-

cess excluded a similar number of aircraft. Similarities in these airspaces also can be

found from the categorized ATCo actions. The daily analysis of the total number of

collected flights shows that there are some daily di↵erences, but there is no di↵erence

among the airspaces. The amount of aircraft tra�c and types can be a↵ected by

time factors. However, airline companies operate flights between airports on a rou-

tine or daily basis. It can be identified by flight numbers assigned to aircraft. Each

aircraft has its unique flight ID, but its flight number can be identical if its airline,

departure, and arrival are identical. The collected data could not verify it because it

does not include the flight number to find those aircraft. The analysis by individual

airspace show some di↵erences, but the categorization does not show any significant

di↵erences among the groups in each layer. These findings suggest that there are no

unique characteristics among the airspaces. Also, relatively equally distributed pro-

portions of the ATCo actions suggest that there is no maneuver that ATCos favored
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to apply to resolve the conflicts. The results found that a large portion of the ATCo

actions includes multiple maneuvers. Further studies on this type of ATCo action are

required to understand them. Lastly, the results showed that ATCos applied their

actions on only one aircraft in an aircraft conflict pair. There are shortcomings to

Part 1. Since it is a data-driven approach, the quality of the results is highly de-

pendent on credibility and the accuracy of the data. The proposed method had to

make strong assumptions due to the absence of specific information in the open-loop

data. The closed-loop data only shows locational and status of aircraft approximately

every thirty seconds. This information may be enough to simulate aircraft activities,

but missing information in between recorded points can be significant. Also, having

ground speed instead of airspeed made the method to apply a leveling, which has

impacts on the results related to the speed deviations. External factors that were

not considered in this study, such as weather information, could be reasons for some

of the identified deviations. Some conflicts were subject to be considered as false-

positive actions that a pair of aircraft were not precisely conflicting. However, ATCo

decided to intervene regardless of it. Lastly, there are complicated types of aircraft

conflicts that involve more than two aircraft. Some aircraft conflicts detected by the

algorithms could be parts of those complicated conflicts. The algorithms could be

improved to catch such situations.

Part 2 evaluated an existing prediction model against actual ATCo actions. I

developed three comparisons methods to evaluate the model, both qualitative and

quantitatively. A series of conditions were considered to select a model from reviewed

models. A technique to systematically disassemble the selected model into three

parts and transformed them into a form that can take the collected data as input

and generate categorical and executable solutions. The results found that only ten

percent of the predicted aircraft conflicts had ATCo actions that are categorically

identical to the model solutions. Even considering those that are similar, and the

conflicts with categorically di↵erent ATCo actions that can take the model solution,

the performance of the model is not high. The feature and quantitative comparisons
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showed that a large portion of the conflicts has categorically di↵erent ATCo actions

from the model solutions because of operational limitations. The model solution often

results in targeting an aircraft in a critical phase that is not less safe than targeting

another aircraft. Also, a small portion of predicted conflicts causes another conflict

with nearby aircraft if they have taken the model solutions. It implies that the

solutions generated by the selected model do not consider the tra�c in the area. The

feature comparison may need further analysis because it could not clearly explain the

roles of some flight contextual information in terms of flight operations and air tra�c

controls. Also, it could not identify a clear di↵erence between some groups. This result

suggests that applied flight contextual information may not include some information

that could explain di↵erences. Part 2 evaluated one model, and it is possible that

there are other models that may perform better than the selected one. The results

should not be generalized, but it should be noted that the selected model is a result

of multiple studies. Thus, evaluating other prediction models could provide more in-

depth knowledge regarding the performance of the existing models. As future work,

evaluating another type of prediction models, mathematical models, can be evaluated

with the developed methods. Also, other comparison methods could be considered,

such as economic analysis between the model solutions and applied ATCo actions.

Part 3 developed an ATCo action prediction model. Unlike the conventional

model evaluated from Part2, the developed model is based on the data collected

from Part 1. The flight contextual information was generated from the collected

data that represents the physical and operational status of aircraft conflict pairs.

The developed model took a hierarchical structure consist of multiple sub-models for

predicting each layer of the ATCo actions. The resulted performance of the prediction

model has a wide range due to a significant gap between the two groups of sub-

models. The sub-models about lateral maneuvers have significantly low performance

than others. The type prediction model which has multinomial responses could have

lower performance due to extra response type compare to other sub-models. However,

its results show that the prediction on the vertical and speed maneuvers in the type
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prediction is high. These results suggest that lateral maneuvers may need other flight

contextual information to explain and make predictions about them. The dependency

test results in the option prediction are dependent on the type prediction. However,

the type prediction is not a↵ected by the results from its predecessor. However, it

is inconclusive because significantly low performance on the type prediction could

make the di↵erence unable to detect clearly. Di↵erent flight contextual information

played significant roles in each sub-model. It can imply that ATCos consider di↵erent

information to make decisions when they are taking action on aircraft conflict pairs.

Also, certain flight contextual information was playing significant roles across the

di↵erent modeling methods. The altitude of the targeted aircraft a↵ects predictions

on vertical and speed option maneuvers. Checking current altitude to change the

target’s altitude can be both logical and operational explanation. Additionally, the

aircraft’s altitude a↵ects the speed of aircraft due to the practical range of speed

dependent on altitude, considering fuel consumption. However, this work does not

conclude that ATCo utilizes such information for their actions because how they use

the information is inconclusive. Based on the literature review, we only know that

certain information a↵ects their decisions. Due to the complexity in ATCo actions

with multiple maneuvers, the prediction model was developed based on the actions

with single maneuvers. Thus, the developed prediction model can be considered as a

partial prediction model. The prediction model for those of the multiple maneuvers

should be developed as future work. Lastly, the developed prediction model is limited

to aircraft conflict pairs. There is a more sophisticated type of aircraft conflict that

involves more than two aircraft. However, its input data is generated only for the

conflict pairs.

Here are the final takeaways from this work. First, this work showed that we

could generate human controls from the data. The developed methods and their re-

sults suggest a new approach to studies that their methods were limited to human

subjective approaches. Additionally, this work shoed data-driven approach is more

e�cient than the conventional approaches in many ways. By utilizing current tech-
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nologies, we can collect data in real-time and collect as much as possible. However, it

does not mean that the data-driven approaches are superior so that the conventional

approaches must be replaced. Knowledge about air tra�c, flight operations, and AT-

Cos from conventional studies enable the methods used in this work. Both methods

have unique characteristics and should be applied for di↵erent purposes. Second, this

study showed the importance of evaluating existing models. The results showed that

the selected prediction model does not reflect the real-world. It warns us about both

qualitative and quantitative risks of applying the unvalidated model to develop a crit-

ical system like air tra�c control systems. Lastly, this study showed the relationship

between flight contextual information and ATCo actions. It suggests a new path to

develop high-end ATCo action prediction models with flight contextual information.
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APPENDIX A

PART 1: SUPPLEMENTARY INFORMATION

This part of the Appendices includes supplementary information of Part 1. The data

collection was reviewed by IRB due to the data resulting from humans (pilots), re-

gardless of being trajectories of aircraft. A.1 shows approval from IRB that the data

collection for Part 1 is exempted A.2 shows a sample of the open-loop data. The col-

lected open-loop data is a series of codes that represent waypoints that aircraft should

pass. They can be decoded to provide a type of waypoints and their coordinates. A.3

shows a sample of the closed-loop data. The closed-loop data includes the timestamp

of each row to show when variables were recorded. The variables are coordinates, al-

titude, and speed. A.4 illustrates results from the deviation detection algorithm and

its boxed region. The dotted line represents trajectories from the open-loop data, and

the solid line is from the closed-loop data. The green lines represent deviations in the

lateral dimension. A.5 illustrates results from the predicted conflict pair detection

algorithm. The aircraft represented as blue color took a short-cut to avoid an aircraft

in red color. A.6 lists identified predicted conflict pairs in tables. The unique flight

ID of aircraft was shown in columns of AC1 and AC2. Aircraft correspond to AC1 are

the targeted aircraft. The following 4 columns represent categorized ATCo actions.

One in the target column represents that AC1 is closer to the conflict point and vice

versa. The type column has three values; one represents lateral, two represents ver-

tical, and three represents speed. One in the option column represents the details of

the applied maneuver is categorized to be a↵ecting the corresponding dimension in a

positive way, and vice versa. The mix column represents whether the corresponding

pair was resolved with single or multiple maneuvers. If the value is one, the following

conflict pair has identical aircraft.
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A.1 IRB Approval on the Data Collection
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A.2 A Sample of the Open-Loop Data

name type lat lon

KLAX Origin Airport 33.94249 -118.408

CHVEZ Waypoint 33.9945 -118.255

TRAAP Waypoint 34.05833 -118.049

JIIVE Waypoint 34.08972 -117.899

CLUTZ Waypoint 34.18244 -117.703

GARDY Reporting Point 34.25594 -117.548

ARCUS Waypoint 34.54167 -117.102

YELAH Waypoint 34.85417 -116.645

WYZEE Waypoint 35.69608 -115.504

BEALE Reporting Point 36.18244 -114.826

BAWER WAY-PT 37.63519 -112.279

BUGGG WAY-PT 38.65509 -109.497

DBL VOR-DME (NAVAID) 39.43935 -106.895

DVV VOR-TAC (NAVAID) 39.89469 -104.624

HCT VOR-TAC (NAVAID) 40.45406 -100.924

OBH VOR-TAC (NAVAID) 41.37574 -98.3536

FOD VOR-TAC (NAVAID) 42.61111 -94.2947

KG75M NRS-WAYPOINT 42.5 -88

DAFLU Reporting Point 42.37908 -82.6888

BROKK Reporting Point 42.33139 -81.5819

BEWEL Reporting Point 42.28897 -80.7451

JHW VOR-DME (NAVAID) 42.18861 -79.1213

HOXIE Reporting Point 41.86501 -77.8526

DMACK Reporting Point 41.78576 -77.5519

STENT Reporting Point 41.67905 -77.1528

MAGIO Reporting Point 41.52738 -76.5965

LVZ VOR-TAC (NAVAID) 41.27281 -75.6895

JENNO Reporting Point 41.15292 -75.3314

HARTY Reporting Point 41.07119 -75.0899

MUGZY Reporting Point 41.03014 -74.9694

STW VOR-DME (NAVAID) 40.99583 -74.869

LENDY Reporting Point 40.91483 -74.1353

LGA VOR-DME (NAVAID) 40.78372 -73.8686

KJFK Destination Airport 40.63993 -73.7787
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A.3 A Sample of the Closed-Loop Data

timestamp lat lon spd alt

1547572410 33.9522 -118.397 152 11

1547572426 33.9556 -118.385 151 17

1547572442 33.9596 -118.37 163 21

1547572458 33.9637 -118.356 183 24

1547572474 33.9684 -118.339 207 26

1547572499 33.9771 -118.309 246 30

1547572529 33.9886 -118.268 255 44

1547572550 33.9965 -118.241 263 53

1547572580 34.0111 -118.197 271 67

1547572610 34.0245 -118.156 278 78

1547572640 34.0381 -118.113 277 79

1547572670 34.0522 -118.068 279 80

1547572687 34.0594 -118.044 286 84

1547572714 34.0683 -118.003 291 94

1547572744 34.0783 -117.953 303 105

1547572771 34.0884 -117.906 328 111

1547572788 34.0984 -117.88 341 114

1547572818 34.1235 -117.828 369 120

1547572848 34.1504 -117.771 389 125

1547572878 34.1769 -117.715 398 136

1547572908 34.2051 -117.655 403 146

1547572938 34.2323 -117.598 403 157

1547572961 34.2554 -117.55 404 167
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A.4 A Visualized Sample of the Deviation Detection

A.5 A Visualized Sample of the Predicted Aircraft Conflict Pair

A.6 The List of I identified Aircraft Conflict Pairs

A.6.1 Predicted Aircraft Conflicts of ZLA
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APPENDIX B

PART 2: SUPPLEMENTARY INFORMATION

This part of the Appendices includes supplementary information of Part 2. It in-

cludes a summary from applying the classification tree between the groups of aircraft

conflicts from the qualitative comparison. The summary includes how the method

separated the groups based on input flight contextual information on the prediction

points of predicted aircraft conflict pairs.

B.1 Summary of the Identical Group vs. the Target Group

rpart(formula = qual ~ a_E1 + a_E2 + s_E1 + s_E2 + dec1 + ded1 +

dcd1 + dec2 + ded2 + dcd2 + bec1 + bed1 + bcd1 + bec2 + bed2 +

bcd2 + traf + pe1 + pc1 + pe2 + pc2 + ps1 + ps2 + spc, data = Data_i_t,

method = "class")

n= 284

CP nsplit rel error xerror xstd

1 0.09408602 0 1.0000000 1.0000000 0.06740467

2 0.07661290 4 0.6209677 1.0000000 0.06740467

3 0.04032258 6 0.4677419 0.6532258 0.06136344

4 0.02016129 7 0.4274194 0.6612903 0.06158880

5 0.01000000 11 0.3467742 0.7177419 0.06304221

Variable importance

dec2 s_E2 dec1 a_E2 bcd2 pe2 bed2 ded2 bec2 bec1 pc2 s_E1 ded1 bed1 bcd1 pc1
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16 16 14 12 6 5 4 4 4 3 3 3 3 2 2 1

a_E1

1

Node number 1: 284 observations, complexity param=0.09408602

predicted class=1 expected loss=0.4366197 P(node) =1

class counts: 124 160

probabilities: 0.437 0.563

left son=2 (224 obs) right son=3 (60 obs)

Primary splits:

a_E2 < 107 to the right, improve=15.574860, (0 missing)

s_E2 < 300 to the right, improve=15.574860, (0 missing)

dec1 < 51.5 to the left, improve=11.283810, (0 missing)

bec1 < 4.5 to the right, improve= 6.397773, (0 missing)

bec2 < 1.5 to the right, improve= 4.875886, (0 missing)

Surrogate splits:

s_E2 < 300 to the right, agree=0.993, adj=0.967, (0 split)

pe2 < 1.5 to the right, agree=0.866, adj=0.367, (0 split)

pc2 < 2.5 to the right, agree=0.824, adj=0.167, (0 split)

ded2 < 5938 to the left, agree=0.796, adj=0.033, (0 split)

bcd2 < 0.5 to the right, agree=0.796, adj=0.033, (0 split)

Node number 2: 224 observations, complexity param=0.09408602

predicted class=0 expected loss=0.4776786 P(node) =0.7887324

class counts: 117 107

probabilities: 0.522 0.478

left son=4 (213 obs) right son=5 (11 obs)

Primary splits:

dec2 < 6 to the right, improve=6.311997, (0 missing)
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dec1 < 51.5 to the left, improve=5.755214, (0 missing)

bec2 < 1.5 to the right, improve=4.865143, (0 missing)

bcd2 < 4.5 to the left, improve=4.723214, (0 missing)

bed2 < 4.5 to the left, improve=4.656096, (0 missing)

Surrogate splits:

ded2 < 179 to the right, agree=0.96, adj=0.182, (0 split)

Node number 3: 60 observations

predicted class=1 expected loss=0.1166667 P(node) =0.2112676

class counts: 7 53

probabilities: 0.117 0.883

Node number 4: 213 observations, complexity param=0.09408602

predicted class=0 expected loss=0.4507042 P(node) =0.75

class counts: 117 96

probabilities: 0.549 0.451

left son=8 (49 obs) right son=9 (164 obs)

Primary splits:

dec1 < 53 to the left, improve=12.062350, (0 missing)

bec2 < 1.5 to the right, improve= 5.583981, (0 missing)

bec1 < 4.5 to the right, improve= 4.758236, (0 missing)

bcd2 < 4.5 to the left, improve= 4.732819, (0 missing)

bed2 < 4.5 to the left, improve= 4.576076, (0 missing)

Surrogate splits:

dec2 < 84 to the left, agree=0.915, adj=0.633, (0 split)

pc1 < 1.5 to the left, agree=0.803, adj=0.143, (0 split)

ded2 < 272.5 to the left, agree=0.793, adj=0.102, (0 split)

pe2 < 3.5 to the right, agree=0.789, adj=0.082, (0 split)

ded1 < 4937.5 to the right, agree=0.779, adj=0.041, (0 split)
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Node number 5: 11 observations

predicted class=1 expected loss=0 P(node) =0.03873239

class counts: 0 11

probabilities: 0.000 1.000

Node number 8: 49 observations

predicted class=0 expected loss=0.1428571 P(node) =0.1725352

class counts: 42 7

probabilities: 0.857 0.143

Node number 9: 164 observations, complexity param=0.09408602

predicted class=1 expected loss=0.4573171 P(node) =0.5774648

class counts: 75 89

probabilities: 0.457 0.543

left son=18 (130 obs) right son=19 (34 obs)

Primary splits:

dec2 < 133.5 to the right, improve=9.897462, (0 missing)

bed2 < 4.5 to the left, improve=6.048753, (0 missing)

bcd2 < 4.5 to the left, improve=5.857593, (0 missing)

s_E2 < 483.5 to the right, improve=5.434636, (0 missing)

bec2 < 3.5 to the left, improve=4.689497, (0 missing)

Surrogate splits:

dec1 < 119.5 to the right, agree=0.860, adj=0.324, (0 split)

pc2 < 2.5 to the right, agree=0.841, adj=0.235, (0 split)

a_E2 < 160 to the right, agree=0.811, adj=0.088, (0 split)

s_E2 < 331.5 to the right, agree=0.811, adj=0.088, (0 split)

ded2 < 312.5 to the right, agree=0.811, adj=0.088, (0 split)
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Node number 18: 130 observations, complexity param=0.0766129

predicted class=0 expected loss=0.4538462 P(node) =0.4577465

class counts: 71 59

probabilities: 0.546 0.454

left son=36 (19 obs) right son=37 (111 obs)

Primary splits:

dec1 < 136.5 to the left, improve=7.164030, (0 missing)

bed2 < 4.5 to the left, improve=5.830253, (0 missing)

bcd2 < 4.5 to the left, improve=5.360385, (0 missing)

bec2 < 3.5 to the left, improve=5.037063, (0 missing)

ded1 < 619 to the left, improve=4.589011, (0 missing)

Surrogate splits:

dec2 < 178.5 to the left, agree=0.900, adj=0.316, (0 split)

ded1 < 445.5 to the left, agree=0.892, adj=0.263, (0 split)

ded2 < 349.5 to the left, agree=0.869, adj=0.105, (0 split)

a_E1 < 39.5 to the left, agree=0.862, adj=0.053, (0 split)

Node number 19: 34 observations

predicted class=1 expected loss=0.1176471 P(node) =0.1197183

class counts: 4 30

probabilities: 0.118 0.882

Node number 36: 19 observations

predicted class=0 expected loss=0.05263158 P(node) =0.06690141

class counts: 18 1

probabilities: 0.947 0.053

Node number 37: 111 observations, complexity param=0.0766129

predicted class=1 expected loss=0.4774775 P(node) =0.3908451
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class counts: 53 58

probabilities: 0.477 0.523

left son=74 (58 obs) right son=75 (53 obs)

Primary splits:

bed2 < 4.5 to the left, improve=4.982703, (0 missing)

bec2 < 3.5 to the left, improve=4.831325, (0 missing)

bcd2 < 4.5 to the left, improve=4.316608, (0 missing)

a_E2 < 226.5 to the left, improve=4.002772, (0 missing)

s_E2 < 458 to the right, improve=2.286960, (0 missing)

Surrogate splits:

bec2 < 4.5 to the left, agree=0.973, adj=0.943, (0 split)

bcd2 < 4.5 to the left, agree=0.973, adj=0.943, (0 split)

s_E2 < 444 to the right, agree=0.838, adj=0.660, (0 split)

a_E2 < 341.5 to the right, agree=0.721, adj=0.415, (0 split)

bec1 < 3.5 to the left, agree=0.631, adj=0.226, (0 split)

Node number 74: 58 observations, complexity param=0.04032258

predicted class=0 expected loss=0.3793103 P(node) =0.2042254

class counts: 36 22

probabilities: 0.621 0.379

left son=148 (51 obs) right son=149 (7 obs)

Primary splits:

bcd2 < 1.5 to the right, improve=3.635275, (0 missing)

a_E1 < 365 to the left, improve=3.448078, (0 missing)

bec2 < 1.5 to the right, improve=2.550345, (0 missing)

bed2 < 1.5 to the right, improve=2.485345, (0 missing)

a_E2 < 226.5 to the left, improve=2.290737, (0 missing)

Surrogate splits:

bed2 < 1.5 to the right, agree=0.948, adj=0.571, (0 split)
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bec2 < 1.5 to the right, agree=0.914, adj=0.286, (0 split)

Node number 75: 53 observations, complexity param=0.02016129

predicted class=1 expected loss=0.3207547 P(node) =0.1866197

class counts: 17 36

probabilities: 0.321 0.679

left son=150 (24 obs) right son=151 (29 obs)

Primary splits:

s_E2 < 403 to the left, improve=2.818478, (0 missing)

s_E1 < 435.5 to the right, improve=1.890831, (0 missing)

dec2 < 229.5 to the right, improve=1.469778, (0 missing)

bcd1 < 6.5 to the right, improve=1.123751, (0 missing)

a_E1 < 212.5 to the right, improve=1.042052, (0 missing)

Surrogate splits:

ded2 < 974 to the left, agree=0.717, adj=0.375, (0 split)

ded1 < 1521.5 to the right, agree=0.660, adj=0.250, (0 split)

ps2 < 0.5 to the right, agree=0.660, adj=0.250, (0 split)

a_E1 < 223 to the left, agree=0.642, adj=0.208, (0 split)

dcd1 < 985.5 to the right, agree=0.642, adj=0.208, (0 split)

Node number 148: 51 observations, complexity param=0.02016129

predicted class=0 expected loss=0.3137255 P(node) =0.1795775

class counts: 35 16

probabilities: 0.686 0.314

left son=296 (23 obs) right son=297 (28 obs)

Primary splits:

bec1 < 4 to the right, improve=2.814822, (0 missing)

bed1 < 3.5 to the right, improve=2.814822, (0 missing)

a_E1 < 365 to the left, improve=2.563101, (0 missing)
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bcd1 < 3.5 to the right, improve=1.960784, (0 missing)

s_E2 < 464.5 to the left, improve=1.637803, (0 missing)

Surrogate splits:

bed1 < 3.5 to the right, agree=1.000, adj=1.000, (0 split)

bcd1 < 3.5 to the right, agree=0.980, adj=0.957, (0 split)

s_E1 < 453.5 to the left, agree=0.804, adj=0.565, (0 split)

ded1 < 1343.5 to the left, agree=0.667, adj=0.261, (0 split)

ded2 < 1192.5 to the left, agree=0.667, adj=0.261, (0 split)

Node number 149: 7 observations

predicted class=1 expected loss=0.1428571 P(node) =0.02464789

class counts: 1 6

probabilities: 0.143 0.857

Node number 150: 24 observations, complexity param=0.02016129

predicted class=0 expected loss=0.5 P(node) =0.08450704

class counts: 12 12

probabilities: 0.500 0.500

left son=300 (7 obs) right son=301 (17 obs)

Primary splits:

s_E1 < 435.5 to the right, improve=2.521008, (0 missing)

dcd2 < 475 to the right, improve=2.097902, (0 missing)

s_E2 < 390 to the right, improve=1.500000, (0 missing)

dec1 < 478 to the left, improve=1.500000, (0 missing)

dec2 < 485.5 to the left, improve=1.500000, (0 missing)

Surrogate splits:

bec1 < 1.5 to the left, agree=0.833, adj=0.429, (0 split)

a_E1 < 365 to the right, agree=0.792, adj=0.286, (0 split)

s_E2 < 399 to the right, agree=0.792, adj=0.286, (0 split)
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bed1 < 1.5 to the left, agree=0.792, adj=0.286, (0 split)

ded1 < 861.5 to the left, agree=0.750, adj=0.143, (0 split)

Node number 151: 29 observations

predicted class=1 expected loss=0.1724138 P(node) =0.1021127

class counts: 5 24

probabilities: 0.172 0.828

Node number 296: 23 observations

predicted class=0 expected loss=0.1304348 P(node) =0.08098592

class counts: 20 3

probabilities: 0.870 0.130

Node number 297: 28 observations, complexity param=0.02016129

predicted class=0 expected loss=0.4642857 P(node) =0.09859155

class counts: 15 13

probabilities: 0.536 0.464

left son=594 (11 obs) right son=595 (17 obs)

Primary splits:

s_E2 < 464.5 to the left, improve=2.891138, (0 missing)

ded2 < 1670.5 to the left, improve=1.785714, (0 missing)

dec1 < 285.5 to the left, improve=1.554302, (0 missing)

dec2 < 629.5 to the left, improve=1.166667, (0 missing)

a_E1 < 340 to the left, improve=1.108059, (0 missing)

Surrogate splits:

a_E2 < 258.5 to the left, agree=0.786, adj=0.455, (0 split)

pe2 < 1.5 to the left, agree=0.786, adj=0.455, (0 split)

s_E1 < 354 to the left, agree=0.714, adj=0.273, (0 split)

dec1 < 190.5 to the left, agree=0.679, adj=0.182, (0 split)
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ded1 < 1471 to the left, agree=0.679, adj=0.182, (0 split)

Node number 300: 7 observations

predicted class=0 expected loss=0.1428571 P(node) =0.02464789

class counts: 6 1

probabilities: 0.857 0.143

Node number 301: 17 observations

predicted class=1 expected loss=0.3529412 P(node) =0.05985915

class counts: 6 11

probabilities: 0.353 0.647

Node number 594: 11 observations

predicted class=0 expected loss=0.1818182 P(node) =0.03873239

class counts: 9 2

probabilities: 0.818 0.182

Node number 595: 17 observations

predicted class=1 expected loss=0.3529412 P(node) =0.05985915

class counts: 6 11

probabilities: 0.353 0.647

B.2 Summary of the Identical Group vs. the Maneuver Group

rpart(formula = qual ~ a_E1 + a_E2 + s_E1 + s_E2 + dec1 + ded1 +

dcd1 + dec2 + ded2 + dcd2 + bec1 + bed1 + bcd1 + bec2 + bed2 +

bcd2 + traf + pe1 + pc1 + pe2 + pc2 + ps1 + ps2 + spc, data = Data_i_m,

method = "class")

n= 582



199

CP nsplit rel error xerror xstd

1 0.03125 0 1.0000 1.00000 0.06731855

2 0.01875 2 0.9375 1.06875 0.06868114

3 0.01250 4 0.9000 1.14375 0.07000523

4 0.01000 5 0.8875 1.20625 0.07098588

Variable importance

dec2 dec1 a_E1 pe1 ps1 s_E1 a_E2 traf bed1 ded1 bcd1 ded2 pe2 s_E2 dcd1 bec1

19 14 11 8 8 8 6 4 4 4 4 3 3 2 2 1

Node number 1: 582 observations, complexity param=0.03125

predicted class=0 expected loss=0.2749141 P(node) =1

class counts: 422 160

probabilities: 0.725 0.275

left son=2 (486 obs) right son=3 (96 obs)

Primary splits:

dec2 < 394.5 to the left, improve=6.881658, (0 missing)

dec1 < 426.5 to the left, improve=6.354240, (0 missing)

ded2 < 3177.5 to the left, improve=1.996362, (0 missing)

spc < 1.5 to the left, improve=1.636729, (0 missing)

ded1 < 4087 to the left, improve=1.552031, (0 missing)

Surrogate splits:

dec1 < 554.5 to the left, agree=0.936, adj=0.615, (0 split)

s_E2 < 557.5 to the left, agree=0.838, adj=0.021, (0 split)

Node number 2: 486 observations, complexity param=0.01875

predicted class=0 expected loss=0.2407407 P(node) =0.8350515

class counts: 369 117
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probabilities: 0.759 0.241

left son=4 (449 obs) right son=5 (37 obs)

Primary splits:

bed1 < 1.5 to the right, improve=2.171813, (0 missing)

a_E1 < 199.5 to the left, improve=2.087869, (0 missing)

ded1 < 1483.5 to the right, improve=1.892212, (0 missing)

dcd1 < 3959 to the left, improve=1.861324, (0 missing)

dec1 < 143.5 to the right, improve=1.843399, (0 missing)

Surrogate splits:

bcd1 < 1.5 to the right, agree=0.996, adj=0.946, (0 split)

bec1 < 1.5 to the right, agree=0.940, adj=0.216, (0 split)

ded2 < 140.5 to the right, agree=0.926, adj=0.027, (0 split)

dcd2 < 139 to the right, agree=0.926, adj=0.027, (0 split)

Node number 3: 96 observations, complexity param=0.03125

predicted class=0 expected loss=0.4479167 P(node) =0.1649485

class counts: 53 43

probabilities: 0.552 0.448

left son=6 (58 obs) right son=7 (38 obs)

Primary splits:

dec2 < 571.5 to the right, improve=4.243232, (0 missing)

dec1 < 777.5 to the right, improve=3.068056, (0 missing)

dcd1 < 890.5 to the left, improve=2.515242, (0 missing)

ded2 < 1951.5 to the right, improve=2.334722, (0 missing)

pe1 < 2.5 to the right, improve=1.680572, (0 missing)

Surrogate splits:

dec1 < 650 to the right, agree=0.802, adj=0.500, (0 split)

ded2 < 940 to the right, agree=0.771, adj=0.421, (0 split)

s_E1 < 385.5 to the right, agree=0.729, adj=0.316, (0 split)
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ded1 < 1326 to the right, agree=0.708, adj=0.263, (0 split)

a_E2 < 370.5 to the left, agree=0.677, adj=0.184, (0 split)

Node number 4: 449 observations

predicted class=0 expected loss=0.2271715 P(node) =0.7714777

class counts: 347 102

probabilities: 0.773 0.227

Node number 5: 37 observations, complexity param=0.01875

predicted class=0 expected loss=0.4054054 P(node) =0.06357388

class counts: 22 15

probabilities: 0.595 0.405

left son=10 (17 obs) right son=11 (20 obs)

Primary splits:

a_E1 < 223 to the left, improve=5.208426, (0 missing)

pe1 < 1.5 to the left, improve=3.995733, (0 missing)

s_E1 < 484 to the left, improve=3.523552, (0 missing)

traf < 1.5 to the right, improve=3.299376, (0 missing)

ps1 < 0.5 to the right, improve=2.966493, (0 missing)

Surrogate splits:

pe1 < 1.5 to the left, agree=0.973, adj=0.941, (0 split)

ps1 < 0.5 to the right, agree=0.946, adj=0.882, (0 split)

s_E1 < 375.5 to the left, agree=0.811, adj=0.588, (0 split)

traf < 2.5 to the right, agree=0.757, adj=0.471, (0 split)

dec1 < 141 to the right, agree=0.703, adj=0.353, (0 split)

Node number 6: 58 observations

predicted class=0 expected loss=0.3275862 P(node) =0.09965636

class counts: 39 19
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probabilities: 0.672 0.328

Node number 7: 38 observations

predicted class=1 expected loss=0.3684211 P(node) =0.0652921

class counts: 14 24

probabilities: 0.368 0.632

Node number 10: 17 observations

predicted class=0 expected loss=0.1176471 P(node) =0.02920962

class counts: 15 2

probabilities: 0.882 0.118

Node number 11: 20 observations, complexity param=0.0125

predicted class=1 expected loss=0.35 P(node) =0.03436426

class counts: 7 13

probabilities: 0.350 0.650

left son=22 (10 obs) right son=23 (10 obs)

Primary splits:

a_E2 < 308.5 to the right, improve=2.5000000, (0 missing)

ded1 < 1076 to the left, improve=1.3828280, (0 missing)

s_E1 < 484 to the left, improve=0.9241758, (0 missing)

dec1 < 215 to the left, improve=0.9241758, (0 missing)

dec2 < 186 to the left, improve=0.9241758, (0 missing)

Surrogate splits:

pe2 < 2.5 to the right, agree=0.80, adj=0.6, (0 split)

a_E1 < 368.5 to the right, agree=0.75, adj=0.5, (0 split)

s_E2 < 462 to the right, agree=0.75, adj=0.5, (0 split)

ded1 < 1799.5 to the left, agree=0.70, adj=0.4, (0 split)

dcd1 < 1670 to the left, agree=0.70, adj=0.4, (0 split)
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Node number 22: 10 observations

predicted class=0 expected loss=0.4 P(node) =0.01718213

class counts: 6 4

probabilities: 0.600 0.400

Node number 23: 10 observations

predicted class=1 expected loss=0.1 P(node) =0.01718213

class counts: 1 9

probabilities: 0.100 0.900

B.3 Summary of the Identical Group vs. the Di↵erent Group

rpart(formula = qual ~ a_E1 + a_E2 + s_E1 + s_E2 + dec1 + ded1 +

dcd1 + dec2 + ded2 + dcd2 + bec1 + bed1 + bcd1 + bec2 + bed2 +

bcd2 + traf + pe1 + pc1 + pe2 + pc2 + ps1 + ps2 + spc, data = Data_i_f,

method = "class")

n= 524

CP nsplit rel error xerror xstd

1 0.262500 0 1.00000 1.00000 0.06589084

2 0.068750 1 0.73750 0.76250 0.06046545

3 0.040625 2 0.66875 0.70000 0.05865054

4 0.037500 6 0.50625 0.70625 0.05884025

5 0.031250 7 0.46875 0.65625 0.05726853

6 0.021875 8 0.43750 0.61250 0.05578690

7 0.010000 10 0.39375 0.52500 0.05249046

Variable importance
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dec2 a_E2 s_E2 dec1 ded2 dcd2 pc2 pc1 dcd1 ded1 s_E1 bcd2 ps1 pe2

29 19 19 14 5 3 2 2 1 1 1 1 1 1

Node number 1: 524 observations, complexity param=0.2625

predicted class=0 expected loss=0.3053435 P(node) =1

class counts: 364 160

probabilities: 0.695 0.305

left son=2 (466 obs) right son=3 (58 obs)

Primary splits:

a_E2 < 74 to the right, improve=40.42830, (0 missing)

s_E2 < 278.5 to the right, improve=40.20128, (0 missing)

dec1 < 426 to the left, improve=23.33659, (0 missing)

pe2 < 1.5 to the right, improve=19.92357, (0 missing)

pc2 < 2.5 to the right, improve=13.47785, (0 missing)

Surrogate splits:

s_E2 < 252.5 to the right, agree=0.996, adj=0.966, (0 split)

bcd2 < 0.5 to the right, agree=0.893, adj=0.034, (0 split)

Node number 2: 466 observations, complexity param=0.06875

predicted class=0 expected loss=0.2360515 P(node) =0.889313

class counts: 356 110

probabilities: 0.764 0.236

left son=4 (455 obs) right son=5 (11 obs)

Primary splits:

dec2 < 5 to the right, improve=13.149990, (0 missing)

dec1 < 431 to the left, improve= 9.746483, (0 missing)

bec2 < 4.5 to the left, improve= 6.531104, (0 missing)

bcd2 < 4.5 to the left, improve= 5.544233, (0 missing)

bed2 < 4.5 to the left, improve= 4.931632, (0 missing)
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Surrogate splits:

ded2 < 176.5 to the right, agree=0.981, adj=0.182, (0 split)

Node number 3: 58 observations

predicted class=1 expected loss=0.137931 P(node) =0.110687

class counts: 8 50

probabilities: 0.138 0.862

Node number 4: 455 observations, complexity param=0.040625

predicted class=0 expected loss=0.2175824 P(node) =0.8683206

class counts: 356 99

probabilities: 0.782 0.218

left son=8 (401 obs) right son=9 (54 obs)

Primary splits:

dec1 < 431 to the left, improve=11.097860, (0 missing)

dec2 < 435 to the left, improve= 5.370196, (0 missing)

bcd2 < 4.5 to the left, improve= 5.065816, (0 missing)

bed2 < 4.5 to the left, improve= 4.431889, (0 missing)

bec1 < 4.5 to the right, improve= 4.123151, (0 missing)

Surrogate splits:

dec2 < 534 to the left, agree=0.971, adj=0.759, (0 split)

ded2 < 3975 to the left, agree=0.892, adj=0.093, (0 split)

s_E2 < 590.5 to the left, agree=0.888, adj=0.056, (0 split)

s_E1 < 624 to the left, agree=0.886, adj=0.037, (0 split)

dcd1 < 143.5 to the right, agree=0.886, adj=0.037, (0 split)

Node number 5: 11 observations

predicted class=1 expected loss=0 P(node) =0.02099237

class counts: 0 11
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probabilities: 0.000 1.000

Node number 8: 401 observations, complexity param=0.040625

predicted class=0 expected loss=0.1770574 P(node) =0.7652672

class counts: 330 71

probabilities: 0.823 0.177

left son=16 (107 obs) right son=17 (294 obs)

Primary splits:

dec1 < 19 to the left, improve=4.957798, (0 missing)

bcd2 < 4.5 to the left, improve=3.205017, (0 missing)

bec1 < 4.5 to the right, improve=3.073396, (0 missing)

bed2 < 4.5 to the left, improve=2.983595, (0 missing)

ded1 < 3321.5 to the left, improve=2.931242, (0 missing)

Surrogate splits:

dec2 < 72.5 to the left, agree=0.938, adj=0.766, (0 split)

ded1 < 376 to the left, agree=0.768, adj=0.131, (0 split)

s_E1 < 509.5 to the right, agree=0.756, adj=0.084, (0 split)

ded2 < 273 to the left, agree=0.756, adj=0.084, (0 split)

pe2 < 3.5 to the right, agree=0.753, adj=0.075, (0 split)

Node number 9: 54 observations, complexity param=0.040625

predicted class=1 expected loss=0.4814815 P(node) =0.1030534

class counts: 26 28

probabilities: 0.481 0.519

left son=18 (40 obs) right son=19 (14 obs)

Primary splits:

dec2 < 567 to the right, improve=6.355820, (0 missing)

ded2 < 1218 to the right, improve=6.355820, (0 missing)

dcd2 < 629.5 to the right, improve=4.798190, (0 missing)
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s_E1 < 439 to the right, improve=4.629630, (0 missing)

s_E2 < 480 to the right, improve=3.980451, (0 missing)

Surrogate splits:

ded2 < 864.5 to the right, agree=0.852, adj=0.429, (0 split)

dec1 < 646 to the right, agree=0.815, adj=0.286, (0 split)

dcd2 < 167.5 to the right, agree=0.815, adj=0.286, (0 split)

a_E2 < 370.5 to the left, agree=0.796, adj=0.214, (0 split)

bec2 < 7.5 to the left, agree=0.778, adj=0.143, (0 split)

Node number 16: 107 observations

predicted class=0 expected loss=0.04672897 P(node) =0.2041985

class counts: 102 5

probabilities: 0.953 0.047

Node number 17: 294 observations, complexity param=0.040625

predicted class=0 expected loss=0.2244898 P(node) =0.5610687

class counts: 228 66

probabilities: 0.776 0.224

left son=34 (248 obs) right son=35 (46 obs)

Primary splits:

dec2 < 106.5 to the right, improve=19.949390, (0 missing)

bcd2 < 3.5 to the left, improve= 6.899242, (0 missing)

bed2 < 3.5 to the left, improve= 6.859410, (0 missing)

pc2 < 2.5 to the right, improve= 5.732081, (0 missing)

bec2 < 3.5 to the left, improve= 4.698002, (0 missing)

Surrogate splits:

pc2 < 2.5 to the right, agree=0.884, adj=0.261, (0 split)

dec1 < 80.5 to the right, agree=0.878, adj=0.217, (0 split)

pc1 < 1.5 to the right, agree=0.857, adj=0.087, (0 split)
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s_E2 < 278.5 to the right, agree=0.854, adj=0.065, (0 split)

ded2 < 287.5 to the right, agree=0.854, adj=0.065, (0 split)

Node number 18: 40 observations, complexity param=0.03125

predicted class=0 expected loss=0.375 P(node) =0.07633588

class counts: 25 15

probabilities: 0.625 0.375

left son=36 (23 obs) right son=37 (17 obs)

Primary splits:

dcd2 < 694 to the right, improve=4.376598, (0 missing)

ded2 < 1218 to the right, improve=3.944805, (0 missing)

a_E2 < 292 to the right, improve=2.916667, (0 missing)

s_E2 < 480 to the right, improve=2.803333, (0 missing)

a_E1 < 353 to the left, improve=2.133838, (0 missing)

Surrogate splits:

ded2 < 1617 to the right, agree=0.85, adj=0.647, (0 split)

dcd1 < 827.5 to the right, agree=0.80, adj=0.529, (0 split)

ded1 < 1566.5 to the right, agree=0.75, adj=0.412, (0 split)

s_E1 < 498.5 to the right, agree=0.70, adj=0.294, (0 split)

ps1 < 0.5 to the left, agree=0.70, adj=0.294, (0 split)

Node number 19: 14 observations

predicted class=1 expected loss=0.07142857 P(node) =0.02671756

class counts: 1 13

probabilities: 0.071 0.929

Node number 34: 248 observations, complexity param=0.021875

predicted class=0 expected loss=0.1451613 P(node) =0.4732824

class counts: 212 36
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probabilities: 0.855 0.145

left son=68 (167 obs) right son=69 (81 obs)

Primary splits:

dec1 < 236.5 to the left, improve=3.846310, (0 missing)

bcd2 < 3.5 to the left, improve=2.913511, (0 missing)

bed2 < 3.5 to the left, improve=2.694014, (0 missing)

ded2 < 3472 to the left, improve=2.081720, (0 missing)

a_E2 < 356.5 to the right, improve=1.893252, (0 missing)

Surrogate splits:

dec2 < 314.5 to the left, agree=0.831, adj=0.481, (0 split)

Node number 35: 46 observations, complexity param=0.0375

predicted class=1 expected loss=0.3478261 P(node) =0.08778626

class counts: 16 30

probabilities: 0.348 0.652

left son=70 (12 obs) right son=71 (34 obs)

Primary splits:

dec1 < 61 to the left, improve=5.251918, (0 missing)

s_E2 < 381.5 to the right, improve=1.583561, (0 missing)

a_E2 < 375 to the left, improve=1.253950, (0 missing)

ded2 < 1101.5 to the right, improve=1.220442, (0 missing)

dcd2 < 1022.5 to the right, improve=1.220442, (0 missing)

Surrogate splits:

pc1 < 1.5 to the left, agree=0.826, adj=0.333, (0 split)

dec2 < 32 to the left, agree=0.804, adj=0.250, (0 split)

ded2 < 250.5 to the left, agree=0.783, adj=0.167, (0 split)

dcd2 < 213.5 to the left, agree=0.783, adj=0.167, (0 split)

pe2 < 3.5 to the right, agree=0.783, adj=0.167, (0 split)
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Node number 36: 23 observations

predicted class=0 expected loss=0.173913 P(node) =0.04389313

class counts: 19 4

probabilities: 0.826 0.174

Node number 37: 17 observations

predicted class=1 expected loss=0.3529412 P(node) =0.03244275

class counts: 6 11

probabilities: 0.353 0.647

Node number 68: 167 observations

predicted class=0 expected loss=0.08383234 P(node) =0.3187023

class counts: 153 14

probabilities: 0.916 0.084

Node number 69: 81 observations, complexity param=0.021875

predicted class=0 expected loss=0.2716049 P(node) =0.1545802

class counts: 59 22

probabilities: 0.728 0.272

left son=138 (72 obs) right son=139 (9 obs)

Primary splits:

dec2 < 229.5 to the right, improve=7.716049, (0 missing)

bec2 < 3.5 to the left, improve=3.871605, (0 missing)

bed2 < 3.5 to the left, improve=3.871605, (0 missing)

bcd2 < 3.5 to the left, improve=3.523584, (0 missing)

s_E2 < 482.5 to the right, improve=2.380452, (0 missing)

Node number 70: 12 observations

predicted class=0 expected loss=0.25 P(node) =0.02290076
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class counts: 9 3

probabilities: 0.750 0.250

Node number 71: 34 observations

predicted class=1 expected loss=0.2058824 P(node) =0.0648855

class counts: 7 27

probabilities: 0.206 0.794

Node number 138: 72 observations

predicted class=0 expected loss=0.1944444 P(node) =0.1374046

class counts: 58 14

probabilities: 0.806 0.194

Node number 139: 9 observations

predicted class=1 expected loss=0.1111111 P(node) =0.01717557

class counts: 1 8

probabilities: 0.111 0.889
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APPENDIX C

PART 3: SUPPLEMENTARY INFORMATION

This part of the Appendices includes supplementary information of Part 3. First, it

includes a summary of general statistics on variables of the flight contextual informa-

tion. Also, it includes summaries from applying three modeling methods to predict

ATCo actions based on the extracted flight contextual information and categorized

ATCo actions. The summaries include the results of each sub-models on three mod-

eling methods. Additionally, the results of both regression and classification tree

modeling methods include tree diagram to illustrate how the methods separated the

input data based on the values of the flight contextual information.

C.1 Summary of General Statistics on the Flight Contextual Information
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Table C.1.: A summary of general statistics on the continuous variables from the

flight contextual information

Vars Min 1st Qt. Median Mean 3rd Qt. Max Unit

ae1 7 218.2 340 295.1 363.5 450 FL

ae2 5 210.2 319 264.6 360 410 FL

se1 130 361 406.5 409.1 471.8 644 Kt

se2 144 354.8 421 397.9 487 589 Kt

dec1 0 0 189.5 310.5 368.2 3684 km

ded1 206 763.5 1437 1649.6 2204 10228 km

dcd1 78 507 1035 1343 1799 10029 km

dec2 0 60.25 155 297 364 3593 km

ded2 113 725 1092 1356 1890 4419 km

dcd2 99 375.2 843.5 1063.1 1566 3881 km

Table C.2.: A summary of general statistics on the bearings of the flight contextual

information

Vars 0-45 45-90 90-135 135-180 180-225 225-270 270-315 315-360

bec1 29 48 16 15 133 76 58 23

bed1 42 67 33 31 18 101 79 27

bcd1 42 59 40 33 17 112 68 27

bec2 35 123 66 16 31 53 37 37

bed2 41 122 72 19 17 46 46 35

bcd2 35 108 85 25 14 49 42 40

C.2 Summary of Logistic Regression Model

C.2.1 Summary of Target Prediction Model

glm(formula = target ~ se2 + ae2 + dec1 + ded1 + se1 + ded2,
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Table C.3.: A summary of general statistics on the aircraft operational phases from

the flight contextual information

Vars Ascending After Ascending Cruising Before Descending Descending

pe1 105 13 280 0 0

pc1 1 6 380 3 8

pe2 110 19 246 23 0

pc2 0 79 245 74 0

Table C.4.: A summary of general statistics on the operational phase shift between

prediction and conflict points from the flight contextual information

Vars No Yes

ps1 274 124

ps2 224 174

Table C.5.: A summary of general statistics on the air tra�c volume from the flight

contextual information

Var Low Medium High

trf 220 113 65

Table C.6.: A summary of general statistics on the number of aircraft conflicts from

each airspace from the flight contextual information

Var ZLA ZOB ZTL

spc 147 125 126
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family = binomial(link = "logit"), data = trainingData)

Coefficients:

(Intercept) se2 ae2 dec1 ded1 se1

-4.7463055 0.0185030 -0.0025105 -0.0017759 -0.0004010 -0.0023419

ded2

0.0002823

Degrees of Freedom: 203 Total (i.e. Null); 197 Residual

Null Deviance: 282.8

Residual Deviance: 155 AIC: 169

> summary(logitMod)

Call:

glm(formula = target ~ se2 + ae2 + dec1 + ded1 + se1 + ded2,

family = binomial(link = "logit"), data = trainingData)

Deviance Residuals:

Min 1Q Median 3Q Max

-2.65814 -0.44961 0.05003 0.63104 2.84757

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -4.7463055 1.4373623 -3.302 0.00096 ***

se2 0.0185030 0.0036280 5.100 0.00000034 ***

ae2 -0.0025105 0.0031414 -0.799 0.42419

dec1 -0.0017759 0.0006406 -2.772 0.00557 **

ded1 -0.0004010 0.0001711 -2.343 0.01912 *

se1 -0.0023419 0.0022687 -1.032 0.30195
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ded2 0.0002823 0.0002656 1.063 0.28789

---

Signif. codes: 0 ¡ R�***¡ 0.001 ¡ R�**¡ 0.01 ¡ R�*¡ 0.05 ¡ R�.¡ 0.1 ¡ R� ¡ 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 282.80 on 203 degrees of freedom

Residual deviance: 155.01 on 197 degrees of freedom

AIC: 169.01

Number of Fisher Scoring iterations: 6

C.2.2 Summary of Type Prediction Model without Subset

nnet::multinom(formula = typ ~ se2 + ae2 + dec2 + dec1 + se1,

data = trainingData)

Coefficients:

(Intercept) se2 ae2 dec2 dec1

2 -0.557113 0.0009246036 0.002673106 -0.0006225627 -5.703310e-05

3 -1.014638 -0.0009404605 0.001859659 -0.0001592554 -2.632669e-05

se1

2 -0.0008044989

3 0.0023832509

Residual Deviance: 514.2216

AIC: 538.2216
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C.2.3 Summary of Type Prediction Model with Subset

nnet::multinom(formula = typ ~ spc + bec1 + bed1 + bcd1 + bec2 +

bed2 + bcd2 + pe1 + pc1 + pe2 + pc2 + ps1 + ps2 + trf + ae1 +

ae2 + se1 + se2 + dec1 + ded1 + dcd1 + dec2 + ded2 + dcd2,

data = trainingData)

Coefficients:

(Intercept) spc bec1 bed1 bcd1 bec2 bed2

2 34.021747 -0.2901843 -0.83867403 -1.481402 2.7269205 -3.186156 3.279194

3 -5.017623 -0.2200366 -0.05811211 1.150842 -0.9477033 -3.369834 3.066768

bcd2 pe1 pc1 pe2 pc2 ps1 ps2

2 0.01059772 -11.785016 0.9221981 -0.4115121 0.9084369 -24.338508 -0.375353

3 0.61859779 2.025582 -1.1315097 1.0673741 -0.9525173 2.993058 4.075416

trf ae1 ae2 se1 se2 dec1

2 -0.6919069 -0.009072344 -0.007713331 -0.006135893 0.014723464 -0.005336375

3 -0.6042728 -0.002681074 0.011590497 -0.002846873 -0.006526019 -0.010726208

ded1 dcd1 dec2 ded2 dcd2

2 0.00381316 -0.004388568 -0.01053896 0.01049678 -0.009785021

3 0.01357881 -0.013258906 -0.01884138 0.01765899 -0.017198775

Residual Deviance: 145.9463

AIC: 245.9463

nnet::multinom(formula = typ ~ spc + bec1 + bed1 + bcd1 + bec2 +

bed2 + bcd2 + pe1 + pc1 + pe2 + pc2 + ps1 + ps2 + trf + ae1 +

ae2 + se1 + se2 + dec1 + ded1 + dcd1 + dec2 + ded2 + dcd2,

data = trainingData)

Coefficients:
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(Intercept) spc bec1 bed1 bcd1 bec2 bed2

2 -27.98804 -0.1995953 -0.3922685 0.86700538 -0.3411799 0.4077495 0.02352039

3 -1.46358 0.4215342 -0.3900209 -0.05342395 0.5155255 0.3242543 0.31426653

bcd2 pe1 pc1 pe2 pc2 ps1 ps2

2 -0.3537279 5.143271 3.437876 0.8747998 -0.7680122 10.836730 2.412887

3 -0.6805548 2.750653 -2.559945 1.9795706 -2.3605955 4.817403 1.737234

trf ae1 ae2 se1 se2 dec1

2 -0.3560385 -0.009403769 0.012072200 0.011582465 -0.004473685 0.01233706

3 0.7276730 0.001754004 0.006662273 0.003762165 -0.009167765 -0.19528398

ded1 dcd1 dec2 ded2 dcd2

2 -0.01576582 0.01507883 0.12254944 -0.12756197 0.12710403

3 0.18062417 -0.17975186 -0.01375648 0.02644726 -0.02696998

Residual Deviance: 210.1437

AIC: 310.1437

C.2.4 Summary of Option Prediction Model without Subset

glm(formula = opt ~ dec1 + dcd1 + ded2, family = binomial(link = "logit"),

data = trainingData)

Deviance Residuals:

Min 1Q Median 3Q Max

-2.9032 -1.0842 -0.1313 1.1359 1.7160

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.3885355 0.3074342 -1.264 0.206302

dec1 0.0015430 0.0004475 3.448 0.000564 ***



219

dcd1 0.0002602 0.0001377 1.890 0.058808 .

ded2 -0.0002976 0.0001721 -1.730 0.083678 .

---

Signif. codes: 0 ¡ R�***¡ 0.001 ¡ R�**¡ 0.01 ¡ R�*¡ 0.05 ¡ R�.¡ 0.1 ¡ R� ¡ 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 310.53 on 223 degrees of freedom

Residual deviance: 292.93 on 220 degrees of freedom

AIC: 300.93

Number of Fisher Scoring iterations: 4

C.2.5 Summary of Lateral Option Prediction Model

glm(formula = opt ~ dec1 + dcd1 + ded2, family = binomial(link = "logit"),

data = trainingData)

Deviance Residuals:

Min 1Q Median 3Q Max

-1.95651 -0.97444 -0.01701 1.04461 2.15177

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.1163337 0.5530613 -0.210 0.83340

dec1 0.0022554 0.0007382 3.055 0.00225 **

dcd1 0.0001688 0.0002714 0.622 0.53395

ded2 -0.0006198 0.0003125 -1.983 0.04735 *

---
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Signif. codes: 0 ¡ R�***¡ 0.001 ¡ R�**¡ 0.01 ¡ R�*¡ 0.05 ¡ R�.¡ 0.1 ¡ R� ¡ 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 116.45 on 83 degrees of freedom

Residual deviance: 102.85 on 80 degrees of freedom

AIC: 110.85

Number of Fisher Scoring iterations: 4

C.2.6 Summary of Vertical Option Prediction Model

glm(formula = opt ~ se1 + ae1 + dec2 + ded1 + dec1 + dcd2, family = binomial(link = "logit"),

data = trainingData, maxit = 100)

Deviance Residuals:

Min 1Q Median 3Q Max

-0.0000132301 -0.0000000211 0.0000000000 0.0000000211 0.0000126537

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 3048.950915 5129122.399999 0.001 1

se1 -0.868209 3459.761321 0.000 1

ae1 -8.701267 14749.335192 -0.001 1

dec2 1.193501 2582.032040 0.000 1

ded1 -0.002253 201.558839 0.000 1

dec1 -0.562966 1431.148132 0.000 1

dcd2 0.013546 477.194391 0.000 1
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(Dispersion parameter for binomial family taken to be 1)

Null deviance: 108.13096016735146 on 77 degrees of freedom

Residual deviance: 0.00000000049957 on 71 degrees of freedom

AIC: 14

Number of Fisher Scoring iterations: 31

C.2.7 Summary of Speed Option Prediction Model

glm(formula = opt ~ ae1 + se1 + ae2 + se2, family = binomial(link = "logit"),

data = trainingData)

Deviance Residuals:

Min 1Q Median 3Q Max

-2.1491 -0.7920 -0.1351 0.5908 2.4977

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 8.419496 1.260698 6.678 0.0000000000242 ***

ae1 -0.013278 0.002218 -5.986 0.0000000021520 ***

se1 -0.009484 0.002707 -3.503 0.00046 ***

ae2 -0.003639 0.002176 -1.672 0.09447 .

se2 0.001303 0.002322 0.561 0.57471

---

Signif. codes: 0 ¡ R�***¡ 0.001 ¡ R�**¡ 0.01 ¡ R�*¡ 0.05 ¡ R�.¡ 0.1 ¡ R� ¡ 1

(Dispersion parameter for binomial family taken to be 1)
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Null deviance: 440.84 on 317 degrees of freedom

Residual deviance: 300.10 on 313 degrees of freedom

AIC: 310.1

Number of Fisher Scoring iterations: 5

C.3 Summary of Regression Tree Model

C.3.1 Summary of Target Prediction Model

rpart(formula = target ~ spc + bec1 + bed1 + bcd1 + bec2 + bed2 +

bcd2 + pe1 + pc1 + pe2 + pc2 + ps1 + ps2 + trf + ae1 + ae2 +

se1 + se2 + dec1 + ded1 + dcd1 + dec2 + ded2 + dcd2, data = trainingData,

method = "anova")

n= 204

CP nsplit rel error xerror xstd

1 0.37977791 0 1.0000000 1.0069942 0.002656555

2 0.22195181 1 0.6202221 0.6689290 0.058960162

3 0.09667777 2 0.3982703 0.4458072 0.069108699

4 0.01339223 4 0.2049148 0.3861196 0.069551648

5 0.01000000 5 0.1915225 0.4234607 0.073241742

Variable importance

se2 ae2 pe2 bec1 dec2 dec1 pc2 ps2 bed1 ded2 bcd1 dcd1 ded1 se1 ae1 dcd2

16 15 12 11 9 7 7 6 5 3 3 2 2 1 1 1

Node number 1: 204 observations, complexity param=0.3797779

mean=0.5, MSE=0.25

left son=2 (59 obs) right son=3 (145 obs)
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Primary splits:

se2 < 332 to the left, improve=0.3797779, (0 missing)

ae2 < 147 to the left, improve=0.3610216, (0 missing)

dec1 < 41 to the right, improve=0.3161290, (0 missing)

bec1 < 4.5 to the left, improve=0.2616992, (0 missing)

pe2 < 1.5 to the left, improve=0.2323232, (0 missing)

Surrogate splits:

ae2 < 122 to the left, agree=0.985, adj=0.949, (0 split)

pe2 < 1.5 to the left, agree=0.936, adj=0.780, (0 split)

pc2 < 2.5 to the left, agree=0.838, adj=0.441, (0 split)

ps2 < 0.5 to the right, agree=0.819, adj=0.373, (0 split)

dcd1 < 186 to the left, agree=0.740, adj=0.102, (0 split)

Node number 2: 59 observations

mean=0.01694915, MSE=0.01666188

Node number 3: 145 observations, complexity param=0.2219518

mean=0.6965517, MSE=0.2113674

left son=6 (33 obs) right son=7 (112 obs)

Primary splits:

bec1 < 3.5 to the left, improve=0.3693370, (0 missing)

dec1 < 41 to the right, improve=0.2223597, (0 missing)

dec2 < 74.5 to the right, improve=0.1665643, (0 missing)

ded1 < 2547 to the right, improve=0.1428168, (0 missing)

bcd2 < 3.5 to the right, improve=0.1364378, (0 missing)

Surrogate splits:

bed1 < 2.5 to the left, agree=0.876, adj=0.455, (0 split)

bcd1 < 3.5 to the left, agree=0.841, adj=0.303, (0 split)

dec1 < 947.5 to the right, agree=0.821, adj=0.212, (0 split)
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dec2 < 1038.5 to the right, agree=0.814, adj=0.182, (0 split)

ded2 < 3955.5 to the right, agree=0.807, adj=0.152, (0 split)

Node number 6: 33 observations, complexity param=0.01339223

mean=0.1818182, MSE=0.1487603

left son=12 (23 obs) right son=13 (10 obs)

Primary splits:

bec1 < 1.5 to the right, improve=0.13913040, (0 missing)

bed1 < 1.5 to the right, improve=0.13913040, (0 missing)

ded1 < 2453 to the right, improve=0.12698410, (0 missing)

se1 < 416 to the right, improve=0.11111110, (0 missing)

dcd1 < 1743 to the right, improve=0.09661836, (0 missing)

Surrogate splits:

bed1 < 1.5 to the right, agree=0.939, adj=0.8, (0 split)

bcd1 < 1.5 to the right, agree=0.909, adj=0.7, (0 split)

se1 < 391.5 to the right, agree=0.848, adj=0.5, (0 split)

se2 < 361 to the right, agree=0.788, adj=0.3, (0 split)

ae1 < 64 to the right, agree=0.758, adj=0.2, (0 split)

Node number 7: 112 observations, complexity param=0.09667777

mean=0.8482143, MSE=0.1287468

left son=14 (63 obs) right son=15 (49 obs)

Primary splits:

dec1 < 41 to the right, improve=0.1391813, (0 missing)

bed2 < 3.5 to the right, improve=0.1367686, (0 missing)

bcd2 < 3.5 to the right, improve=0.1294668, (0 missing)

se2 < 433 to the left, improve=0.1198585, (0 missing)

bec2 < 5.5 to the right, improve=0.1011315, (0 missing)

Surrogate splits:
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dec2 < 78 to the right, agree=0.973, adj=0.939, (0 split)

bec1 < 5.5 to the right, agree=0.902, adj=0.776, (0 split)

ded1 < 904 to the right, agree=0.795, adj=0.531, (0 split)

ae1 < 320.5 to the left, agree=0.768, adj=0.469, (0 split)

se1 < 461 to the left, agree=0.741, adj=0.408, (0 split)

Node number 12: 23 observations

mean=0.08695652, MSE=0.07939509

Node number 13: 10 observations

mean=0.4, MSE=0.24

Node number 14: 63 observations, complexity param=0.09667777

mean=0.7301587, MSE=0.197027

left son=28 (16 obs) right son=29 (47 obs)

Primary splits:

dec2 < 182 to the left, improve=0.6327543, (0 missing)

se2 < 433.5 to the left, improve=0.2811267, (0 missing)

dec1 < 188 to the left, improve=0.2573496, (0 missing)

bed2 < 3.5 to the right, improve=0.2546203, (0 missing)

bcd2 < 3.5 to the right, improve=0.2307815, (0 missing)

Surrogate splits:

dec1 < 138.5 to the left, agree=0.889, adj=0.562, (0 split)

ded2 < 370 to the left, agree=0.825, adj=0.312, (0 split)

ded1 < 752.5 to the left, agree=0.778, adj=0.125, (0 split)

dcd1 < 2994.5 to the right, agree=0.778, adj=0.125, (0 split)

dcd2 < 150.5 to the left, agree=0.778, adj=0.125, (0 split)

Node number 15: 49 observations
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mean=1, MSE=0

Node number 28: 16 observations

mean=0.125, MSE=0.109375

Node number 29: 47 observations

mean=0.9361702, MSE=0.05975555

C.3.2 Summary of Type Prediction Model without Subset

rpart(formula = typ ~ spc + bec1 + bed1 + bcd1 + bec2 + bed2 +

bcd2 + pe1 + pc1 + pe2 + pc2 + ps1 + ps2 + trf + ae1 + ae2 +

se1 + se2 + dec1 + ded1 + dcd1 + dec2 + ded2 + dcd2, data = trainingData,

method = "anova")

n= 240

CP nsplit rel error xerror xstd

1 0.04155882 0 1.0000000 1.004642 0.04588912

2 0.04012911 1 0.9584412 1.019967 0.05347565

3 0.03152277 4 0.8380539 1.084923 0.06737887

4 0.02870001 5 0.8065311 1.110868 0.07963709

5 0.02541388 6 0.7778311 1.157586 0.08385732

6 0.02305093 8 0.7270033 1.179505 0.08967628

7 0.01968925 10 0.6809015 1.253160 0.09432882

8 0.01743862 12 0.6415230 1.295550 0.09881095

9 0.01508049 13 0.6240844 1.300536 0.09934985

10 0.01393353 14 0.6090039 1.315588 0.10097117

11 0.01256837 15 0.5950703 1.301660 0.10116419

12 0.01000000 16 0.5825020 1.295678 0.10119038
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Variable importance

dec1 dec2 ded1 ae1 se1 dcd1 se2 bec1 dcd2 pe1 ded2 ps1 bec2 bed2 bcd2 bed1

15 13 10 10 7 7 6 4 4 3 3 3 3 3 2 2

ae2 ps2 pc2 bcd1 trf

1 1 1 1 1

Node number 1: 240 observations, complexity param=0.04155882

mean=2, MSE=0.6666667

left son=2 (57 obs) right son=3 (183 obs)

Primary splits:

se1 < 352.5 to the left, improve=0.04155882, (0 missing)

ae1 < 16 to the left, improve=0.02909483, (0 missing)

ae2 < 9.5 to the left, improve=0.02909483, (0 missing)

se2 < 161.5 to the left, improve=0.02143708, (0 missing)

ded1 < 305 to the right, improve=0.01973684, (0 missing)

Surrogate splits:

ae1 < 144.5 to the left, agree=0.850, adj=0.368, (0 split)

pe1 < 1.5 to the left, agree=0.796, adj=0.140, (0 split)

pc1 < 2.5 to the left, agree=0.783, adj=0.088, (0 split)

Node number 2: 57 observations, complexity param=0.01968925

mean=1.701754, MSE=0.3847338

left son=4 (11 obs) right son=5 (46 obs)

Primary splits:

ded1 < 716 to the left, improve=0.11440470, (0 missing)

dcd1 < 597 to the left, improve=0.11440470, (0 missing)

ae1 < 355 to the right, improve=0.11366630, (0 missing)

dec1 < 386 to the right, improve=0.11206670, (0 missing)
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bec1 < 5.5 to the left, improve=0.09984416, (0 missing)

Surrogate splits:

dcd1 < 597 to the left, agree=0.930, adj=0.636, (0 split)

dec1 < 13 to the left, agree=0.877, adj=0.364, (0 split)

dec2 < 44 to the left, agree=0.877, adj=0.364, (0 split)

ae1 < 345 to the right, agree=0.842, adj=0.182, (0 split)

se1 < 347 to the right, agree=0.825, adj=0.091, (0 split)

Node number 3: 183 observations, complexity param=0.04012911

mean=2.092896, MSE=0.7181463

left son=6 (10 obs) right son=7 (173 obs)

Primary splits:

se2 < 161.5 to the left, improve=0.03864358, (0 missing)

ae2 < 9.5 to the left, improve=0.03608405, (0 missing)

se1 < 433 to the right, improve=0.03484594, (0 missing)

dec1 < 437.5 to the right, improve=0.02305329, (0 missing)

ae1 < 337.5 to the left, improve=0.02015689, (0 missing)

Surrogate splits:

ae2 < 6.5 to the left, agree=0.951, adj=0.1, (0 split)

Node number 4: 11 observations

mean=1.272727, MSE=0.1983471

Node number 5: 46 observations, complexity param=0.01968925

mean=1.804348, MSE=0.3747637

left son=10 (9 obs) right son=11 (37 obs)

Primary splits:

dec1 < 386 to the right, improve=0.2199463, (0 missing)

ae1 < 16 to the left, improve=0.1726289, (0 missing)
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bec1 < 3.5 to the left, improve=0.1211854, (0 missing)

bed1 < 3.5 to the left, improve=0.1211854, (0 missing)

bcd1 < 3.5 to the left, improve=0.1211854, (0 missing)

Surrogate splits:

dec2 < 404 to the right, agree=0.935, adj=0.667, (0 split)

dcd1 < 614.5 to the left, agree=0.870, adj=0.333, (0 split)

ae1 < 11.5 to the left, agree=0.848, adj=0.222, (0 split)

se1 < 146 to the left, agree=0.848, adj=0.222, (0 split)

Node number 6: 10 observations

mean=1.4, MSE=0.44

Node number 7: 173 observations, complexity param=0.04012911

mean=2.132948, MSE=0.7048682

left son=14 (72 obs) right son=15 (101 obs)

Primary splits:

se1 < 433 to the right, improve=0.03083646, (0 missing)

se2 < 165.5 to the right, improve=0.02798661, (0 missing)

ae1 < 337.5 to the left, improve=0.02515373, (0 missing)

dec1 < 163 to the left, improve=0.02207765, (0 missing)

ded1 < 2688 to the right, improve=0.01596646, (0 missing)

Surrogate splits:

bed1 < 4.5 to the left, agree=0.757, adj=0.417, (0 split)

bcd1 < 4.5 to the left, agree=0.757, adj=0.417, (0 split)

ae1 < 360.5 to the right, agree=0.699, adj=0.278, (0 split)

bec1 < 4.5 to the left, agree=0.676, adj=0.222, (0 split)

dec2 < 87.5 to the left, agree=0.630, adj=0.111, (0 split)

Node number 10: 9 observations
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mean=1.222222, MSE=0.1728395

Node number 11: 37 observations, complexity param=0.01256837

mean=1.945946, MSE=0.3214025

left son=22 (30 obs) right son=23 (7 obs)

Primary splits:

dec1 < 303 to the left, improve=0.16910170, (0 missing)

dcd1 < 861 to the right, improve=0.14445290, (0 missing)

dec2 < 330.5 to the left, improve=0.08380952, (0 missing)

se1 < 258.5 to the right, improve=0.08380952, (0 missing)

se2 < 490.5 to the right, improve=0.07800325, (0 missing)

Surrogate splits:

dec2 < 354 to the left, agree=0.919, adj=0.571, (0 split)

se1 < 258.5 to the right, agree=0.838, adj=0.143, (0 split)

Node number 14: 72 observations, complexity param=0.02541388

mean=1.958333, MSE=0.7065972

left son=28 (60 obs) right son=29 (12 obs)

Primary splits:

ded1 < 354.5 to the right, improve=0.05945946, (0 missing)

se1 < 490.5 to the left, improve=0.05010854, (0 missing)

ae2 < 370.5 to the right, improve=0.04277344, (0 missing)

bec2 < 7.5 to the right, improve=0.03716216, (0 missing)

bcd1 < 1.5 to the left, improve=0.03716216, (0 missing)

Surrogate splits:

dcd1 < 354.5 to the right, agree=0.958, adj=0.750, (0 split)

dec2 < 3 to the right, agree=0.847, adj=0.083, (0 split)

Node number 15: 101 observations, complexity param=0.04012911
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mean=2.257426, MSE=0.6664053

left son=30 (55 obs) right son=31 (46 obs)

Primary splits:

ae1 < 335.5 to the left, improve=0.15485980, (0 missing)

ded2 < 1717.5 to the right, improve=0.08100208, (0 missing)

dec2 < 763.5 to the right, improve=0.07074273, (0 missing)

ded1 < 2260.5 to the right, improve=0.05815315, (0 missing)

bec2 < 7.5 to the left, improve=0.05767130, (0 missing)

Surrogate splits:

ps1 < 0.5 to the right, agree=0.762, adj=0.478, (0 split)

pe1 < 2.5 to the left, agree=0.743, adj=0.435, (0 split)

dec1 < 115 to the right, agree=0.673, adj=0.283, (0 split)

dec2 < 73 to the right, agree=0.653, adj=0.239, (0 split)

se2 < 466 to the left, agree=0.644, adj=0.217, (0 split)

Node number 22: 30 observations

mean=1.833333, MSE=0.2055556

Node number 23: 7 observations

mean=2.428571, MSE=0.5306122

Node number 28: 60 observations, complexity param=0.02541388

mean=1.866667, MSE=0.7488889

left son=56 (32 obs) right son=57 (28 obs)

Primary splits:

ded1 < 1994 to the left, improve=0.11366710, (0 missing)

dec1 < 164.5 to the left, improve=0.07869463, (0 missing)

dcd1 < 1769.5 to the left, improve=0.05775018, (0 missing)

dec2 < 656 to the left, improve=0.05568397, (0 missing)
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ded2 < 2036 to the left, improve=0.04910887, (0 missing)

Surrogate splits:

dcd1 < 1686 to the left, agree=0.883, adj=0.750, (0 split)

bec1 < 2.5 to the right, agree=0.733, adj=0.429, (0 split)

ded2 < 1013.5 to the left, agree=0.733, adj=0.429, (0 split)

dcd2 < 903 to the left, agree=0.700, adj=0.357, (0 split)

bed1 < 2.5 to the right, agree=0.683, adj=0.321, (0 split)

Node number 29: 12 observations

mean=2.416667, MSE=0.2430556

Node number 30: 55 observations, complexity param=0.02870001

mean=1.963636, MSE=0.7259504

left son=60 (12 obs) right son=61 (43 obs)

Primary splits:

dec1 < 625.5 to the right, improve=0.11500910, (0 missing)

dec2 < 763.5 to the right, improve=0.10707210, (0 missing)

se1 < 397.5 to the right, improve=0.10408530, (0 missing)

ded1 < 2093 to the right, improve=0.09836066, (0 missing)

se2 < 422 to the right, improve=0.09405175, (0 missing)

Surrogate splits:

dec2 < 482.5 to the right, agree=0.964, adj=0.833, (0 split)

ae1 < 143.5 to the left, agree=0.818, adj=0.167, (0 split)

se2 < 536.5 to the right, agree=0.818, adj=0.167, (0 split)

bec1 < 6.5 to the right, agree=0.800, adj=0.083, (0 split)

Node number 31: 46 observations, complexity param=0.03152277

mean=2.608696, MSE=0.36862

left son=62 (24 obs) right son=63 (22 obs)
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Primary splits:

dec1 < 150.5 to the left, improve=0.2974456, (0 missing)

ded1 < 664 to the left, improve=0.2642660, (0 missing)

dcd2 < 1086 to the right, improve=0.2566774, (0 missing)

dec2 < 251.5 to the left, improve=0.2009926, (0 missing)

dcd1 < 468 to the left, improve=0.1950000, (0 missing)

Surrogate splits:

dec2 < 115.5 to the left, agree=0.891, adj=0.773, (0 split)

bec1 < 5.5 to the left, agree=0.783, adj=0.545, (0 split)

ded1 < 854 to the left, agree=0.761, adj=0.500, (0 split)

dcd2 < 780 to the right, agree=0.717, adj=0.409, (0 split)

ps2 < 0.5 to the left, agree=0.696, adj=0.364, (0 split)

Node number 56: 32 observations, complexity param=0.01743862

mean=1.59375, MSE=0.6162109

left son=112 (18 obs) right son=113 (14 obs)

Primary splits:

ded1 < 753 to the right, improve=0.14149880, (0 missing)

ae1 < 385 to the left, improve=0.08927628, (0 missing)

ded2 < 920 to the right, improve=0.07066133, (0 missing)

spc < 1.5 to the right, improve=0.06918311, (0 missing)

dec2 < 65 to the right, improve=0.06918311, (0 missing)

Surrogate splits:

dcd1 < 569.5 to the right, agree=0.906, adj=0.786, (0 split)

trf < 2.5 to the left, agree=0.719, adj=0.357, (0 split)

dec1 < 33.5 to the right, agree=0.688, adj=0.286, (0 split)

dec2 < 38.5 to the right, agree=0.688, adj=0.286, (0 split)

ded2 < 396.5 to the right, agree=0.656, adj=0.214, (0 split)
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Node number 57: 28 observations, complexity param=0.01393353

mean=2.178571, MSE=0.7181122

left son=114 (10 obs) right son=115 (18 obs)

Primary splits:

dec2 < 118 to the left, improve=0.11087430, (0 missing)

dcd1 < 2122 to the right, improve=0.10790410, (0 missing)

dec1 < 189 to the left, improve=0.10595910, (0 missing)

ded2 < 1546 to the left, improve=0.09663433, (0 missing)

dcd2 < 1291 to the left, improve=0.09663433, (0 missing)

Surrogate splits:

dec1 < 189 to the left, agree=0.893, adj=0.7, (0 split)

bec1 < 4 to the right, agree=0.786, adj=0.4, (0 split)

ae2 < 280.5 to the left, agree=0.786, adj=0.4, (0 split)

pe2 < 3.5 to the right, agree=0.750, adj=0.3, (0 split)

pc2 < 2.5 to the left, agree=0.750, adj=0.3, (0 split)

Node number 60: 12 observations

mean=1.416667, MSE=0.5763889

Node number 61: 43 observations, complexity param=0.02305093

mean=2.116279, MSE=0.6608978

left son=122 (10 obs) right son=123 (33 obs)

Primary splits:

dec1 < 123.5 to the left, improve=0.12221400, (0 missing)

bec2 < 2.5 to the left, improve=0.08274421, (0 missing)

se1 < 398 to the right, improve=0.07897100, (0 missing)

se2 < 424 to the right, improve=0.05219888, (0 missing)

bed2 < 2.5 to the left, improve=0.05050464, (0 missing)

Surrogate splits:
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dec2 < 65.5 to the left, agree=0.930, adj=0.7, (0 split)

se2 < 475.5 to the right, agree=0.837, adj=0.3, (0 split)

ded1 < 417 to the left, agree=0.837, adj=0.3, (0 split)

ae1 < 325 to the right, agree=0.814, adj=0.2, (0 split)

dcd1 < 433 to the left, agree=0.791, adj=0.1, (0 split)

Node number 62: 24 observations, complexity param=0.01508049

mean=2.291667, MSE=0.4565972

left son=124 (13 obs) right son=125 (11 obs)

Primary splits:

ded2 < 1106 to the right, improve=0.2201867, (0 missing)

dcd2 < 1086 to the right, improve=0.2201867, (0 missing)

se2 < 485 to the right, improve=0.1330798, (0 missing)

dec2 < 52.5 to the right, improve=0.1330798, (0 missing)

dcd1 < 468 to the left, improve=0.1117871, (0 missing)

Surrogate splits:

dcd2 < 1086 to the right, agree=1.000, adj=1.000, (0 split)

pc2 < 3.5 to the left, agree=0.750, adj=0.455, (0 split)

spc < 1.5 to the left, agree=0.667, adj=0.273, (0 split)

bec2 < 1.5 to the right, agree=0.667, adj=0.273, (0 split)

bed2 < 1.5 to the right, agree=0.667, adj=0.273, (0 split)

Node number 63: 22 observations

mean=2.954545, MSE=0.04338843

Node number 112: 18 observations

mean=1.333333, MSE=0.5555556

Node number 113: 14 observations
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mean=1.928571, MSE=0.494898

Node number 114: 10 observations

mean=1.8, MSE=0.76

Node number 115: 18 observations

mean=2.388889, MSE=0.5709877

Node number 122: 10 observations

mean=1.6, MSE=0.64

Node number 123: 33 observations, complexity param=0.02305093

mean=2.272727, MSE=0.5619835

left son=246 (13 obs) right son=247 (20 obs)

Primary splits:

bec2 < 2.5 to the left, improve=0.2104638, (0 missing)

bed2 < 2.5 to the left, improve=0.2104638, (0 missing)

dec2 < 170.5 to the right, improve=0.1796218, (0 missing)

bcd2 < 2.5 to the left, improve=0.1289099, (0 missing)

dec1 < 255 to the right, improve=0.1176471, (0 missing)

Surrogate splits:

bed2 < 2.5 to the left, agree=1.000, adj=1.000, (0 split)

bcd2 < 2.5 to the left, agree=0.970, adj=0.923, (0 split)

dec2 < 174.5 to the right, agree=0.727, adj=0.308, (0 split)

se2 < 424 to the right, agree=0.697, adj=0.231, (0 split)

ae2 < 337.5 to the right, agree=0.667, adj=0.154, (0 split)

Node number 124: 13 observations

mean=2, MSE=0.4615385
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Node number 125: 11 observations

mean=2.636364, MSE=0.231405

Node number 246: 13 observations

mean=1.846154, MSE=0.7455621

Node number 247: 20 observations

mean=2.55, MSE=0.2475

C.3.3 Summary of Type Prediction Model with Subset

rpart(formula = typ ~ spc + bec1 + bed1 + bcd1 + bec2 + bed2 +

bcd2 + pe1 + pc1 + pe2 + pc2 + ps1 + ps2 + trf + ae1 + ae2 +

se1 + se2 + dec1 + ded1 + dcd1 + dec2 + ded2 + dcd2, data = trainingData,

method = "anova")

n= 102

CP nsplit rel error xerror xstd

1 0.15705128 0 1.0000000 1.0176750 0.07145909

2 0.07570539 1 0.8429487 0.9279692 0.09592258

3 0.05594546 2 0.7672433 1.0987037 0.12503291

4 0.02762148 5 0.5979799 1.2638739 0.14503979

5 0.02761438 6 0.5703584 1.2515210 0.14460224

6 0.01584323 7 0.5427441 1.2615990 0.14556892

7 0.01000000 8 0.5269008 1.2615990 0.14556892

Variable importance

bcd2 bed2 bec2 dcd1 ae1 bed1 dcd2 bec1 ded2 se1 bcd1 ae2 se2 ded1 pc1 pc2
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Node number 1: 102 observations, complexity param=0.1570513

mean=2, MSE=0.6666667

left son=2 (24 obs) right son=3 (78 obs)

Primary splits:

bcd2 < 2.5 to the left, improve=0.15705130, (0 missing)

bed2 < 2.5 to the left, improve=0.10666670, (0 missing)

ae1 < 373.5 to the right, improve=0.09590410, (0 missing)

ded2 < 2054.5 to the left, improve=0.05283434, (0 missing)

dcd1 < 369 to the left, improve=0.05000000, (0 missing)

Surrogate splits:

bed2 < 2.5 to the left, agree=0.971, adj=0.875, (0 split)

bec2 < 2.5 to the left, agree=0.902, adj=0.583, (0 split)

dcd2 < 160 to the left, agree=0.794, adj=0.125, (0 split)

ae1 < 378 to the right, agree=0.784, adj=0.083, (0 split)

se2 < 444 to the right, agree=0.784, adj=0.083, (0 split)

Node number 2: 24 observations, complexity param=0.02761438

mean=1.416667, MSE=0.4097222

left son=4 (15 obs) right son=5 (9 obs)

Primary splits:

dcd2 < 1291 to the left, improve=0.1909605, (0 missing)

bed2 < 1.5 to the left, improve=0.1748184, (0 missing)

bcd2 < 1.5 to the left, improve=0.1748184, (0 missing)

ae1 < 365.5 to the right, improve=0.1748184, (0 missing)

ded2 < 992.5 to the left, improve=0.1367232, (0 missing)
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Surrogate splits:

ded2 < 1686.5 to the left, agree=0.958, adj=0.889, (0 split)

bed2 < 1.5 to the left, agree=0.792, adj=0.444, (0 split)

bcd2 < 1.5 to the left, agree=0.792, adj=0.444, (0 split)

ae2 < 16.5 to the right, agree=0.792, adj=0.444, (0 split)

se2 < 176.5 to the right, agree=0.750, adj=0.333, (0 split)

Node number 3: 78 observations, complexity param=0.07570539

mean=2.179487, MSE=0.60881

left son=6 (11 obs) right son=7 (67 obs)

Primary splits:

dcd1 < 369 to the left, improve=0.10840750, (0 missing)

ded1 < 2468.5 to the left, improve=0.09296189, (0 missing)

ded2 < 2054.5 to the left, improve=0.08413311, (0 missing)

bec2 < 4.5 to the right, improve=0.06533477, (0 missing)

bed1 < 1.5 to the left, improve=0.05553456, (0 missing)

Surrogate splits:

pc1 < 3.5 to the right, agree=0.910, adj=0.364, (0 split)

ae2 < 9.5 to the left, agree=0.897, adj=0.273, (0 split)

ded1 < 438.5 to the left, agree=0.897, adj=0.273, (0 split)

Node number 4: 15 observations

mean=1.2, MSE=0.16

Node number 5: 9 observations

mean=1.777778, MSE=0.617284

Node number 6: 11 observations

mean=1.545455, MSE=0.6115702
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Node number 7: 67 observations, complexity param=0.05594546

mean=2.283582, MSE=0.5315215

left son=14 (44 obs) right son=15 (23 obs)

Primary splits:

bec2 < 4.5 to the right, improve=0.10395000, (0 missing)

bed1 < 1.5 to the left, improve=0.07468936, (0 missing)

dec2 < 663.5 to the left, improve=0.07130034, (0 missing)

ded1 < 2468.5 to the left, improve=0.07116435, (0 missing)

dcd1 < 1579.5 to the left, improve=0.06994329, (0 missing)

Surrogate splits:

bed2 < 4.5 to the right, agree=0.955, adj=0.870, (0 split)

bcd2 < 4.5 to the right, agree=0.881, adj=0.652, (0 split)

se2 < 418.5 to the left, agree=0.716, adj=0.174, (0 split)

dcd2 < 277 to the right, agree=0.701, adj=0.130, (0 split)

pc2 < 3.5 to the left, agree=0.687, adj=0.087, (0 split)

Node number 14: 44 observations, complexity param=0.05594546

mean=2.113636, MSE=0.6007231

left son=28 (7 obs) right son=29 (37 obs)

Primary splits:

bed1 < 1.5 to the left, improve=0.14780370, (0 missing)

bcd2 < 5.5 to the left, improve=0.13331970, (0 missing)

bec2 < 5.5 to the left, improve=0.09258774, (0 missing)

bed2 < 5.5 to the left, improve=0.08832521, (0 missing)

bcd1 < 1.5 to the left, improve=0.08551775, (0 missing)

Surrogate splits:

bec1 < 1.5 to the left, agree=0.977, adj=0.857, (0 split)

bcd1 < 1.5 to the left, agree=0.955, adj=0.714, (0 split)
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ae1 < 43 to the left, agree=0.886, adj=0.286, (0 split)

se1 < 212.5 to the left, agree=0.886, adj=0.286, (0 split)

Node number 15: 23 observations, complexity param=0.02762148

mean=2.608696, MSE=0.2381853

left son=30 (15 obs) right son=31 (8 obs)

Primary splits:

se1 < 420 to the left, improve=0.3428571, (0 missing)

dec1 < 222.5 to the left, improve=0.1916100, (0 missing)

ded1 < 2458.5 to the left, improve=0.1587963, (0 missing)

bec1 < 2.5 to the right, improve=0.1587963, (0 missing)

dcd1 < 2108.5 to the left, improve=0.1133787, (0 missing)

Surrogate splits:

ded2 < 1065.5 to the left, agree=0.870, adj=0.625, (0 split)

ae1 < 335 to the left, agree=0.826, adj=0.500, (0 split)

dcd2 < 1566 to the left, agree=0.826, adj=0.500, (0 split)

dec1 < 423 to the left, agree=0.783, adj=0.375, (0 split)

ded1 < 2699 to the left, agree=0.783, adj=0.375, (0 split)

Node number 28: 7 observations

mean=1.428571, MSE=0.244898

Node number 29: 37 observations, complexity param=0.05594546

mean=2.243243, MSE=0.5624543

left son=58 (8 obs) right son=59 (29 obs)

Primary splits:

bcd2 < 5.5 to the left, improve=0.1874664, (0 missing)

ae2 < 80 to the left, improve=0.1164266, (0 missing)

se2 < 259 to the left, improve=0.1164266, (0 missing)
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ded2 < 892 to the left, improve=0.1164266, (0 missing)

bed2 < 5.5 to the left, improve=0.1160730, (0 missing)

Surrogate splits:

bed2 < 5.5 to the left, agree=0.973, adj=0.875, (0 split)

bec2 < 5.5 to the left, agree=0.946, adj=0.750, (0 split)

ae1 < 373.5 to the right, agree=0.865, adj=0.375, (0 split)

ded2 < 851 to the left, agree=0.838, adj=0.250, (0 split)

dec2 < 62 to the left, agree=0.811, adj=0.125, (0 split)

Node number 30: 15 observations

mean=2.4, MSE=0.24

Node number 31: 8 observations

mean=3, MSE=0

Node number 58: 8 observations

mean=1.625, MSE=0.484375

Node number 59: 29 observations, complexity param=0.01584323

mean=2.413793, MSE=0.4494649

left son=118 (14 obs) right son=119 (15 obs)

Primary splits:

bec1 < 5.5 to the left, improve=0.08265306, (0 missing)

se1 < 452 to the right, improve=0.07316552, (0 missing)

ae2 < 17.5 to the left, improve=0.07068846, (0 missing)

ded1 < 1678.5 to the right, improve=0.06735343, (0 missing)

bed1 < 6.5 to the left, improve=0.06402116, (0 missing)

Surrogate splits:

bed1 < 4.5 to the left, agree=0.897, adj=0.786, (0 split)
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bcd1 < 4.5 to the left, agree=0.862, adj=0.714, (0 split)

se1 < 464 to the right, agree=0.828, adj=0.643, (0 split)

pc2 < 2.5 to the right, agree=0.724, adj=0.429, (0 split)

ae1 < 330 to the right, agree=0.724, adj=0.429, (0 split)

Node number 118: 14 observations

mean=2.214286, MSE=0.4540816

Node number 119: 15 observations

mean=2.6, MSE=0.3733333

rpart(formula = typ ~ spc + bec1 + bed1 + bcd1 + bec2 + bed2 +

bcd2 + pe1 + pc1 + pe2 + pc2 + ps1 + ps2 + trf + ae1 + ae2 +

se1 + se2 + dec1 + ded1 + dcd1 + dec2 + ded2 + dcd2, data = trainingData,

method = "anova")

n= 138

CP nsplit rel error xerror xstd

1 0.07618595 0 1.0000000 1.005925 0.06060532

2 0.04853053 4 0.6910782 1.135535 0.10059195

3 0.04809783 5 0.6425477 1.144058 0.10952217

4 0.02705882 7 0.5463520 1.127966 0.11992197

5 0.01369160 8 0.5192932 1.120199 0.12225021

6 0.01000000 9 0.5056016 1.125410 0.12396525

Variable importance

se1 ae1 dec1 dcd1 dcd2 ded1 ded2 se2 bec1 dec2 bcd1 bed1 ae2 pc2 pe1 bcd2

11 10 9 9 8 7 7 5 5 4 4 4 3 3 2 2

bec2 bed2 ps1 ps2 pe2

2 2 2 1 1
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Node number 1: 138 observations, complexity param=0.07618595

mean=2, MSE=0.6666667

left son=2 (30 obs) right son=3 (108 obs)

Primary splits:

ded2 < 1844.5 to the right, improve=0.06666667, (0 missing)

ae1 < 209.5 to the left, improve=0.06233766, (0 missing)

dec1 < 423 to the right, improve=0.06224385, (0 missing)

pe1 < 1.5 to the left, improve=0.05991678, (0 missing)

dec2 < 365.5 to the right, improve=0.05991678, (0 missing)

Surrogate splits:

dcd2 < 1668.5 to the right, agree=0.920, adj=0.633, (0 split)

dec1 < 1153 to the right, agree=0.804, adj=0.100, (0 split)

dec2 < 1343 to the right, agree=0.804, adj=0.100, (0 split)

pe2 < 1.5 to the left, agree=0.790, adj=0.033, (0 split)

ae2 < 156.5 to the left, agree=0.790, adj=0.033, (0 split)

Node number 2: 30 observations, complexity param=0.04809783

mean=1.6, MSE=0.5733333

left son=4 (8 obs) right son=5 (22 obs)

Primary splits:

dec1 < 384.5 to the right, improve=0.2283298, (0 missing)

se2 < 466 to the left, improve=0.1937984, (0 missing)

dec2 < 605.5 to the right, improve=0.1911021, (0 missing)

se1 < 470 to the left, improve=0.1748150, (0 missing)

spc < 2.5 to the left, improve=0.1564351, (0 missing)

Surrogate splits:

dec2 < 529 to the right, agree=0.967, adj=0.875, (0 split)

dcd2 < 1362.5 to the left, agree=0.867, adj=0.500, (0 split)
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bec1 < 5.5 to the right, agree=0.800, adj=0.250, (0 split)

se2 < 572.5 to the right, agree=0.800, adj=0.250, (0 split)

dcd1 < 282.5 to the left, agree=0.800, adj=0.250, (0 split)

Node number 3: 108 observations, complexity param=0.07618595

mean=2.111111, MSE=0.6358025

left son=6 (19 obs) right son=7 (89 obs)

Primary splits:

se1 < 337.5 to the left, improve=0.11482840, (0 missing)

ae1 < 335 to the left, improve=0.08307039, (0 missing)

pe1 < 1.5 to the left, improve=0.07246696, (0 missing)

dcd1 < 698.5 to the left, improve=0.06908883, (0 missing)

dec2 < 3 to the left, improve=0.06817961, (0 missing)

Surrogate splits:

ae1 < 144.5 to the left, agree=0.935, adj=0.632, (0 split)

pe1 < 1.5 to the left, agree=0.852, adj=0.158, (0 split)

pc1 < 2.5 to the left, agree=0.833, adj=0.053, (0 split)

ps1 < 0.5 to the right, agree=0.833, adj=0.053, (0 split)

Node number 4: 8 observations

mean=1, MSE=0

Node number 5: 22 observations, complexity param=0.04809783

mean=1.818182, MSE=0.6033058

left son=10 (10 obs) right son=11 (12 obs)

Primary splits:

se2 < 462 to the left, improve=0.37089040, (0 missing)

dec1 < 179 to the left, improve=0.17661450, (0 missing)

dec2 < 235 to the left, improve=0.17661450, (0 missing)
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ae1 < 325 to the right, improve=0.09846622, (0 missing)

dcd2 < 2440.5 to the right, improve=0.09589041, (0 missing)

Surrogate splits:

ae2 < 217 to the left, agree=0.773, adj=0.5, (0 split)

bec2 < 5.5 to the right, agree=0.727, adj=0.4, (0 split)

bed2 < 4.5 to the right, agree=0.727, adj=0.4, (0 split)

bcd2 < 4.5 to the right, agree=0.727, adj=0.4, (0 split)

bec1 < 4.5 to the left, agree=0.682, adj=0.3, (0 split)

Node number 6: 19 observations

mean=1.526316, MSE=0.3545706

Node number 7: 89 observations, complexity param=0.07618595

mean=2.235955, MSE=0.6072466

left son=14 (34 obs) right son=15 (55 obs)

Primary splits:

ae1 < 335 to the left, improve=0.08845920, (0 missing)

bed1 < 1.5 to the left, improve=0.08325288, (0 missing)

bcd1 < 1.5 to the left, improve=0.08325288, (0 missing)

dcd1 < 698.5 to the left, improve=0.07151351, (0 missing)

ded1 < 699.5 to the left, improve=0.05667738, (0 missing)

Surrogate splits:

pe1 < 1.5 to the left, agree=0.742, adj=0.324, (0 split)

ps1 < 0.5 to the right, agree=0.742, adj=0.324, (0 split)

dec2 < 228.5 to the right, agree=0.708, adj=0.235, (0 split)

dec1 < 140.5 to the right, agree=0.697, adj=0.206, (0 split)

bec1 < 6.5 to the right, agree=0.674, adj=0.147, (0 split)

Node number 10: 10 observations
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mean=1.3, MSE=0.21

Node number 11: 12 observations

mean=2.25, MSE=0.5208333

Node number 14: 34 observations, complexity param=0.04853053

mean=1.941176, MSE=0.6435986

left son=28 (15 obs) right son=29 (19 obs)

Primary splits:

dcd2 < 644 to the left, improve=0.2040370, (0 missing)

dec2 < 57.5 to the right, improve=0.1362903, (0 missing)

dec1 < 60.5 to the right, improve=0.1303356, (0 missing)

spc < 2.5 to the right, improve=0.1085248, (0 missing)

bed1 < 1.5 to the left, improve=0.1058486, (0 missing)

Surrogate splits:

pc2 < 3.5 to the right, agree=0.853, adj=0.667, (0 split)

ded2 < 812.5 to the left, agree=0.853, adj=0.667, (0 split)

se1 < 400 to the left, agree=0.765, adj=0.467, (0 split)

bec1 < 5.5 to the right, agree=0.735, adj=0.400, (0 split)

dec1 < 60.5 to the right, agree=0.735, adj=0.400, (0 split)

Node number 15: 55 observations, complexity param=0.07618595

mean=2.418182, MSE=0.4978512

left son=30 (25 obs) right son=31 (30 obs)

Primary splits:

dcd1 < 698.5 to the left, improve=0.3513944, (0 missing)

ded1 < 660.5 to the left, improve=0.3288361, (0 missing)

se1 < 503 to the right, improve=0.1705770, (0 missing)

dec1 < 161.5 to the left, improve=0.1584881, (0 missing)
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ae2 < 357 to the left, improve=0.1263574, (0 missing)

Surrogate splits:

ded1 < 660.5 to the left, agree=0.982, adj=0.96, (0 split)

dec1 < 148.5 to the left, agree=0.709, adj=0.36, (0 split)

bed1 < 4.5 to the left, agree=0.691, adj=0.32, (0 split)

bcd1 < 4.5 to the left, agree=0.691, adj=0.32, (0 split)

se1 < 419.5 to the right, agree=0.673, adj=0.28, (0 split)

Node number 28: 15 observations

mean=1.533333, MSE=0.3822222

Node number 29: 19 observations

mean=2.263158, MSE=0.6149584

Node number 30: 25 observations, complexity param=0.02705882

mean=1.96, MSE=0.4384

left son=60 (8 obs) right son=61 (17 obs)

Primary splits:

ae1 < 354.5 to the left, improve=0.22713610, (0 missing)

ded1 < 423 to the right, improve=0.13393580, (0 missing)

dcd1 < 423 to the right, improve=0.13393580, (0 missing)

bec2 < 4.5 to the right, improve=0.09707081, (0 missing)

dec2 < 38.5 to the left, improve=0.09707081, (0 missing)

Surrogate splits:

ps2 < 0.5 to the right, agree=0.84, adj=0.500, (0 split)

ae2 < 269 to the left, agree=0.84, adj=0.500, (0 split)

pe2 < 2.5 to the left, agree=0.80, adj=0.375, (0 split)

pc2 < 2.5 to the left, agree=0.76, adj=0.250, (0 split)

se1 < 363.5 to the left, agree=0.76, adj=0.250, (0 split)



249

Node number 31: 30 observations, complexity param=0.0136916

mean=2.8, MSE=0.2266667

left son=62 (7 obs) right son=63 (23 obs)

Primary splits:

bed1 < 4.5 to the left, improve=0.18523930, (0 missing)

bcd1 < 4.5 to the left, improve=0.18523930, (0 missing)

dcd2 < 427.5 to the left, improve=0.17647060, (0 missing)

ded2 < 586.5 to the left, improve=0.16549390, (0 missing)

bec2 < 5.5 to the left, improve=0.07563025, (0 missing)

Surrogate splits:

bcd1 < 4.5 to the left, agree=1.000, adj=1.000, (0 split)

se1 < 482 to the right, agree=0.933, adj=0.714, (0 split)

bec1 < 4.5 to the left, agree=0.900, adj=0.571, (0 split)

ae1 < 405 to the right, agree=0.867, adj=0.429, (0 split)

ae2 < 266 to the left, agree=0.833, adj=0.286, (0 split)

Node number 60: 8 observations

mean=1.5, MSE=0.25

Node number 61: 17 observations

mean=2.176471, MSE=0.3806228

Node number 62: 7 observations

mean=2.428571, MSE=0.5306122

Node number 63: 23 observations

mean=2.913043, MSE=0.07939509
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C.3.4 Summary of Option Prediction Model without Subset

rpart(formula = opt ~ bec1 + bed1 + bcd1 + bec2 + bed2 + bcd2 +

pe1 + pc1 + pe2 + pc2 + ps1 + ps2 + trf + ae1 + ae2 + se1 +

se2 + dec1 + ded1 + dcd1 + dec2 + ded2 + dcd2, data = trainingData,

method = "anova")

n= 224

CP nsplit rel error xerror xstd

1 0.33395176 0 1.0000000 1.0106677 0.00310672

2 0.10674434 1 0.6660482 0.7054137 0.05720985

3 0.05181834 2 0.5593039 0.6356760 0.05942800

4 0.02918470 4 0.4556672 0.6039539 0.06755229

5 0.02150974 6 0.3972978 0.6692541 0.07454612

6 0.01508621 8 0.3542783 0.7156079 0.08117682

7 0.01000000 9 0.3391921 0.7549787 0.08421693

Variable importance

ae1 pe1 ps1 dec2 dec1 se1 ded1 ae2 pe2 dcd1 ded2 se2 bec1 pc2 pc1 trf

18 17 15 12 10 9 3 3 2 2 2 2 2 1 1 1

ps2

1

Node number 1: 224 observations, complexity param=0.3339518

mean=0.5, MSE=0.25

left son=2 (154 obs) right son=3 (70 obs)

Primary splits:

pe1 < 1.5 to the right, improve=0.3339518, (0 missing)

ae1 < 254.5 to the right, improve=0.3339518, (0 missing)
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ps1 < 0.5 to the left, improve=0.3038848, (0 missing)

dec1 < 13 to the left, improve=0.2808475, (0 missing)

dec2 < 71.5 to the left, improve=0.1765942, (0 missing)

Surrogate splits:

ae1 < 254.5 to the right, agree=1.000, adj=1.000, (0 split)

ps1 < 0.5 to the left, agree=0.951, adj=0.843, (0 split)

se1 < 358.5 to the right, agree=0.839, adj=0.486, (0 split)

pc1 < 2.5 to the right, agree=0.701, adj=0.043, (0 split)

dcd1 < 3503.5 to the left, agree=0.701, adj=0.043, (0 split)

Node number 2: 154 observations, complexity param=0.1067443

mean=0.3051948, MSE=0.2120509

left son=4 (58 obs) right son=5 (96 obs)

Primary splits:

dec1 < 33.5 to the left, improve=0.18305090, (0 missing)

dec2 < 78.5 to the left, improve=0.11596550, (0 missing)

ae2 < 111.5 to the right, improve=0.09915843, (0 missing)

se2 < 334 to the right, improve=0.08595168, (0 missing)

bec1 < 4.5 to the right, improve=0.07994492, (0 missing)

Surrogate splits:

dec2 < 78.5 to the left, agree=0.948, adj=0.862, (0 split)

ded1 < 783 to the left, agree=0.773, adj=0.397, (0 split)

ded2 < 333 to the left, agree=0.714, adj=0.241, (0 split)

pe2 < 3.5 to the right, agree=0.701, adj=0.207, (0 split)

bec1 < 5.5 to the left, agree=0.682, adj=0.155, (0 split)

Node number 3: 70 observations

mean=0.9285714, MSE=0.06632653
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Node number 4: 58 observations, complexity param=0.01508621

mean=0.05172414, MSE=0.04904875

left son=8 (49 obs) right son=9 (9 obs)

Primary splits:

dec2 < 3 to the right, improve=0.29696970, (0 missing)

bec2 < 4.5 to the left, improve=0.11196170, (0 missing)

ded1 < 325 to the right, improve=0.09338384, (0 missing)

dcd1 < 325 to the right, improve=0.09338384, (0 missing)

bed1 < 2.5 to the right, improve=0.04170274, (0 missing)

Surrogate splits:

bed1 < 1.5 to the right, agree=0.862, adj=0.111, (0 split)

bcd1 < 1.5 to the right, agree=0.862, adj=0.111, (0 split)

Node number 5: 96 observations, complexity param=0.05181834

mean=0.4583333, MSE=0.2482639

left son=10 (79 obs) right son=11 (17 obs)

Primary splits:

dec2 < 114 to the right, improve=0.11560070, (0 missing)

dec1 < 314.5 to the left, improve=0.05697207, (0 missing)

se2 < 410.5 to the right, improve=0.04370629, (0 missing)

ae2 < 311.5 to the right, improve=0.04370629, (0 missing)

se1 < 432.5 to the left, improve=0.04370629, (0 missing)

Surrogate splits:

pc2 < 2.5 to the right, agree=0.854, adj=0.176, (0 split)

dec1 < 111.5 to the right, agree=0.854, adj=0.176, (0 split)

se2 < 153.5 to the right, agree=0.844, adj=0.118, (0 split)

ded1 < 373.5 to the right, agree=0.844, adj=0.118, (0 split)

Node number 8: 49 observations
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mean=0, MSE=0

Node number 9: 9 observations

mean=0.3333333, MSE=0.2222222

Node number 10: 79 observations, complexity param=0.05181834

mean=0.3797468, MSE=0.2355392

left son=20 (44 obs) right son=21 (35 obs)

Primary splits:

dec1 < 314.5 to the left, improve=0.16383120, (0 missing)

dec2 < 238.5 to the left, improve=0.11931920, (0 missing)

ae1 < 330.5 to the right, improve=0.07678623, (0 missing)

se1 < 518.5 to the right, improve=0.05952381, (0 missing)

trf < 1.5 to the right, improve=0.04777647, (0 missing)

Surrogate splits:

dec2 < 352 to the left, agree=0.886, adj=0.743, (0 split)

se1 < 432.5 to the left, agree=0.671, adj=0.257, (0 split)

dcd1 < 881 to the right, agree=0.658, adj=0.229, (0 split)

bec1 < 2.5 to the right, agree=0.646, adj=0.200, (0 split)

ded1 < 1524.5 to the left, agree=0.646, adj=0.200, (0 split)

Node number 11: 17 observations

mean=0.8235294, MSE=0.1453287

Node number 20: 44 observations, complexity param=0.02150974

mean=0.2045455, MSE=0.1627066

left son=40 (24 obs) right son=41 (20 obs)

Primary splits:

trf < 1.5 to the right, improve=0.10835980, (0 missing)
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ps2 < 0.5 to the right, improve=0.07086168, (0 missing)

se1 < 399.5 to the right, improve=0.07057387, (0 missing)

ded1 < 1365.5 to the right, improve=0.06704788, (0 missing)

dcd1 < 1022.5 to the right, improve=0.06678760, (0 missing)

Surrogate splits:

bec1 < 2.5 to the right, agree=0.727, adj=0.40, (0 split)

ded1 < 1534 to the left, agree=0.727, adj=0.40, (0 split)

se1 < 403.5 to the left, agree=0.705, adj=0.35, (0 split)

dcd1 < 1320 to the left, agree=0.705, adj=0.35, (0 split)

bed1 < 2.5 to the right, agree=0.659, adj=0.25, (0 split)

Node number 21: 35 observations, complexity param=0.0291847

mean=0.6, MSE=0.24

left son=42 (24 obs) right son=43 (11 obs)

Primary splits:

ae1 < 335 to the right, improve=0.18244950, (0 missing)

bed1 < 6.5 to the right, improve=0.10289120, (0 missing)

se1 < 502 to the right, improve=0.10289120, (0 missing)

dcd2 < 1614 to the left, improve=0.09336420, (0 missing)

ae2 < 311.5 to the right, improve=0.09265351, (0 missing)

Surrogate splits:

pe1 < 2.5 to the right, agree=0.743, adj=0.182, (0 split)

ps1 < 0.5 to the left, agree=0.743, adj=0.182, (0 split)

ae2 < 365 to the left, agree=0.743, adj=0.182, (0 split)

dec1 < 338 to the right, agree=0.743, adj=0.182, (0 split)

dcd1 < 1379.5 to the left, agree=0.743, adj=0.182, (0 split)

Node number 40: 24 observations

mean=0.08333333, MSE=0.07638889
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Node number 41: 20 observations, complexity param=0.02150974

mean=0.35, MSE=0.2275

left son=82 (8 obs) right son=83 (12 obs)

Primary splits:

dec2 < 188 to the left, improve=0.3589744, (0 missing)

ded1 < 1365.5 to the right, improve=0.3140925, (0 missing)

dcd1 < 1098.5 to the right, improve=0.3140925, (0 missing)

dec1 < 174 to the left, improve=0.1483516, (0 missing)

se1 < 413 to the right, improve=0.1160488, (0 missing)

Surrogate splits:

pe2 < 2 to the left, agree=0.8, adj=0.5, (0 split)

pc2 < 2.5 to the left, agree=0.8, adj=0.5, (0 split)

ae2 < 196.5 to the left, agree=0.8, adj=0.5, (0 split)

se2 < 335 to the left, agree=0.8, adj=0.5, (0 split)

dec1 < 174 to the left, agree=0.8, adj=0.5, (0 split)

Node number 42: 24 observations, complexity param=0.0291847

mean=0.4583333, MSE=0.2482639

left son=84 (9 obs) right son=85 (15 obs)

Primary splits:

ae2 < 311.5 to the right, improve=0.29137530, (0 missing)

dcd2 < 1400.5 to the left, improve=0.16803200, (0 missing)

dcd1 < 551.5 to the right, improve=0.10865600, (0 missing)

se1 < 490 to the right, improve=0.08741259, (0 missing)

bcd1 < 2.5 to the left, improve=0.08741259, (0 missing)

Surrogate splits:

se2 < 454 to the right, agree=0.792, adj=0.444, (0 split)

dec2 < 1363 to the right, agree=0.792, adj=0.444, (0 split)
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ps2 < 0.5 to the left, agree=0.750, adj=0.333, (0 split)

dec1 < 435.5 to the left, agree=0.750, adj=0.333, (0 split)

ded2 < 2566.5 to the right, agree=0.750, adj=0.333, (0 split)

Node number 43: 11 observations

mean=0.9090909, MSE=0.08264463

Node number 82: 8 observations

mean=0, MSE=0

Node number 83: 12 observations

mean=0.5833333, MSE=0.2430556

Node number 84: 9 observations

mean=0.1111111, MSE=0.09876543

Node number 85: 15 observations

mean=0.6666667, MSE=0.2222222

C.3.5 Summary of Lateral Option Prediction Model

rpart(formula = opt ~ bec1 + bed1 + bcd1 + bec2 + bed2 + bcd2 +

pe1 + pc1 + pe2 + pc2 + ps1 + ps2 + trf + ae1 + ae2 + se1 +

se2 + dec1 + ded1 + dcd1 + dec2 + ded2 + dcd2, data = trainingData,

method = "anova")

n= 84

CP nsplit rel error xerror xstd

1 0.17006803 0 1.0000000 1.0185481 0.006495749
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2 0.10554525 1 0.8299320 0.9401698 0.091379744

3 0.07265512 3 0.6188415 1.0222844 0.110558553

4 0.04081633 5 0.4735312 1.2327961 0.138121246

5 0.03463203 6 0.4327149 1.2175562 0.145941023

6 0.01000000 7 0.3980829 1.1702995 0.145333776

Variable importance

dec1 dec2 ded1 dcd1 ded2 se2 bec1 dcd2 se1 bcd1 bed1 pe2 ae2 pc2 bcd2 bec2

19 17 10 8 7 6 5 5 5 4 4 2 2 2 1 1

bed2

1

Node number 1: 84 observations, complexity param=0.170068

mean=0.5, MSE=0.25

left son=2 (21 obs) right son=3 (63 obs)

Primary splits:

dec1 < 13 to the left, improve=0.17006800, (0 missing)

bec1 < 3.5 to the right, improve=0.09145881, (0 missing)

dcd2 < 1956.5 to the right, improve=0.08775731, (0 missing)

ded1 < 796 to the left, improve=0.07331378, (0 missing)

ded2 < 1239 to the right, improve=0.06863301, (0 missing)

Surrogate splits:

dec2 < 82.5 to the left, agree=0.929, adj=0.714, (0 split)

ded1 < 545.5 to the left, agree=0.845, adj=0.381, (0 split)

ded2 < 334.5 to the left, agree=0.786, adj=0.143, (0 split)

pe2 < 3.5 to the right, agree=0.774, adj=0.095, (0 split)

se1 < 534 to the right, agree=0.762, adj=0.048, (0 split)

Node number 2: 21 observations, complexity param=0.04081633
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mean=0.1428571, MSE=0.122449

left son=4 (14 obs) right son=5 (7 obs)

Primary splits:

dec2 < 21.5 to the right, improve=0.3333333, (0 missing)

se1 < 404.5 to the right, improve=0.2222222, (0 missing)

bec2 < 4 to the left, improve=0.2222222, (0 missing)

ded2 < 1226 to the right, improve=0.1833333, (0 missing)

dcd2 < 1211.5 to the right, improve=0.1833333, (0 missing)

Surrogate splits:

se1 < 427.5 to the right, agree=0.810, adj=0.429, (0 split)

ded1 < 309.5 to the right, agree=0.810, adj=0.429, (0 split)

dcd1 < 309.5 to the right, agree=0.810, adj=0.429, (0 split)

se2 < 555.5 to the left, agree=0.762, adj=0.286, (0 split)

ae2 < 310 to the left, agree=0.714, adj=0.143, (0 split)

Node number 3: 63 observations, complexity param=0.1055452

mean=0.6190476, MSE=0.2358277

left son=6 (30 obs) right son=7 (33 obs)

Primary splits:

ded2 < 1394 to the right, improve=0.08951049, (0 missing)

dec2 < 87 to the right, improve=0.07692308, (0 missing)

dcd2 < 943 to the right, improve=0.07392452, (0 missing)

se1 < 446 to the left, improve=0.06552479, (0 missing)

bec1 < 5.5 to the right, improve=0.05817308, (0 missing)

Surrogate splits:

dcd2 < 910 to the right, agree=0.905, adj=0.800, (0 split)

dec2 < 570 to the right, agree=0.651, adj=0.267, (0 split)

bed2 < 1.5 to the right, agree=0.619, adj=0.200, (0 split)

bcd2 < 1.5 to the right, agree=0.603, adj=0.167, (0 split)
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pc2 < 3.5 to the left, agree=0.603, adj=0.167, (0 split)

Node number 4: 14 observations

mean=0, MSE=0

Node number 5: 7 observations

mean=0.4285714, MSE=0.244898

Node number 6: 30 observations, complexity param=0.1055452

mean=0.4666667, MSE=0.2488889

left son=12 (22 obs) right son=13 (8 obs)

Primary splits:

dec1 < 744 to the left, improve=0.41558440, (0 missing)

ded2 < 1826.5 to the left, improve=0.12821650, (0 missing)

dcd1 < 1261 to the right, improve=0.12574400, (0 missing)

dec2 < 815 to the left, improve=0.11728900, (0 missing)

se2 < 175 to the right, improve=0.07497782, (0 missing)

Surrogate splits:

dec2 < 718 to the left, agree=0.867, adj=0.500, (0 split)

se2 < 158 to the right, agree=0.800, adj=0.250, (0 split)

dcd2 < 593.5 to the right, agree=0.800, adj=0.250, (0 split)

dcd1 < 314 to the right, agree=0.767, adj=0.125, (0 split)

Node number 7: 33 observations, complexity param=0.07265512

mean=0.7575758, MSE=0.1836547

left son=14 (21 obs) right son=15 (12 obs)

Primary splits:

dcd1 < 1505 to the left, improve=0.1828571, (0 missing)

bec1 < 3.5 to the right, improve=0.1600000, (0 missing)
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ae2 < 58 to the left, improve=0.1570652, (0 missing)

se2 < 238 to the left, improve=0.1570652, (0 missing)

dec2 < 228.5 to the right, improve=0.1401667, (0 missing)

Surrogate splits:

ded1 < 1804 to the left, agree=0.939, adj=0.833, (0 split)

ded2 < 1143 to the left, agree=0.818, adj=0.500, (0 split)

se2 < 481 to the left, agree=0.788, adj=0.417, (0 split)

bcd2 < 3.5 to the right, agree=0.727, adj=0.250, (0 split)

dec2 < 710 to the left, agree=0.727, adj=0.250, (0 split)

Node number 12: 22 observations, complexity param=0.03463203

mean=0.2727273, MSE=0.1983471

left son=24 (11 obs) right son=25 (11 obs)

Primary splits:

se2 < 404.5 to the right, improve=0.16666670, (0 missing)

ae2 < 196 to the right, improve=0.10292020, (0 missing)

dec2 < 373.5 to the right, improve=0.09116809, (0 missing)

bec1 < 5.5 to the right, improve=0.06805556, (0 missing)

dcd1 < 1109.5 to the right, improve=0.06805556, (0 missing)

Surrogate splits:

ae2 < 196 to the right, agree=0.909, adj=0.818, (0 split)

bec2 < 2.5 to the left, agree=0.818, adj=0.636, (0 split)

pe2 < 1.5 to the right, agree=0.818, adj=0.636, (0 split)

dec2 < 324.5 to the right, agree=0.818, adj=0.636, (0 split)

pc2 < 2.5 to the right, agree=0.773, adj=0.545, (0 split)

Node number 13: 8 observations

mean=1, MSE=0
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Node number 14: 21 observations, complexity param=0.07265512

mean=0.6190476, MSE=0.2358277

left son=28 (10 obs) right son=29 (11 obs)

Primary splits:

bec1 < 5.5 to the right, improve=0.3923951, (0 missing)

dec2 < 228.5 to the right, improve=0.3042832, (0 missing)

ded2 < 806 to the right, improve=0.2596154, (0 missing)

ae2 < 93.5 to the left, improve=0.2355769, (0 missing)

se2 < 260 to the left, improve=0.2355769, (0 missing)

Surrogate splits:

bed1 < 4.5 to the right, agree=0.857, adj=0.7, (0 split)

bcd1 < 4.5 to the right, agree=0.857, adj=0.7, (0 split)

se1 < 446 to the left, agree=0.810, adj=0.6, (0 split)

ded1 < 1203.5 to the right, agree=0.762, adj=0.5, (0 split)

dcd1 < 1127.5 to the right, agree=0.762, adj=0.5, (0 split)

Node number 15: 12 observations

mean=1, MSE=0

Node number 24: 11 observations

mean=0.09090909, MSE=0.08264463

Node number 25: 11 observations

mean=0.4545455, MSE=0.2479339

Node number 28: 10 observations

mean=0.3, MSE=0.21

Node number 29: 11 observations
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mean=0.9090909, MSE=0.08264463

C.3.6 Summary of Vertical Option Prediction Model

rpart(formula = opt ~ bec1 + bed1 + bcd1 + bec2 + bed2 + bcd2 +

pe1 + pc1 + pe2 + pc2 + ps1 + ps2 + trf + ae1 + ae2 + se1 +

se2 + dec1 + ded1 + dcd1 + dec2 + ded2 + dcd2 + spc, data = trainingData,

method = "anova")

n= 78

CP nsplit rel error xerror xstd

1 0.81395349 0 1.0000000 1.0222440 0.007317902

2 0.04827687 1 0.1860465 0.2367631 0.093979009

3 0.01000000 2 0.1377696 0.3005483 0.110972607

Variable importance

ae1 pe1 ps1 dec1 se1 dec2 ae2 se2

21 20 19 14 13 12 1 1

Node number 1: 78 observations, complexity param=0.8139535

mean=0.5, MSE=0.25

left son=2 (43 obs) right son=3 (35 obs)

Primary splits:

ae1 < 319.5 to the right, improve=0.8139535, (0 missing)

pe1 < 2.5 to the right, improve=0.7333333, (0 missing)

ps1 < 0.5 to the left, improve=0.6844920, (0 missing)

dec1 < 158.5 to the left, improve=0.5185185, (0 missing)

se1 < 418.5 to the right, improve=0.4592391, (0 missing)

Surrogate splits:



263

pe1 < 2.5 to the right, agree=0.974, adj=0.943, (0 split)

ps1 < 0.5 to the left, agree=0.962, adj=0.914, (0 split)

se1 < 383 to the right, agree=0.833, adj=0.629, (0 split)

dec1 < 158.5 to the left, agree=0.833, adj=0.629, (0 split)

dec2 < 124 to the left, agree=0.795, adj=0.543, (0 split)

Node number 2: 43 observations, complexity param=0.04827687

mean=0.09302326, MSE=0.08436993

left son=4 (36 obs) right son=5 (7 obs)

Primary splits:

dec1 < 204 to the left, improve=0.2594882, (0 missing)

ded1 < 1688 to the left, improve=0.1538656, (0 missing)

dec2 < 150.5 to the left, improve=0.1315742, (0 missing)

se1 < 415 to the right, improve=0.1130583, (0 missing)

dcd1 < 780.5 to the left, improve=0.1074481, (0 missing)

Surrogate splits:

dec2 < 235 to the left, agree=0.953, adj=0.714, (0 split)

ae2 < 22.5 to the right, agree=0.907, adj=0.429, (0 split)

se2 < 163.5 to the right, agree=0.907, adj=0.429, (0 split)

bec1 < 2.5 to the right, agree=0.860, adj=0.143, (0 split)

Node number 3: 35 observations

mean=1, MSE=0

Node number 4: 36 observations

mean=0.02777778, MSE=0.02700617

Node number 5: 7 observations

mean=0.4285714, MSE=0.244898
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C.3.7 Summary of Speed Option Prediction Model

rpart(formula = opt ~ bec1 + bed1 + bcd1 + bec2 + bed2 + bcd2 +

pe1 + pc1 + pe2 + pc2 + ps1 + ps2 + trf + ae1 + ae2 + se1 +

se2 + dec1 + ded1 + dcd1 + dec2 + ded2 + dcd2 + spc, data = trainingData,

method = "anova")

n= 318

CP nsplit rel error xerror xstd

1 0.37664649 0 1.0000000 1.0080322 0.002276636

2 0.06766184 1 0.6233535 0.6499659 0.049191009

3 0.04859884 2 0.5556917 0.6009185 0.046080804

4 0.02473875 3 0.5070928 0.5746115 0.050048277

5 0.01886792 8 0.3833991 0.6681436 0.061906689

6 0.01771443 9 0.3645312 0.6777525 0.064300565

7 0.01229962 10 0.3468167 0.6804925 0.066175753

8 0.01145327 11 0.3345171 0.6679592 0.066284612

9 0.01000000 12 0.3230638 0.6715594 0.066356560

Variable importance

ae1 pe1 ps1 se1 dec1 dec2 ded2 pc1 ae2 se2 ded1 dcd2 pe2 dcd1 ps2 bec2

21 20 13 11 7 5 4 3 3 3 2 2 1 1 1 1

Node number 1: 318 observations, complexity param=0.3766465

mean=0.5, MSE=0.25

left son=2 (212 obs) right son=3 (106 obs)

Primary splits:

ae1 < 248.5 to the right, improve=0.3766465, (0 missing)

pe1 < 1.5 to the right, improve=0.3667892, (0 missing)
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ps1 < 0.5 to the left, improve=0.2678287, (0 missing)

dec1 < 6.5 to the left, improve=0.1954887, (0 missing)

se1 < 388.5 to the right, improve=0.1850600, (0 missing)

Surrogate splits:

pe1 < 1.5 to the right, agree=0.997, adj=0.991, (0 split)

ps1 < 0.5 to the left, agree=0.884, adj=0.651, (0 split)

se1 < 360 to the right, agree=0.805, adj=0.415, (0 split)

pc1 < 2.5 to the right, agree=0.717, adj=0.151, (0 split)

se2 < 157.5 to the right, agree=0.679, adj=0.038, (0 split)

Node number 2: 212 observations, complexity param=0.06766184

mean=0.2830189, MSE=0.2029192

left son=4 (51 obs) right son=5 (161 obs)

Primary splits:

dec1 < 7 to the left, improve=0.12504090, (0 missing)

dec2 < 206.5 to the left, improve=0.10076100, (0 missing)

se1 < 342 to the right, improve=0.05546672, (0 missing)

bec1 < 7.5 to the left, improve=0.05157895, (0 missing)

ae2 < 313 to the right, improve=0.03112795, (0 missing)

Surrogate splits:

dec2 < 64 to the left, agree=0.958, adj=0.824, (0 split)

ded1 < 364 to the left, agree=0.788, adj=0.118, (0 split)

ded2 < 289 to the left, agree=0.788, adj=0.118, (0 split)

pe2 < 3.5 to the right, agree=0.774, adj=0.059, (0 split)

pc1 < 2.5 to the left, agree=0.764, adj=0.020, (0 split)

Node number 3: 106 observations, complexity param=0.01771443

mean=0.9339623, MSE=0.06167675

left son=6 (9 obs) right son=7 (97 obs)
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Primary splits:

dcd2 < 181.5 to the left, improve=0.2154105, (0 missing)

bcd1 < 7.5 to the right, improve=0.2154105, (0 missing)

bed1 < 7.5 to the right, improve=0.1883658, (0 missing)

ae1 < 216 to the right, improve=0.1611059, (0 missing)

ded2 < 432 to the left, improve=0.1323515, (0 missing)

Surrogate splits:

ded2 < 314 to the left, agree=0.934, adj=0.222, (0 split)

Node number 4: 51 observations

mean=0, MSE=0

Node number 5: 161 observations, complexity param=0.04859884

mean=0.3726708, MSE=0.2337873

left son=10 (144 obs) right son=11 (17 obs)

Primary splits:

se1 < 371.5 to the right, improve=0.10264700, (0 missing)

ae2 < 333.5 to the right, improve=0.03724882, (0 missing)

dcd1 < 667 to the right, improve=0.03703133, (0 missing)

dec2 < 71.5 to the right, improve=0.03184333, (0 missing)

bec1 < 7.5 to the left, improve=0.03135454, (0 missing)

Surrogate splits:

se2 < 563.5 to the left, agree=0.901, adj=0.059, (0 split)

dec1 < 31 to the right, agree=0.901, adj=0.059, (0 split)

dec2 < 44 to the right, agree=0.901, adj=0.059, (0 split)

Node number 6: 9 observations

mean=0.5555556, MSE=0.2469136
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Node number 7: 97 observations

mean=0.9690722, MSE=0.0299713

Node number 10: 144 observations, complexity param=0.02473875

mean=0.3194444, MSE=0.2173997

left son=20 (38 obs) right son=21 (106 obs)

Primary splits:

ae2 < 352.5 to the right, improve=0.05819864, (0 missing)

dcd1 < 667 to the right, improve=0.04720036, (0 missing)

bed1 < 5.5 to the right, improve=0.03354398, (0 missing)

bcd1 < 5.5 to the right, improve=0.03354398, (0 missing)

se1 < 515.5 to the right, improve=0.03207360, (0 missing)

Surrogate splits:

se2 < 483.5 to the right, agree=0.757, adj=0.079, (0 split)

dec2 < 1840 to the right, agree=0.757, adj=0.079, (0 split)

dcd2 < 184.5 to the left, agree=0.757, adj=0.079, (0 split)

se1 < 610.5 to the right, agree=0.750, adj=0.053, (0 split)

dec1 < 1191.5 to the right, agree=0.750, adj=0.053, (0 split)

Node number 11: 17 observations

mean=0.8235294, MSE=0.1453287

Node number 20: 38 observations, complexity param=0.01229962

mean=0.1315789, MSE=0.1142659

left son=40 (28 obs) right son=41 (10 obs)

Primary splits:

ae1 < 375 to the left, improve=0.22519480, (0 missing)

dcd1 < 534.5 to the right, improve=0.08865801, (0 missing)

ded1 < 812 to the right, improve=0.08865801, (0 missing)
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se2 < 490.5 to the right, improve=0.07878788, (0 missing)

ae2 < 373.5 to the left, improve=0.07103357, (0 missing)

Surrogate splits:

bec2 < 4 to the left, agree=0.816, adj=0.3, (0 split)

bed2 < 3.5 to the left, agree=0.816, adj=0.3, (0 split)

bcd2 < 3.5 to the left, agree=0.789, adj=0.2, (0 split)

ae2 < 365 to the right, agree=0.763, adj=0.1, (0 split)

se2 < 413.5 to the right, agree=0.763, adj=0.1, (0 split)

Node number 21: 106 observations, complexity param=0.02473875

mean=0.3867925, MSE=0.2371841

left son=42 (22 obs) right son=43 (84 obs)

Primary splits:

dcd2 < 2054 to the right, improve=0.06925107, (0 missing)

se1 < 515.5 to the right, improve=0.06380851, (0 missing)

dec2 < 206.5 to the left, improve=0.06117719, (0 missing)

ded2 < 2709.5 to the right, improve=0.05833744, (0 missing)

dec1 < 1059 to the left, improve=0.04308318, (0 missing)

Surrogate splits:

ded2 < 2510 to the right, agree=0.953, adj=0.773, (0 split)

dcd1 < 2674 to the right, agree=0.849, adj=0.273, (0 split)

ded1 < 3476 to the right, agree=0.840, adj=0.227, (0 split)

se2 < 538 to the right, agree=0.802, adj=0.045, (0 split)

Node number 40: 28 observations

mean=0.03571429, MSE=0.03443878

Node number 41: 10 observations

mean=0.4, MSE=0.24
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Node number 42: 22 observations

mean=0.1363636, MSE=0.1177686

Node number 43: 84 observations, complexity param=0.02473875

mean=0.452381, MSE=0.2477324

left son=86 (75 obs) right son=87 (9 obs)

Primary splits:

ded2 < 2136 to the left, improve=0.09229596, (0 missing)

se1 < 515.5 to the right, improve=0.06773455, (0 missing)

dec2 < 549.5 to the left, improve=0.06581911, (0 missing)

ae1 < 336.5 to the right, improve=0.06581911, (0 missing)

ae2 < 265 to the left, improve=0.04735142, (0 missing)

Surrogate splits:

dec1 < 1108.5 to the left, agree=0.940, adj=0.444, (0 split)

dec2 < 969.5 to the left, agree=0.917, adj=0.222, (0 split)

Node number 86: 75 observations, complexity param=0.02473875

mean=0.4, MSE=0.24

left son=172 (36 obs) right son=173 (39 obs)

Primary splits:

ae2 < 265 to the left, improve=0.08653846, (0 missing)

pe2 < 1.5 to the left, improve=0.07716049, (0 missing)

se2 < 331.5 to the left, improve=0.07407407, (0 missing)

ded1 < 1083.5 to the right, improve=0.06463832, (0 missing)

dec2 < 89 to the right, improve=0.06094527, (0 missing)

Surrogate splits:

pe2 < 1.5 to the left, agree=0.920, adj=0.833, (0 split)

se2 < 331.5 to the left, agree=0.880, adj=0.750, (0 split)
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ps2 < 0.5 to the right, agree=0.827, adj=0.639, (0 split)

pc2 < 2.5 to the left, agree=0.733, adj=0.444, (0 split)

ded2 < 1524.5 to the right, agree=0.693, adj=0.361, (0 split)

Node number 87: 9 observations

mean=0.8888889, MSE=0.09876543

Node number 172: 36 observations, complexity param=0.01145327

mean=0.25, MSE=0.1875

left son=344 (23 obs) right son=345 (13 obs)

Primary splits:

dec1 < 250 to the right, improve=0.1348941, (0 missing)

se1 < 393.5 to the right, improve=0.1330049, (0 missing)

dec2 < 91.5 to the right, improve=0.1330049, (0 missing)

ae1 < 355 to the right, improve=0.1248710, (0 missing)

trf < 1.5 to the left, improve=0.1082251, (0 missing)

Surrogate splits:

se1 < 382 to the right, agree=0.778, adj=0.385, (0 split)

ded1 < 653 to the right, agree=0.750, adj=0.308, (0 split)

dec2 < 78.5 to the right, agree=0.750, adj=0.308, (0 split)

ae2 < 142.5 to the left, agree=0.722, adj=0.231, (0 split)

se2 < 189 to the left, agree=0.722, adj=0.231, (0 split)

Node number 173: 39 observations, complexity param=0.02473875

mean=0.5384615, MSE=0.2485207

left son=346 (15 obs) right son=347 (24 obs)

Primary splits:

dec1 < 220.5 to the left, improve=0.2880952, (0 missing)

dcd1 < 688 to the right, improve=0.2102096, (0 missing)
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dec2 < 270.5 to the left, improve=0.1975309, (0 missing)

ae2 < 315 to the right, improve=0.1591546, (0 missing)

ded1 < 1215 to the right, improve=0.1504386, (0 missing)

Surrogate splits:

dec2 < 246.5 to the left, agree=0.872, adj=0.667, (0 split)

se2 < 408 to the left, agree=0.744, adj=0.333, (0 split)

ded2 < 795 to the left, agree=0.744, adj=0.333, (0 split)

ae2 < 315 to the right, agree=0.718, adj=0.267, (0 split)

ded1 < 462 to the left, agree=0.692, adj=0.200, (0 split)

Node number 344: 23 observations

mean=0.1304348, MSE=0.1134216

Node number 345: 13 observations

mean=0.4615385, MSE=0.2485207

Node number 346: 15 observations

mean=0.2, MSE=0.16

Node number 347: 24 observations, complexity param=0.01886792

mean=0.75, MSE=0.1875

left son=694 (12 obs) right son=695 (12 obs)

Primary splits:

ded1 < 1225.5 to the right, improve=0.3333333, (0 missing)

bec1 < 2.5 to the left, improve=0.2987654, (0 missing)

bed1 < 2.5 to the left, improve=0.2987654, (0 missing)

dcd1 < 688 to the right, improve=0.2820513, (0 missing)

bcd1 < 2.5 to the left, improve=0.2268908, (0 missing)

Surrogate splits:
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dcd1 < 688 to the right, agree=0.875, adj=0.750, (0 split)

dec1 < 460 to the right, agree=0.750, adj=0.500, (0 split)

ded2 < 1130 to the right, agree=0.750, adj=0.500, (0 split)

bec1 < 2.5 to the left, agree=0.708, adj=0.417, (0 split)

bec2 < 6.5 to the left, agree=0.708, adj=0.417, (0 split)

Node number 694: 12 observations

mean=0.5, MSE=0.25

Node number 695: 12 observations

mean=1, MSE=0

C.4 Summary of Classification Tree Model

C.4.1 Summary of Target Prediction Model

rpart(formula = target ~ spc + bec1 + bed1 + bcd1 + bec2 + bed2 +

bcd2 + pe1 + pc1 + pe2 + pc2 + ps1 + ps2 + trf + ae1 + ae2 +

se1 + se2 + dec1 + ded1 + dcd1 + dec2 + ded2 + dcd2, data = trainingData,

method = "class")

n= 204

CP nsplit rel error xerror xstd

1 0.55882353 0 1.0000000 1.1764706 0.06891520

2 0.20588235 1 0.4411765 0.4509804 0.05851837

3 0.05882353 2 0.2352941 0.2450980 0.04591782

4 0.01000000 4 0.1176471 0.2058824 0.04255200

Variable importance

se2 ae2 pe2 bec1 dec2 dec1 pc2 ps2 bed1 ded2 bcd1 dcd1 ded1 dcd2 ae1 se1
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16 15 12 11 10 7 7 6 4 3 3 2 2 1 1 1

Node number 1: 204 observations, complexity param=0.5588235

predicted class=0 expected loss=0.5 P(node) =1

class counts: 102 102

probabilities: 0.500 0.500

left son=2 (59 obs) right son=3 (145 obs)

Primary splits:

se2 < 332 to the left, improve=38.73735, (0 missing)

ae2 < 147 to the left, improve=36.82420, (0 missing)

dec1 < 41 to the right, improve=32.24516, (0 missing)

bec1 < 4.5 to the left, improve=26.69332, (0 missing)

pe2 < 1.5 to the left, improve=23.69697, (0 missing)

Surrogate splits:

ae2 < 122 to the left, agree=0.985, adj=0.949, (0 split)

pe2 < 1.5 to the left, agree=0.936, adj=0.780, (0 split)

pc2 < 2.5 to the left, agree=0.838, adj=0.441, (0 split)

ps2 < 0.5 to the right, agree=0.819, adj=0.373, (0 split)

dcd1 < 186 to the left, agree=0.740, adj=0.102, (0 split)

Node number 2: 59 observations

predicted class=0 expected loss=0.01694915 P(node) =0.2892157

class counts: 58 1

probabilities: 0.983 0.017

Node number 3: 145 observations, complexity param=0.2058824

predicted class=1 expected loss=0.3034483 P(node) =0.7107843

class counts: 44 101

probabilities: 0.303 0.697
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left son=6 (33 obs) right son=7 (112 obs)

Primary splits:

bec1 < 3.5 to the left, improve=22.639080, (0 missing)

dec1 < 41 to the right, improve=13.629890, (0 missing)

dec2 < 74.5 to the right, improve=10.209820, (0 missing)

ded1 < 2547 to the right, improve= 8.754179, (0 missing)

bcd2 < 3.5 to the right, improve= 8.363166, (0 missing)

Surrogate splits:

bed1 < 2.5 to the left, agree=0.876, adj=0.455, (0 split)

bcd1 < 3.5 to the left, agree=0.841, adj=0.303, (0 split)

dec1 < 947.5 to the right, agree=0.821, adj=0.212, (0 split)

dec2 < 1038.5 to the right, agree=0.814, adj=0.182, (0 split)

ded2 < 3955.5 to the right, agree=0.807, adj=0.152, (0 split)

Node number 6: 33 observations

predicted class=0 expected loss=0.1818182 P(node) =0.1617647

class counts: 27 6

probabilities: 0.818 0.182

Node number 7: 112 observations, complexity param=0.05882353

predicted class=1 expected loss=0.1517857 P(node) =0.5490196

class counts: 17 95

probabilities: 0.152 0.848

left son=14 (63 obs) right son=15 (49 obs)

Primary splits:

dec1 < 41 to the right, improve=4.013889, (0 missing)

bed2 < 3.5 to the right, improve=3.944309, (0 missing)

bcd2 < 3.5 to the right, improve=3.733730, (0 missing)

se2 < 433 to the left, improve=3.456634, (0 missing)
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bec2 < 5.5 to the right, improve=2.916560, (0 missing)

Surrogate splits:

dec2 < 78 to the right, agree=0.973, adj=0.939, (0 split)

bec1 < 5.5 to the right, agree=0.902, adj=0.776, (0 split)

ded1 < 904 to the right, agree=0.795, adj=0.531, (0 split)

ae1 < 320.5 to the left, agree=0.768, adj=0.469, (0 split)

se1 < 461 to the left, agree=0.741, adj=0.408, (0 split)

Node number 14: 63 observations, complexity param=0.05882353

predicted class=1 expected loss=0.2698413 P(node) =0.3088235

class counts: 17 46

probabilities: 0.270 0.730

left son=28 (16 obs) right son=29 (47 obs)

Primary splits:

dec2 < 182 to the left, improve=15.708380, (0 missing)

se2 < 433.5 to the left, improve= 6.979081, (0 missing)

dec1 < 188 to the left, improve= 6.388806, (0 missing)

bed2 < 3.5 to the right, improve= 6.321049, (0 missing)

bcd2 < 3.5 to the right, improve= 5.729243, (0 missing)

Surrogate splits:

dec1 < 138.5 to the left, agree=0.889, adj=0.562, (0 split)

ded2 < 370 to the left, agree=0.825, adj=0.312, (0 split)

ded1 < 752.5 to the left, agree=0.778, adj=0.125, (0 split)

dcd1 < 2994.5 to the right, agree=0.778, adj=0.125, (0 split)

dcd2 < 150.5 to the left, agree=0.778, adj=0.125, (0 split)

Node number 15: 49 observations

predicted class=1 expected loss=0 P(node) =0.2401961

class counts: 0 49
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probabilities: 0.000 1.000

Node number 28: 16 observations

predicted class=0 expected loss=0.125 P(node) =0.07843137

class counts: 14 2

probabilities: 0.875 0.125

Node number 29: 47 observations

predicted class=1 expected loss=0.06382979 P(node) =0.2303922

class counts: 3 44

probabilities: 0.064 0.936

C.4.2 Summary of Type Prediction Model without Subset

rpart(formula = typ ~ spc + bec1 + bed1 + bcd1 + bec2 + bed2 +

bcd2 + pe1 + pc1 + pe2 + pc2 + ps1 + ps2 + trf + ae1 + ae2 +

se1 + se2 + dec1 + ded1 + dcd1 + dec2 + ded2 + dcd2, data = trainingData,

method = "class")

n= 240

CP nsplit rel error xerror xstd

1 0.175000 0 1.00000 1.15625 0.04069505

2 0.050000 1 0.82500 0.88125 0.04766521

3 0.043750 3 0.72500 0.94375 0.04676898

4 0.028125 5 0.63750 0.88125 0.04766521

5 0.025000 7 0.58125 0.90625 0.04735002

6 0.015625 10 0.50625 0.86875 0.04780161

7 0.010000 12 0.47500 0.85000 0.04798003
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Variable importance

dec2 dec1 se1 ae1 ae2 se2 bec1 pe1 bed1 bcd1 pe2 ded2 dcd1 ded1 ps1 pc2

13 13 9 9 8 6 6 4 4 4 4 3 3 3 2 2

ps2 dcd2 bec2 bed2 pc1 bcd2

2 2 2 1 1 1

Node number 1: 240 observations, complexity param=0.175

predicted class=1 expected loss=0.6666667 P(node) =1

class counts: 80 80 80

probabilities: 0.333 0.333 0.333

left son=2 (65 obs) right son=3 (175 obs)

Primary splits:

se1 < 358.5 to the left, improve=8.327033, (0 missing)

dec1 < 312.5 to the right, improve=6.312854, (0 missing)

ae1 < 237 to the left, improve=4.922451, (0 missing)

pe1 < 1.5 to the left, improve=4.450420, (0 missing)

dec2 < 402.5 to the right, improve=4.014337, (0 missing)

Surrogate splits:

ae1 < 149.5 to the left, agree=0.838, adj=0.400, (0 split)

pe1 < 1.5 to the left, agree=0.812, adj=0.308, (0 split)

ps1 < 0.5 to the right, agree=0.767, adj=0.138, (0 split)

pc1 < 2.5 to the left, agree=0.750, adj=0.077, (0 split)

Node number 2: 65 observations, complexity param=0.04375

predicted class=2 expected loss=0.4615385 P(node) =0.2708333

class counts: 23 35 7

probabilities: 0.354 0.538 0.108

left son=4 (17 obs) right son=5 (48 obs)

Primary splits:
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dec1 < 314.5 to the right, improve=4.656146, (0 missing)

bed1 < 3.5 to the left, improve=4.352733, (0 missing)

bcd1 < 3.5 to the left, improve=4.352733, (0 missing)

dec2 < 402.5 to the right, improve=3.525689, (0 missing)

ded1 < 703 to the left, improve=2.934939, (0 missing)

Surrogate splits:

dec2 < 402.5 to the right, agree=0.923, adj=0.706, (0 split)

ae1 < 72.5 to the left, agree=0.831, adj=0.353, (0 split)

se1 < 251.5 to the left, agree=0.831, adj=0.353, (0 split)

bec1 < 2.5 to the left, agree=0.769, adj=0.118, (0 split)

bcd2 < 7.5 to the right, agree=0.754, adj=0.059, (0 split)

Node number 3: 175 observations, complexity param=0.05

predicted class=3 expected loss=0.5828571 P(node) =0.7291667

class counts: 57 45 73

probabilities: 0.326 0.257 0.417

left son=6 (52 obs) right son=7 (123 obs)

Primary splits:

ae2 < 224.5 to the left, improve=5.716307, (0 missing)

dec1 < 156 to the left, improve=4.763583, (0 missing)

ps2 < 0.5 to the right, improve=4.475902, (0 missing)

pe2 < 1.5 to the left, improve=4.405368, (0 missing)

se1 < 529.5 to the right, improve=3.727558, (0 missing)

Surrogate splits:

pe2 < 1.5 to the left, agree=0.983, adj=0.942, (0 split)

se2 < 327 to the left, agree=0.943, adj=0.808, (0 split)

pc2 < 2.5 to the left, agree=0.869, adj=0.558, (0 split)

ps2 < 0.5 to the right, agree=0.840, adj=0.462, (0 split)

pc1 < 4.5 to the right, agree=0.726, adj=0.077, (0 split)
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Node number 4: 17 observations

predicted class=1 expected loss=0.4117647 P(node) =0.07083333

class counts: 10 3 4

probabilities: 0.588 0.176 0.235

Node number 5: 48 observations, complexity param=0.025

predicted class=2 expected loss=0.3333333 P(node) =0.2

class counts: 13 32 3

probabilities: 0.271 0.667 0.062

left son=10 (11 obs) right son=11 (37 obs)

Primary splits:

dec1 < 67 to the left, improve=4.132781, (0 missing)

ded1 < 724 to the left, improve=4.132781, (0 missing)

dec2 < 70.5 to the left, improve=4.132781, (0 missing)

ae1 < 355 to the right, improve=3.949786, (0 missing)

ps1 < 0.5 to the left, improve=3.248714, (0 missing)

Surrogate splits:

dec2 < 70.5 to the left, agree=1.000, adj=1.000, (0 split)

ded1 < 724 to the left, agree=0.875, adj=0.455, (0 split)

ae1 < 345 to the right, agree=0.854, adj=0.364, (0 split)

dcd1 < 384.5 to the left, agree=0.833, adj=0.273, (0 split)

bec1 < 5.5 to the left, agree=0.812, adj=0.182, (0 split)

Node number 6: 52 observations, complexity param=0.04375

predicted class=1 expected loss=0.4807692 P(node) =0.2166667

class counts: 27 3 22

probabilities: 0.519 0.058 0.423

left son=12 (39 obs) right son=13 (13 obs)
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Primary splits:

ded2 < 950.5 to the right, improve=3.576923, (0 missing)

se1 < 396.5 to the right, improve=2.894678, (0 missing)

bed1 < 2.5 to the left, improve=2.513889, (0 missing)

bcd2 < 4.5 to the right, improve=2.245098, (0 missing)

dcd2 < 752 to the right, improve=2.089744, (0 missing)

Surrogate splits:

dcd2 < 864 to the right, agree=0.846, adj=0.385, (0 split)

dec2 < 82.5 to the right, agree=0.827, adj=0.308, (0 split)

bed2 < 0.5 to the right, agree=0.788, adj=0.154, (0 split)

bcd2 < 0.5 to the right, agree=0.788, adj=0.154, (0 split)

dec1 < 33.5 to the right, agree=0.769, adj=0.077, (0 split)

Node number 7: 123 observations, complexity param=0.05

predicted class=3 expected loss=0.5853659 P(node) =0.5125

class counts: 30 42 51

probabilities: 0.244 0.341 0.415

left son=14 (63 obs) right son=15 (60 obs)

Primary splits:

dec1 < 160 to the left, improve=4.055439, (0 missing)

dcd2 < 780 to the right, improve=3.629905, (0 missing)

ded1 < 581 to the right, improve=2.976291, (0 missing)

bed1 < 5.5 to the left, improve=2.758120, (0 missing)

bcd1 < 5.5 to the left, improve=2.758120, (0 missing)

Surrogate splits:

dec2 < 128.5 to the left, agree=0.943, adj=0.883, (0 split)

ded1 < 763 to the left, agree=0.797, adj=0.583, (0 split)

dcd1 < 569.5 to the left, agree=0.732, adj=0.450, (0 split)

bec1 < 4 to the right, agree=0.699, adj=0.383, (0 split)
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pe1 < 2.5 to the right, agree=0.699, adj=0.383, (0 split)

Node number 10: 11 observations

predicted class=1 expected loss=0.3636364 P(node) =0.04583333

class counts: 7 3 1

probabilities: 0.636 0.273 0.091

Node number 11: 37 observations

predicted class=2 expected loss=0.2162162 P(node) =0.1541667

class counts: 6 29 2

probabilities: 0.162 0.784 0.054

Node number 12: 39 observations, complexity param=0.015625

predicted class=1 expected loss=0.3846154 P(node) =0.1625

class counts: 24 3 12

probabilities: 0.615 0.077 0.308

left son=24 (12 obs) right son=25 (27 obs)

Primary splits:

se2 < 255 to the right, improve=2.548433, (0 missing)

dec2 < 95.5 to the left, improve=2.501241, (0 missing)

se1 < 396.5 to the right, improve=2.380273, (0 missing)

ae1 < 365.5 to the right, improve=2.132368, (0 missing)

ae2 < 62 to the right, improve=2.132368, (0 missing)

Surrogate splits:

ae2 < 38 to the right, agree=0.974, adj=0.917, (0 split)

dec1 < 164.5 to the left, agree=0.897, adj=0.667, (0 split)

dec2 < 80.5 to the left, agree=0.821, adj=0.417, (0 split)

bec2 < 7.5 to the right, agree=0.718, adj=0.083, (0 split)

bed2 < 6.5 to the right, agree=0.718, adj=0.083, (0 split)



282

Node number 13: 13 observations

predicted class=3 expected loss=0.2307692 P(node) =0.05416667

class counts: 3 0 10

probabilities: 0.231 0.000 0.769

Node number 14: 63 observations, complexity param=0.028125

predicted class=2 expected loss=0.5238095 P(node) =0.2625

class counts: 14 30 19

probabilities: 0.222 0.476 0.302

left son=28 (32 obs) right son=29 (31 obs)

Primary splits:

bed1 < 5.5 to the left, improve=3.237935, (0 missing)

bcd1 < 5.5 to the left, improve=3.237935, (0 missing)

se1 < 383 to the right, improve=1.981407, (0 missing)

dec2 < 26.5 to the right, improve=1.958122, (0 missing)

ae1 < 345 to the left, improve=1.548805, (0 missing)

Surrogate splits:

bcd1 < 5.5 to the left, agree=1.000, adj=1.000, (0 split)

se1 < 448.5 to the right, agree=0.825, adj=0.645, (0 split)

ae1 < 345 to the right, agree=0.714, adj=0.419, (0 split)

bec1 < 5.5 to the left, agree=0.683, adj=0.355, (0 split)

ae2 < 346.5 to the left, agree=0.651, adj=0.290, (0 split)

Node number 15: 60 observations, complexity param=0.025

predicted class=3 expected loss=0.4666667 P(node) =0.25

class counts: 16 12 32

probabilities: 0.267 0.200 0.533

left son=30 (30 obs) right son=31 (30 obs)
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Primary splits:

ae1 < 335 to the left, improve=3.733333, (0 missing)

dec1 < 529.5 to the right, improve=2.716667, (0 missing)

bed2 < 7.5 to the left, improve=2.606289, (0 missing)

bcd2 < 7.5 to the left, improve=2.018301, (0 missing)

dcd1 < 583 to the left, improve=2.002516, (0 missing)

Surrogate splits:

pe1 < 1.5 to the left, agree=0.850, adj=0.700, (0 split)

ps1 < 0.5 to the right, agree=0.850, adj=0.700, (0 split)

se1 < 429.5 to the left, agree=0.683, adj=0.367, (0 split)

bec2 < 6.5 to the left, agree=0.650, adj=0.300, (0 split)

bed2 < 6.5 to the left, agree=0.617, adj=0.233, (0 split)

Node number 24: 12 observations

predicted class=1 expected loss=0.08333333 P(node) =0.05

class counts: 11 0 1

probabilities: 0.917 0.000 0.083

Node number 25: 27 observations, complexity param=0.015625

predicted class=1 expected loss=0.5185185 P(node) =0.1125

class counts: 13 3 11

probabilities: 0.481 0.111 0.407

left son=50 (20 obs) right son=51 (7 obs)

Primary splits:

ae2 < 17.5 to the left, improve=3.368783, (0 missing)

se2 < 161.5 to the left, improve=2.370370, (0 missing)

ae1 < 365.5 to the right, improve=2.111640, (0 missing)

se1 < 401.5 to the right, improve=1.983069, (0 missing)

ded2 < 1705 to the left, improve=1.482744, (0 missing)
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Surrogate splits:

se2 < 188 to the left, agree=0.889, adj=0.571, (0 split)

dcd1 < 2316 to the left, agree=0.852, adj=0.429, (0 split)

bec1 < 6.5 to the left, agree=0.815, adj=0.286, (0 split)

bed1 < 6.5 to the left, agree=0.815, adj=0.286, (0 split)

se1 < 387 to the right, agree=0.815, adj=0.286, (0 split)

Node number 28: 32 observations

predicted class=2 expected loss=0.34375 P(node) =0.1333333

class counts: 5 21 6

probabilities: 0.156 0.656 0.188

Node number 29: 31 observations, complexity param=0.028125

predicted class=3 expected loss=0.5806452 P(node) =0.1291667

class counts: 9 9 13

probabilities: 0.290 0.290 0.419

left son=58 (16 obs) right son=59 (15 obs)

Primary splits:

dec2 < 52.5 to the right, improve=3.247581, (0 missing)

dec1 < 62 to the right, improve=2.246390, (0 missing)

spc < 1.5 to the right, improve=2.074717, (0 missing)

bec1 < 5.5 to the right, improve=1.677126, (0 missing)

bed1 < 6.5 to the right, improve=1.459333, (0 missing)

Surrogate splits:

dec1 < 62 to the right, agree=0.806, adj=0.600, (0 split)

bec1 < 5.5 to the right, agree=0.774, adj=0.533, (0 split)

bec2 < 2.5 to the left, agree=0.677, adj=0.333, (0 split)

ded2 < 1666 to the right, agree=0.677, adj=0.333, (0 split)

dcd2 < 2026 to the right, agree=0.677, adj=0.333, (0 split)
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Node number 30: 30 observations, complexity param=0.025

predicted class=1 expected loss=0.6 P(node) =0.125

class counts: 12 8 10

probabilities: 0.400 0.267 0.333

left son=60 (17 obs) right son=61 (13 obs)

Primary splits:

dec2 < 388.5 to the right, improve=3.679035, (0 missing)

bec1 < 6.5 to the right, improve=2.907937, (0 missing)

dec1 < 618.5 to the right, improve=2.780952, (0 missing)

se2 < 422 to the right, improve=2.604147, (0 missing)

bed2 < 5.5 to the left, improve=2.217805, (0 missing)

Surrogate splits:

dec1 < 340.5 to the right, agree=0.933, adj=0.846, (0 split)

bed1 < 4.5 to the right, agree=0.833, adj=0.615, (0 split)

bcd1 < 4.5 to the right, agree=0.833, adj=0.615, (0 split)

bec1 < 5.5 to the right, agree=0.800, adj=0.538, (0 split)

ae1 < 180 to the right, agree=0.800, adj=0.538, (0 split)

Node number 31: 30 observations

predicted class=3 expected loss=0.2666667 P(node) =0.125

class counts: 4 4 22

probabilities: 0.133 0.133 0.733

Node number 50: 20 observations

predicted class=1 expected loss=0.35 P(node) =0.08333333

class counts: 13 1 6

probabilities: 0.650 0.050 0.300
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Node number 51: 7 observations

predicted class=3 expected loss=0.2857143 P(node) =0.02916667

class counts: 0 2 5

probabilities: 0.000 0.286 0.714

Node number 58: 16 observations

predicted class=2 expected loss=0.5 P(node) =0.06666667

class counts: 5 8 3

probabilities: 0.312 0.500 0.188

Node number 59: 15 observations

predicted class=3 expected loss=0.3333333 P(node) =0.0625

class counts: 4 1 10

probabilities: 0.267 0.067 0.667

Node number 60: 17 observations

predicted class=1 expected loss=0.3529412 P(node) =0.07083333

class counts: 11 3 3

probabilities: 0.647 0.176 0.176

Node number 61: 13 observations

predicted class=3 expected loss=0.4615385 P(node) =0.05416667

class counts: 1 5 7

probabilities: 0.077 0.385 0.538

C.4.3 Summary of Type Prediction Model with Subset

rpart(formula = opt ~ bec1 + bed1 + bcd1 + bec2 + bed2 + bcd2 +

pe1 + pc1 + pe2 + pc2 + ps1 + ps2 + trf + ae1 + ae2 + se1 +
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se2 + dec1 + ded1 + dcd1 + dec2 + ded2 + dcd2, data = trainingData,

method = "class")

n= 224

CP nsplit rel error xerror xstd

1 0.53571429 0 1.0000000 1.2142857 0.06526326

2 0.04910714 1 0.4642857 0.4821429 0.05715830

3 0.03125000 4 0.3035714 0.5089286 0.05820411

4 0.01000000 6 0.2410714 0.4821429 0.05715830

Variable importance

ae1 pe1 ps1 dec2 dec1 se1 ded1 ded2 ae2 dcd1 bec1 pe2 se2 pc1 ps2

20 19 16 11 10 10 3 2 2 2 2 1 1 1 1

Node number 1: 224 observations, complexity param=0.5357143

predicted class=0 expected loss=0.5 P(node) =1

class counts: 112 112

probabilities: 0.500 0.500

left son=2 (154 obs) right son=3 (70 obs)

Primary splits:

pe1 < 1.5 to the right, improve=37.40260, (0 missing)

ae1 < 254.5 to the right, improve=37.40260, (0 missing)

ps1 < 0.5 to the left, improve=34.03509, (0 missing)

dec1 < 13 to the left, improve=31.45492, (0 missing)

dec2 < 71.5 to the left, improve=19.77855, (0 missing)

Surrogate splits:

ae1 < 254.5 to the right, agree=1.000, adj=1.000, (0 split)

ps1 < 0.5 to the left, agree=0.951, adj=0.843, (0 split)

se1 < 358.5 to the right, agree=0.839, adj=0.486, (0 split)
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pc1 < 2.5 to the right, agree=0.701, adj=0.043, (0 split)

dcd1 < 3503.5 to the left, agree=0.701, adj=0.043, (0 split)

Node number 2: 154 observations, complexity param=0.04910714

predicted class=0 expected loss=0.3051948 P(node) =0.6875

class counts: 107 47

probabilities: 0.695 0.305

left son=4 (58 obs) right son=5 (96 obs)

Primary splits:

dec1 < 33.5 to the left, improve=11.955370, (0 missing)

dec2 < 78.5 to the left, improve= 7.573901, (0 missing)

ae2 < 111.5 to the right, improve= 6.476204, (0 missing)

se2 < 334 to the right, improve= 5.613649, (0 missing)

bec1 < 4.5 to the right, improve= 5.221337, (0 missing)

Surrogate splits:

dec2 < 78.5 to the left, agree=0.948, adj=0.862, (0 split)

ded1 < 783 to the left, agree=0.773, adj=0.397, (0 split)

ded2 < 333 to the left, agree=0.714, adj=0.241, (0 split)

pe2 < 3.5 to the right, agree=0.701, adj=0.207, (0 split)

bec1 < 5.5 to the left, agree=0.682, adj=0.155, (0 split)

Node number 3: 70 observations

predicted class=1 expected loss=0.07142857 P(node) =0.3125

class counts: 5 65

probabilities: 0.071 0.929

Node number 4: 58 observations

predicted class=0 expected loss=0.05172414 P(node) =0.2589286

class counts: 55 3
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probabilities: 0.948 0.052

Node number 5: 96 observations, complexity param=0.04910714

predicted class=0 expected loss=0.4583333 P(node) =0.4285714

class counts: 52 44

probabilities: 0.542 0.458

left son=10 (79 obs) right son=11 (17 obs)

Primary splits:

dec2 < 114 to the right, improve=5.510300, (0 missing)

dec1 < 314.5 to the left, improve=2.715668, (0 missing)

ae2 < 311.5 to the right, improve=2.083333, (0 missing)

se1 < 432.5 to the left, improve=2.083333, (0 missing)

se2 < 410.5 to the right, improve=2.083333, (0 missing)

Surrogate splits:

pc2 < 2.5 to the right, agree=0.854, adj=0.176, (0 split)

dec1 < 111.5 to the right, agree=0.854, adj=0.176, (0 split)

se2 < 153.5 to the right, agree=0.844, adj=0.118, (0 split)

ded1 < 373.5 to the right, agree=0.844, adj=0.118, (0 split)

Node number 10: 79 observations, complexity param=0.04910714

predicted class=0 expected loss=0.3797468 P(node) =0.3526786

class counts: 49 30

probabilities: 0.620 0.380

left son=20 (44 obs) right son=21 (35 obs)

Primary splits:

dec1 < 314.5 to the left, improve=6.097008, (0 missing)

dec2 < 238.5 to the left, improve=4.440486, (0 missing)

ae1 < 330.5 to the right, improve=2.857614, (0 missing)

se1 < 518.5 to the right, improve=2.215190, (0 missing)
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trf < 1.5 to the right, improve=1.778010, (0 missing)

Surrogate splits:

dec2 < 352 to the left, agree=0.886, adj=0.743, (0 split)

se1 < 432.5 to the left, agree=0.671, adj=0.257, (0 split)

dcd1 < 881 to the right, agree=0.658, adj=0.229, (0 split)

bec1 < 2.5 to the right, agree=0.646, adj=0.200, (0 split)

ded1 < 1524.5 to the left, agree=0.646, adj=0.200, (0 split)

Node number 11: 17 observations

predicted class=1 expected loss=0.1764706 P(node) =0.07589286

class counts: 3 14

probabilities: 0.176 0.824

Node number 20: 44 observations

predicted class=0 expected loss=0.2045455 P(node) =0.1964286

class counts: 35 9

probabilities: 0.795 0.205

Node number 21: 35 observations, complexity param=0.03125

predicted class=1 expected loss=0.4 P(node) =0.15625

class counts: 14 21

probabilities: 0.400 0.600

left son=42 (24 obs) right son=43 (11 obs)

Primary splits:

ae1 < 335 to the right, improve=3.065152, (0 missing)

bed1 < 6.5 to the right, improve=1.728571, (0 missing)

se1 < 502 to the right, improve=1.728571, (0 missing)

dcd2 < 1614 to the left, improve=1.568519, (0 missing)

ae2 < 311.5 to the right, improve=1.556579, (0 missing)
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Surrogate splits:

pe1 < 2.5 to the right, agree=0.743, adj=0.182, (0 split)

ps1 < 0.5 to the left, agree=0.743, adj=0.182, (0 split)

ae2 < 365 to the left, agree=0.743, adj=0.182, (0 split)

dec1 < 338 to the right, agree=0.743, adj=0.182, (0 split)

dcd1 < 1379.5 to the left, agree=0.743, adj=0.182, (0 split)

Node number 42: 24 observations, complexity param=0.03125

predicted class=0 expected loss=0.4583333 P(node) =0.1071429

class counts: 13 11

probabilities: 0.542 0.458

left son=84 (9 obs) right son=85 (15 obs)

Primary splits:

ae2 < 311.5 to the right, improve=3.472222, (0 missing)

dcd2 < 1400.5 to the left, improve=2.002381, (0 missing)

dcd1 < 551.5 to the right, improve=1.294818, (0 missing)

bcd1 < 2.5 to the left, improve=1.041667, (0 missing)

se1 < 490 to the right, improve=1.041667, (0 missing)

Surrogate splits:

se2 < 454 to the right, agree=0.792, adj=0.444, (0 split)

dec2 < 1363 to the right, agree=0.792, adj=0.444, (0 split)

ps2 < 0.5 to the left, agree=0.750, adj=0.333, (0 split)

dec1 < 435.5 to the left, agree=0.750, adj=0.333, (0 split)

ded2 < 2566.5 to the right, agree=0.750, adj=0.333, (0 split)

Node number 43: 11 observations

predicted class=1 expected loss=0.09090909 P(node) =0.04910714

class counts: 1 10

probabilities: 0.091 0.909
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Node number 84: 9 observations

predicted class=0 expected loss=0.1111111 P(node) =0.04017857

class counts: 8 1

probabilities: 0.889 0.111

Node number 85: 15 observations

predicted class=1 expected loss=0.3333333 P(node) =0.06696429

class counts: 5 10

probabilities: 0.333 0.667

C.4.4 Summary of Option Prediction Model without Subset

C.4.5 Summary of Lateral Option Prediction Model

C.4.6 Summary of Vertical Option Prediction Model

C.4.7 Summary of Speed Option Prediction Model
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APPENDIX D

LITERATURE REVIEW

D.1 Air Tra�c Control Systems and Controllers

It is essential to understand the history of air tra�c control to understand how the

CD&R evolved. Since pilots could avoid other aircraft easily during the operations,

focuses on air tra�c control in the early days were on managing landings and take-

o↵s from runways. Earlier runways had a di↵erent shape and usages, because the

aircraft did not need a long runway to take-o↵ and land, and they could land and

take-o↵ from any direction. If there were multiple aircraft trying to land or depart

from an airport, pilots had to continuously monitor both runways and air to figure

out when and how to take the actions. This process became more complicated by

severe weather that limited the landing and take-o↵ directions. Thus, it was clear

that they need some safety system to manage the tra�c to avoid an accident.

ATCos manually operated the first form of air tra�c control. They had two

di↵erent flags at the runways and used the flags to signal di↵erent information to

the aircraft. Maneuvering advice was simple; they guided approaching or taking-o↵

aircraft to either proceed or hold until the next signal. This system helped to improve

the air tra�c at that time but had a critical drawback. It was ine�cient because a

person had to stand on the runway. The person could be hard to be noticed and

might have di�culties giving instructions to specific aircraft when there are multiple

of them. Moreover, this system was almost impossible to use during the harsh weather

conditions and night time.

The tra�c management system needed a more reliable method. Instead of mono-

toned and single-colored flags, controllers utilized colored ones but could not solve
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all issues. Before the end of the 1930s, they implemented a new method; light gun

signals. With distinct colors and signals, controllers aim specific aircraft with the

device and instruct them. To utilize this device more e�ciently, they installed the

devices on high grounds that function as current control towers. Current air tra�c

control system still operates the light signals and have not changed significantly.

As the control towers became a standard, Cleveland Airport started a milestone

of current air tra�c control system. They constructed a tower equipped with devices

that transmit and receive radio signals. It allowed them to use voice communication

with aircraft equipped with the same type of devices. Thus, controllers could directly

communicate with properly equipped aircraft and provide detailed instructions. In a

brief time of period, the air tra�c control system was dramatically improved. How-

ever, the conflict detection and resolution were still unreliable due to lack of technolo-

gies and regulations. Radio devices were high-end, bulky, and expensive technologies.

The system stabilized as aircraft designers produce better planes.

Airline companies established the first form of the modern air tra�c control sys-

tem, airway tra�c control units (ATCUs) because the government was not able to

prepare the system in time [1]. Employees from airlines were dispatched to the units,

and with mutual agreements among them, the units took responsibilities on sepa-

rating aircraft within assigned regions. Due to lack of technologies, communication

between a unit and the pilot was not reliable. Thus, they had to take a di↵erent

approach. First, the units collected flight plans of the day from each airline dispatch-

ers. They put the information all together and determined time and directions for

the take-o↵s. Also, if they detect possible conflict during en-routing, they advised

those aircraft to take dedicated maneuvers to avoid an accident. Additionally, air-

craft equipped with radio devices were asked to update their position to increase an

accuracy of the tra�c control.

Later, this conflict detection and resolution method were standardized to a paper

strip method that operated by federal air tra�c controllers [2]. This method uses

paper strips (or shrimp boat) that indicates aircraft and position it on a board with
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other strips to represent their progress. They updated information every 10 minutes

by either position reports from pilots or predictions. Due to gaps between the in-

formation updates and uncertainties on their locations, ATCos had to separate each

aircraft by 10 minutes to each other, which assigned about 50 to 100 miles between

aircraft. At the same time, concepts of active and passive control were unintention-

ally exercised by the controllers. In the severe weather conditions, ATCos expected

that pilots could not identify each other on their sights. So ATCos should provide

detailed instructions to avoid the mid-air collisions.

The World War II and events after the war dramatically a↵ected the air trans-

portation system. Not only the technical improvements (specifically radar and radio

technologies), its demand was skyrocketed as civilians consider air transportation as

a reliable and e�cient method. The conventional air tra�c control system hit its

capacity, and they had to modify the system [54]. As a result, in 1948, the govern-

ment reported a need for not only a safer tra�c control system, but also with better

tra�c flow. To meet the requirements, researchers adopted radio and radar technolo-

gies to establish a radar-based surveillance system that became the foundation of the

modern aircraft tracking system. From the 1960s, aircraft designers introduced jet

aircraft, and they started to replace old models. This new type of aircraft changed

the paradigm of not only air tra�c control but also the whole air transportation sys-

tem. Airports and runways must be modified to meet the requirements to take-o↵

and land the jets. Due to exceedingly increased airspeed, ATCos were not able to

follow them manually anymore. Thus, they needed an automated system to handle

the tra�c. As a response to the changes, President Kennedy ordered FAA to mod-

ernize the air tra�c control system known as Project Bacon [55]. Studies from this

project standardized and modernized the conventional system with new radar and

automated data processing systems.

Since then ATCos operate semi-automated tra�c control system to detect conflicts

and provided resolutions manually. Since the beginning of the air tra�c control

system, this function is still left to be manually operated by ATCos. However, an
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event in 1981 triggered a high demand for automated conflict detection and resolution;

PATCO Strike [56]. The airline industry in the U.S. was deregulated from 1978. As

an immediate e↵ect, the number of aircraft increased, which increased the workload of

ATCos. Since the 1960s their workload became an issue, and they had a high tension

with the government due to it. As a result, they formed a union the Professional Air

Tra�c Controllers Organization (PATCO). Laboring conditions of ATCos became

worse as the air transportation expands and the government reduces their budgets.

After all, the tension between them caused the illegal strike in 1981 resulting most of

the ATCos to lose their jobs. Eventually, this action increased their workload even

more due to the reduced number of the controllers and people realized they would

need a system to reduce the workload of ATCos.

Since the foundation of air transportation system, each subsystem including ground

facilities, aircraft, equipment, and people took more sophisticated technologies, tasks,

and forms and integrated together to establish National Airspace System (NAS).

Communication, navigation, and surveillance (CNS) equipment not only allowed the

sophisticated form of the current systems but also bond them together. Especially,

radar and radio communication equipment take the most critical role in this link.

According to the Air Tra�c Control Handbook by FAA, we can categorize the

operation of aircraft into four phases; taxiing, taking-o↵, en-routing, and landing [57].

There are di↵erent control systems for each phase, and their equipment is mostly

ground-based ones except for the ones in aircraft. Also, NAS operates di↵erent types

of radars for each phase due to a trade-o↵ between range and accuracy of scanning

function. Radars with more extended scanning range have relatively less accuracy

compare to the short-range ones. Generally, long-range radars take more than 10

seconds to refresh the information while the shorter ones take less than 5 seconds. As

space is more congested, ATCos utilize shorter and more accurate radar systems to

manage the tra�c.

Taxiing, taking-o↵ and landing phases belong to an airport control system [58].

This system has two primary operations for each phase operated by airport control
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towers; ground and local controls. Control towers manage their airports and 5 to

10 nautical miles of local airspace. Due to airspace classifications, aircraft having

business with an airport will only enter its local airspace. Thus, an airport control

tower should manage tra�c near it. The only di↵erence with earlier years is that

the responsible airspace became broader and varied by the airport. We consider

taking-o↵ and landing as the most critical phase of the aircraft operation. One of the

reason is the congestion at the airports’ airspaces. Thus, precise monitoring of all

aircraft activity near the airport is the essential function. Generally, the towers control

movements of aircraft by very or ultra-high frequency radio communication. A busy

airport like JFK utilizes surface movement radars such as Airport Surface Detection

Equipment (ASDE-X) that visualize all aircraft movements on the ground [59]. It

collects information from the radar on the towers and the sensors around the airports.

According to FAA, 35 US airports equipped the device. For the take-o↵s and landings,

airports operate terminal radar approach control (TRACON). The radar monitors

about up to 50 nautical miles from the airport. If multiple airports are located

closely together, an integrated facility provides services to them. For the en-routing,

ATCo monitors aircraft with long-range radars that are capable of seeing longer than

100 nautical miles. The radars are located at facilities called air route tra�c control

centers (ARTCC) where ATCos also manage the en-routing tra�c.

Even an airport is equipped with ASDE-X, the tower controllers perform most of

their airport tra�c duties through verbal radio communication. In general aviation,

aircraft must receive a clearance, approving its flight plan, from an ATCo as a first

step. To leave an airport, the tower controller gives a departure instruction. This

instruction includes designated runway and heading including specific instruction on

how to enter its planned route. Smaller airports without radars solely depend on

visual and verbal communication to perform this procedure. Both pilots and ATCo

must visually check whether the heading airspace is cleared to depart. The tower con-

troller must visually confirm that an aircraft can enter a designated runway and clear

to take-o↵. If pilots need to perform a di↵erent approach to enter its planned route,
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they must notify the towers. Busier airport utilizes ASDE-X to digest a substantial

number of aircraft in brief time. This system not only tracks aircraft on the ground,

but it also predicts possible conflicts. Even if there is a tra�c control supporting tool,

the tower controllers must check the ground visually. Landing procedure is reversing

the departing one with one additional procedure. If there is no cleared runway, ATCo

asks an aircraft to hold. If there are multiple aircraft on hold, ATCo put following

orders to aircraft considering several priority aspects including fuel, flight hours, and

emergency situations in the aircraft.

The first procedure after taking o↵ from an airport and about to leave its airspace

boundary is the transfer of control. The tower controller (transferring controller)

passes, hando↵, its duty on the aircraft to the receiving controller at an ARTCC.

Two controllers must communicate with an aircraft pass the border to ensure that the

receiving controller to be aware of oncoming tra�c. Right after the communication,

the transferring controller instructs the aircraft to communicate with the receiving

controller and terminates the communication with the aircraft. However, the aircraft

is still under control of the controller until it physically leaves the airspace. Unlike

the tower controllers, ATCos at ARTCC do not perform visual monitoring. Their

tra�c controls solely rely on weather and flight data on their display and information

received from pilots. If ATCo must alter a route for any reason including aircraft

separation, ATCo provides a maneuvering instruction to an aircraft. To assure its

process, ATCo may ask the pilot to report the progress. This procedure continues

until the hando↵. If their radar system malfunctions, they switch the method to the

old shrimp boat one.

D.2 Flight Tracking Data

Modern aircraft have various sensors that collect information representing the sta-

tus of aircraft such as airspeed. This information is commonly called as avionic data.

Along with the avionic data, there is other information such as the flight plan that
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initially generated from ground stations and carried by the corresponding aircraft.

Flight plan can be accessed independently, but other avionic information only can

be accessed through communicating with aircraft both manually and automatically.

FlightAware is an online flight data provider that collects various flight information

from air tra�c control systems in various companies and other resources including

their own facilities. One of its services is providing locational information about en-

routing aircraft with their flight plan in real time. The flight plan, open-loop data,

is represented as a set of coded locations called waypoints. According to the plan,

aircraft should pass these points while heading to their destinations. However, actual

flight trajectories are not usually identical to connecting the waypoints. The actual

trajectories are called as the closed-loop data. It is collected in an approximately

30-second interval and contains physical status information such as coordination,

heading and pitching, and speed. Due to errors in recordings by the sensors and/or

the communication, collected data from the provider can be may be incorrect or

missed.

D.3 Empirical Studies of ATCo

D.3.1 Task Analysis

The first step of studying a human operator in a system is understanding the job.

It requires methods to collect, classify, and interpret data on human performance in

work situations and a collection of these methods is task analysis [60]. It has many

methods to describe a work regarding behavioral and mental tasks. For example,

hierarchical task analysis developed by Annett et al., 1971 models a task with its

sub-tasks in hierarchical and sequential order to achieve the goal [61]. This section

briefly discusses behavioral and workload analysis and focuses on the analysis of the

mental side.

Air Tra�c Control Handbook states rules and tasks that ATCos must follow.

However, it only provides a minimum amount of information about their tasks such
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as what is the clearance and its procedures. ATCos perform their tasks using various

equipment, and their tasks are slightly di↵erent depends on their positions. For

example, tower controllers’ tasks are about guiding aircraft to take-o↵ and land, while

en-route ATCos separate aircraft. Thus, there are studies focused on understanding

ATCo operations in detail by general task analysis [62–66]. However, traditional

analysis on their task has an explicit limitation in understanding how they perform

the tasks [67]. Also, there are researchers on mental aspects of the tasks; Wickens

applied psychologies to engineering field to understand how human operators perform

tasks cognitively [68]. These researchers adapted cognitive task analysis on ATCos to

model their mental processes of aircraft conflict prediction, detection, and resolution.

Cognitive task analysis is the extension of traditional task analysis methods such as

the hierarchical task analysis to conduct information about the knowledge, thought

processes, and goal structures from the target task [69].

Information from separating and focusing on the mental side of the task itself does

not have industrial value to understand, modify, or enhance the task performance.

Its primary purpose is on application to develop a performance enhancement method.

For example, Starter and Woods, 1995 conducted the study to identify mode errors

and Wise, 2012 did for the system issues. Another application is measuring their

workload. The workload of ATCos is an important research topic for a long time

since 1978. Their task became more intense as the number of aircraft increase. As

stated previously, safety is the essential factor of the air tra�c control system, which

is dependent on ATCo performance. A human can occur when we are in abnormal

conditions. It is a well-known fact that ATCos have high workload and stress due

to their responsibilities and a significant amount of air tra�c [70]. As an extension

to studying ATCos tasks, researchers attempt to measure their workload to evaluate

their tasks, which can provide necessities of automation to support their tasks and

reduce the workload. At this point, we only know ATCos have a high workload, but

we still do not have a method with zero defects.
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Lack of understanding on ATCos is one of the reasons for the slow progress. Fol-

lowing sections summarizes current progress on the understanding ATCos. Sections

discuss findings from studies regarding generally accepted, debatable, and inconclu-

sive ones.

Cognitive task analysis is based on theories of psychology regarding how brain

perceive, process information to make decisions and take actions. Thus, cognitive

analysis of air tra�c controllers is also adapting conventional physiological explana-

tions of brain functions, and researchers generally agree on them. Figure D.1. Illus-

trate a generic cognitive task model of air tra�c controllers in global level regardless

of their positions and following paragraphs explain the model in detail [29].

Figure D.1.: Genetic Cognitive Model of Air Tra�c Controller Task [ref]

At the very top level, the model shows their mental process is triggered by events

such as movements of aircraft, incoming radio communications, and weather changes.

ATCos take the events as information and perform five cognitive stages; selective

attention, perception, situation awareness, planning and decision-making, and action
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execution. As the events trigger the processes, their action is a result of trained air

tra�c control procedures and practical and spontaneous strategies. Hopkin, 1995,

called this mental process as the “picture,” which ATCos draw on their mind by

perceiving information from equipment such as a radar display, radio device, docu-

ments, and telephone with the corresponding airspace and project them to predict

the future [71].

The model has process flow direction and iterative. The process flows in one

direction and end of one cycle triggers the next cycle. It is related to their duties,

changes in the conditions in an airspace, and information update rate through their

equipment. If there is an aircraft in an assigned airspace, they have to monitor the

aircraft until it leaves. Even though the process is sequential and repetitive, ATCos

may skip a stage if it is unnecessary. For example, if there is no aircraft to monitor,

ATCo does not need to draw the picture or predict the future at the moment. Also,

they make decisions based on the experience. In this case process of decision-making

and planning becomes simpler.

General agreements on how ATCos acquire information from the external events

related to the types of information they perceived and what it can trigger from skilled

operators. All ATCo involved activities like aircraft clearance occur at the outside

of the working environment whether ATCos work at airport control towers or air

tra�c control centers. ATCos gather information to perform most of the activities

through their equipment which requires visual and auditory senses. Radar displays

show changes of aircraft status and movements and other information comes from

pilots and other agents through their voices. It is considered as capturing visual

and auditory changes because they can acknowledge the current situation only two

types of sources. However, they do not take the information as it is. Moray, 1986

stated that operators select information that they need so that they do not have to

spend a time to take all information available at that time, which is called selective

attention [72]. With selective attention, operators know where to find information

e�ciently. Also, researchers observed selective attention from the experts more fre-
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quently than novices. It implies accumulated experience help distinguishing critical

information from others. At the same time, it is possible that the selected informa-

tion is not available to the operator due to malfunctioning of equipment, etc. Apart

from selecting information, some types of information itself generate another infor-

mation. Monan, 1988 found that ATCos expect a continuation of the current aircraft

movement when they perceive the information [73]. So ATCos expect aircraft to keep

their current airspeed, heading, and altitude. Also, Schank and Abelson, 1977 stated

that specific information expects them to predict next incoming information [74]. For

example, if an aircraft shows up at one’s airspace, corresponding ATCo expect radio

communication from the pilot.

As shown in Figure D.1, stages for processing the perceived information have sub-

elements. This section discusses all elements except for the mental model, which is

reviewed in the following section. Researchers generally agree that perceived informa-

tion goes to working memory. According to its definition from Miyake and Shah, 1999,

working memory is the part of short-term memory that is a cognitive system with

limited capacity in holding information to process [75]. Also, Baddeley, 1986 stated

that it is the “workbench” in the human brain [76]. Information in the working mem-

ory is either verbal and spatial. For air tra�c controller task, information received

from communications with pilots correspond to the verbal memory that ATCos can

speak [77]. Logie, 2014 state spatial working memory of ATCoS is representations

of their airspace in their minds [78]. Researchers believe that the spatial memory

once must be transformed from the verbal one because ATCos should read the radar

displays in two-dimensional space and project it to three-dimensions with digitally

presented altitude related factors.

Researchers agree on processing working memory occurs at situation awareness

of ATCos. Endesely, 1996 defined situation awareness as a level of understanding

status of a situation, but also eligibility to project it to its future status [63]. After

working memory receives the information, the memory interprets it based on the

knowledge stored in long-term memory. Memory checks whether the information
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matches or related with the stored memory and retrieves associated responses. For

example, if ATCo faced similar weather condition before, he/she will execute similar

maneuvers to aircraft. Seamster et al., 1993 stated ATCos utilize working memory

to comprehend the perceived information and make predictions based on it and these

activities are to understand the current situation which is considered as situation

awareness [79]. Thus, situation awareness of ATCos includes not only understanding

the trajectories of aircraft and related tra�c in assigned airspace sectors with expected

future trajectories including possible changes due to external factors like weather.

Also, understanding on circumstances of ATCos themselves and their goals of the

tra�c control tasks become parts of the situation awareness.

Researchers generally agree that knowledge stored in the long-term memory plays

an important role in processing perceived information in the working memory. Ac-

cording to Redding et al., 1992, knowledge stored in the long-term memory is about

the assigned airspace, equipment, rules, procedures, weather, and specifics of various

aircraft [80]. For example, ATCo knows geological characteristics of the assigned

airspace sector, air routes, and its boundaries. Also, they know how to operate the

equipment such as radar displays and radio communication device. Since they know

specifics and dynamics of various aircraft, they can instruct specified maneuvers that

an aircraft can execute.

Another characteristic of the long-term memory that researchers agree is an impact

of domain experience to the memory. From the psychological perspectives on the

memory of experts, Chi et al., 1981 stated that experience helps long-term memory to

form more e�cient memory structures for multiple events [81]. If an ATCo identified a

potential aircraft conflict pair, he/she must make decisions and instruct maneuvers to

the pilots. Before this step, ATCo needs to choose a solution from candidates, which

are results of processing working and long-term memory under situation awareness.

Details of a conflict resolution maneuver refer from their experience including trained

procedures from their long-term memory. Novices tend to resolve a case one by one,

while experts can perform multiple ones at once [79]. If an encountered case is novel
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and cannot retrieve related knowledge from the long-term memory, ATCos simulate

the situation in their working-memory and frequency of this case decrease, or it can

be shortened as they become more experts.

Not only to generate the candidates but also the decision-making and planning

stage is dependent on the long-term memory. Figure D.1. Show that after the stage of

situation awareness where ATCos formulate decision candidates, the cognitive process

moves to the decision-making stage. As previously stated, the long-term memory of

ATCos include procedures established by training and experience. Hopkin, 1988

and Vidulich et al., 2010 stated tra�c control procedures, rules, and risks in the

long-term memory of ATCos such as minimum separation distance and uncertainties

under di↵erent conditions become standards of decision-making process [82, 83].

According to Harris and Wilkins, 1982, results of the decision-making process

stage have three categories; an immediate, strategic, or series [84]. The strategic

decision is planning the future executions and researchers agree that most of the en-

route tra�c maneuvers are strategic decisions. Strategic requires prospective memory

ability from ATCos because they need to remember to execute a specific maneuver

at a specific time. Also, researchers believe the prospective memory plays essential

rule on monitoring changes of aircraft movement. For example, if an ATCo guides an

aircraft to change its attitude to a degree, he/she is very likely to check later when

the aircraft is expected to reach that state.

The last characteristic of generally agreed long-term memory is its adaptation and

self-evolution. Many phycologists [79, 85, 86]. The long-term memory builds strate-

gies and develops them over time. The researchers stated these strategies improves

and customizes themselves to specific purposes resulting in the cognitive stages to

become more e�cient and they are e↵ective when the volume of work is high. Go-

pher, 1993 and Stein, 1993 found attention allocation strategies of ATCos on the

external events help them to handle a high volume of events [85, 87] and there are

strategies to prioritize tasks so that ATCos can handle a large amount of work more

e↵ectively [88]. Opposite to customized strategies, there are higher level strategies
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for handling complex and time-sensitive tasks. This type of strategies allows prac-

titioners to understand and figure out how to manage the situation within given

conditions. In the air tra�c control, methods to avoid or resolve multiple conflicts

correspond to it [89–92]. Lastly, strategies in the long-term memory can a↵ect not

only the cognitive processes but also other types of memory. The long-term memory

may include strategies to remember information in the prospective memory. These

strategies called as memorization method and the card counting one of the important

strategies.

The tasks of ATCos, external events, and their cognitive process is meaningless

unless they are willing to perform the tasks by utilizing the external events in their

cognitive processes. This willingness is attentional resources. Researchers generally

agree that their attention to their duties, environments, and external events is another

critical input to the air tra�c control tasks. Researchers believe attention require cog-

nitive resources and there are four factors of an event that a↵ect consumption of the

resources [29]. Higher frequency of event occurrence and its complexity increases the

consumption, while higher expectable and common event likely reduces the amount

of resource consumption. For example, even though a complicated multi-aircraft con-

flict occurs, ATCos will not spend their resources much if the event is expected or

familiar because the similar event happened before. In another hand, even if an event

is not so complicated, it can consume more than a reasonable amount of resources

if it is unexpected and novel. As shown in the two examples, these four factors can

interact with others in many ways, which concludes that it is di�cult to define the

high frequency and high complexity is always more burden.

Regarding the characteristics of attentional resource consumption, Ramussen,

1986 and Ramussen et al., 1991 stated ATCos tends to minimize the resource con-

sumption by utilizing rule-based and knowledge-based behaviors on the di↵erent types

of events [93, 94]. For example, if a familiar type of aircraft conflict is expected with

low complexity, ATCos tend to perform rule-based behaviors that do not require much

attention. If an unexpected event occurs such because of human errors, ATCos ini-
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tiate knowledge-based behaviors that attempt to understand the situation with their

knowledge by approaching in creative ways. This behavior is to minimize consump-

tion of time and the attentional resources. Thus, novice ATCos are not eligible to

handle the unexpected events adequately because they do not have enough amount

of knowledge to perform such behaviors. It appears as the rule, and knowledge-based

behaviors are multi-tool to minimize the resource consumption, but they do not work

in a di↵erent environment such as di↵erent airspace and sectors because they are case

specific [95]. Each sector and airspace have a di↵erent environment and equipment.

Types of aircraft activities also can be di↵erent. Thus, events in an unfamiliar envi-

ronment and external event will not trigger both behaviors. Moreover, if it triggers

rule-based behavior, it may cause decision errors.

So far, researchers found that ATCos perform their task with information from ex-

ternal events and their memory. Also, an event that they must process has distinctive

characteristics depends on the four factors. Thus, each process requires a di↵erent

amount of resource consumption, so the amount of workload is also di↵erent. So far,

any of artificial intelligence successfully perform those activities, which proves human

is the best option for now to handle the air tra�c. However, it is well known that

human performance is vulnerable and can be inconsistency due to factors. Apart from

the model of their air tra�c control methods, researchers also agree that elements

that form their cognitive model can lead to errors. For example, Moray, 1986 sated

visual perception of ATCos may cause bias by looking at information long enough

regardless of its importance to the corresponding event [72]. Monan, 1988 found that

expectations influence their perceptions by incorrectly perceive information as it is the

expected information due to routined cognitive processes [73]. Multiple researchers

identified that working memory could be disrupted easily causing the operators to

make incorrect “picture” [77, 96–98]. Also, researchers showed concerns regarding

verbal communications [98–100].
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D.3.2 Mental Model

A mental model is a theoretical structure in the cognitive process of a practitioner

that refers to his/her learning and concepts about a task. It is a result of organizing

di↵erent knowledge over time. Researchers have various opinions on the definition of

the mental model. According to Rouse and Morris, 1986, it is a set of mechanisms that

humans generate; descriptions of system purpose and form, explanations of system

functioning and observed system states, and predictions of future system states [101].

Norman, 1986 provided a more descriptive definition that it is human nature and it

provides predictive and explanatory power for understanding external objects coupled

with prior knowledge and understanding, which guide human behaviors [102].

Figure D.2. shows the basic classification structure of the mental model by Rouse

and Morris, 1986 [101]. The study noted that metal model has at least two dimensions:

nature of model manipulation and level of behavior discretion. The nature of model

manipulation is a degree of consciousness on the existence of a mental model, and the

level of behavioral discretion is a degree of freedom to a practitioner on performing

a task. With current approaches, it is hard to study mental models corresponding

to the upper left corner of the diagram because of high freedom in action and low

self-awareness.
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Figure D.2.: Classification of the Mental Model

Besides the classifications, researchers studied other characteristics of the mental

model. Rassmussen, 1979 stated mental models have a physical form and function,

structure, abstract function, and functional meaning [103]. Also, these characteris-

tics have di↵erent levels. Johnson-Laird, 1983 further specified the characteristics;

distinguishing mental models with physical and conceptual models [104]. Wilson and

Rutherford, 1989 summarized previous studies regarding the characteristics and the

noted existence of many mental models for a system having di↵erent levels of each

characteristic [105].

According to the Rouse and Morris, 1986, there is no clear distinction between

situation awareness and mental model [101] and Endsely, 1995 stated that situation

awareness is a perception of elements in an environment within a time and space,

comprehension of their meaning, and projection of their status in the future [106],
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which is partially overlapping with definition of the mental model. Wise et al., 2012

specified their relationship; mental model as a basis of situation awareness that takes

information from external events through situation awareness and provides internal

information back [65].

Researchers applied the concept of the mental model to the air tra�c control

system in various ways. Vincente, 1988 showed impacts on a user interface of ATCo

displays [11]. Concepts of the mental model suggest recalling information experiments

on information expected to be in mental models can provide evidence of the mental

model existence and other researchers applied the method to identify proof of mental

model from ATCos [107–109]. Wise et al., 2012 also suggested that methods to

measure characteristics of the model can be applied to evaluate the e↵ectiveness

of ATCo equipment and envisioned mental models for the future air tra�c control

system to be heading toward a higher level of supervisory control [65].

As shown in Figure 1, researchers generally agree the mental model is in the

situation awareness stage of the cognitive process. Sarter and Woods, 1991 stated

that “mental models could be seen as the basis for adequate situation assessments

which, in turn, result in flight-related knowledge that may eventually become part of

the pilot’s situation awareness. In other words, adequate mental models are one of

the prerequisites for achieving situation awareness [11].

Wise et al., 2012 stated that the mental model of ATCo has two di↵erent com-

ponents; domain and device model. The domain model is about airspace, aircraft,

and procedures while the device model is understanding of external event informa-

tion providers such as radar displays. Also, considering characteristics of ATCo tasks,

their mental models will correspond to supervisory control and manual control in Fig-

ure D.2 because their routine tasks have strong supervisory factors, but occasionally

they must give specific instructions to aircraft, which falls into the manual control.

Fortunately, conventional experiment methods are eligible to study those types of

metal models with some limitations.
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The “picture” is a concept that all researchers in this field agree. Whitfield, 1979

interviewed ATCos and concluded that a mental model, the “picture,” exist in their

cognitive process and act as a display that its practitioner can freely control to orga-

nize perceived information and eventually stimulate task performance [110]. Following

studies showed that skilled operators have a clearer “picture,” which is discussed in

the later part of this subsection. Even though there was a significant finding, studies

in early years were limited. Whitfield, 1979 and Whitfield and Jackson, 1982 only

able to interview ATCos [110,111]. These studies found that at least possesses three

di↵erent types of information (a static model of the air tra�c route structures, sep-

aration guidelines, and procedures) and three-dimensional (longitude, latitude, and

altitude) representation on the assigned airspace. They suggested that they could

identify more aspects of the mental model with other methods and the results may

a↵ect enhancing the controllers” working environment. With such limitations in the

early stage of research, researchers generally agree that the mental model has various

types of information that requires di↵erent types of memory to store.

After identification of the picture, Norman first introduced a conceptual mental

model of ATCos [112]. However, the model only described radar display related as-

pects and Niessen et al., 1998 adapted the concept and applied a complete form of

the model as shown in Figure D.3 [14]. The researchers named it Modell der Fluglot-

senleistungen (MoF1), and researchers continued the mental model study based on

this one [113–115].
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Figure D.3.: Modell der Fluglotsenleistungen (MoF1)

The picture has objects that are representations of aircraft in the assigned airspace.

Environments of the picture depend on five di↵erent modules: data selection, antici-

pation, conflict resolution, update, and control. These modules have unique functions

and di↵erent procedure sequences for three information processing cycles: monitoring,

anticipation, conflict resolution cycles.

The monitoring cycle is a procedure to update information in the picture by scan-

ning the external events. The cycle starts with the data selection. The process selects

data from perceived information considering required information to the picture then

update the information of the picture. Gradually, the picture keep builds up. This

procedure is based on the concept of perceiving information from external events to

understand the current situation from Endsley, 1996 [63].

Anticipation cycle uses this updated information regarding the aircraft in the

picture to predict the future. The cycle compares aircraft in the picture and predict



313

their future state and make a decision whether there will be a conflict or not. This

process further explained in four steps sequentially. First, the operator compares pair

or more of aircraft at once to see if they are on the same or crossing path. If they do,

then the operator checks their altitudes. Second, the operator continues to evaluate

the aircraft by predicting their future state to check whether the loss of separation

will occur. Third, the operator evaluates the accuracy of the result from the previous

step. Last, the operator assesses available time to make a resolution plan and execute

it.

Conflict resolution cycle develops a resolution maneuver for the predicted event

from the previous cycle, which occurs in the control module. It starts with listing

all predicted conflicts in order from the most urgent to the least. Then it generates

a novel solution or refers to the previous events. With the candidate solutions, the

operator simulates the changes in the future from the picture. The purpose of the

simulation is not only to check whether the solution is viable but also whether it

will cause another conflict. After the simulation, the operator decides a solution and

execute it.

There are researches on characteristics of the ATCo mental models. Researchers

generally agree on spatial aspects in the ATCo mental models. Many researchers

tested multidimensional scaling techniques, data visualization method regarding sim-

ilarities of individual objects or data points, to ATCos to explore the existence of

spatial aspects on their cognitive process [116, 117]. Landis et al., 1967 concluded

that mental models of ATCo have spatial characteristics and results from Lapin, 1982

showed the experts have a three-dimensional spatial characteristic in their pictures.

Researchers generally agree that there is a di↵erence between the mental models

of novices and experts in quality wise. Mogford, 1990 conducted a recalling test to

ATCos and concluded that recalling ability is related to their quality of mental model

because results showed a positive correlation between recalling and their radar read-

ing ability [109]. With other related studies , this result can be the evidence that

having a higher quality level of the mental model helps the practitioner’s task perfor-
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mance. Also, Vincente, 1988 stated that amount of information that an operator can

remember and recall is also the critical ability and it a↵ects his/her cognitive process

because of clarity and fruitfulness of knowledge he/she has [118].

D.3.3 Prescribed Models of ATCo Actions

Radio Technical Commission for Aeronautics (RTCA), a private organization de-

veloping aviation standards, adopted the concept of prescribed modeling to the field.

In 1975, RTCA issued the minimum performance standards for ground proximity

warning equipment and standardized executions of pull up maneuvers against con-

flict with terrain [119]. The actual application of the prescribed models started in

1990 to provide conflict resolution maneuvers for the runways [120].

Besides its primary usage, researchers started utilizing the method in many ways

for the air tra�c studies. The two most frequent applications are on model assump-

tions and operator training materials. From the early stage of modeling conflict

resolution methods, researchers utilize the prescribed models in their tools to pro-

vide fixed maneuvers in certain situations. It often presented as assumptions of the

models. Waller & Scanlon and Carpenter & Kuchar applied a prescribed climbing

maneuver for the conflicts in the airport areas [121,122]. Also, researchers embedded

the prescribed models in the mathematical ones. If an aircraft conflict resolution

model only able to generate horizontal maneuvering solutions, we can understand it

as (in systematic perspective) its structure of resolution generation has a prescribed

step categorize all input conflict as problems that can be solved by a maneuvering

option. In these cases, the prescribed methods do not play significant roles in the

models. However, it shows that other types of models possess some aspects of the

prescribed modeling.

Another popular usage is on developing operator training materials. Handbooks

and manuals including Air Tra�c Control Handbook from FAA are the best examples.

These works include prescribed protocols explaining what an operator must perform
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in certain situations. For example, the ATCo handbook sequentially lists the tasks

for clearance of an aircraft to take-o↵. The models are handy in training both human

and computer operators because they can reduce a significant amount of time on

deciding what to do. If an aircraft conflict resolution can provide either horizontal or

vertical maneuvering solutions, it should compare which maneuvering option is better.

A prescribed model does not need this process, so it will reduce total computation

time to half right away by removing one option. In simple words, the prescribed

models are methods to trigger predefined procedures. Chief functions in the model

take input and make conditional judgments based on the information in the input.

This information may possess more than one factor. For example, both conditions of

runways and aircraft status trigger the predefined maneuver from Waller & Scanlon

and Carpenter & Kuchar. When the functions make decisions, they evaluate whether

the factors satisfy their conditions. The functions in Waller & Scanlon and Carpenter

& Kuchar models are checking whether an aircraft is climbing or not and whether

there is a parallel runway approach. Studies like Prandini et al. 2000 show how

prescribed models trigger their mathematical functions [123]. We can find a more

direct use of the predefined models from the Tactical Separation Assisted Flight

Environment (TSAFE). TSAFE is a backup system of a primary-automated conflict

resolver to provide immediate maneuver options for a predicted loss of separation

within 2 minutes [124]. Since the system is designed to provide a solution in a short

time, it processes a predefined set of procedures to check which maneuvering option

is better than others [125]. As the input and evaluations are multi-dimensions, a

function should have at least two outputs; one for the input satisfied its standards

and vice versa. The output can be a final output of the model or input to another

function. Thus, we can also put the functions in series to build a sophisticated

structure for various output. State, knowledge, agent, and protocol-based models are

well-known examples of the prescribed models with the sophisticated functions.

State-based models utilize prescribed modeling method to identify the current

state of its target. Landry, 2012 introduced a state-based model that can track the
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current state of aircraft [126, 127]. In the model, predefined states of aircraft ex-

ist, and multiple evaluation functions check the status of aircraft to make decisions.

Also, the state transits to other ones if a particular time is passed or event occurs.

Knowledge-based models are simpler versions of artificial intelligence. The models

provide solutions based on its knowledge or store solutions. Ezberger, 1995 empha-

sizes benefits from knowledge-based functions on the air tra�c control system [128].

Later studies introduced its application powered by decision tree methods [129,130].

In short, the models go through logical procedures to make tra�c control decisions.

For more accurate output, they require a significant amount of information before-

hand. Agent-based models consider each object in a simulation environment as in-

dependent and self-oriented. The agent has a predefined set of actions that can be

triggered by various inner or outer factors. Since agents behave independently to

pursue their goals (processing a set of predefined procedures), they create emergent

behaviors. For air tra�c control, agents, aircraft, and ATCoS must cooperate with

each other to achieve their goals and researchers study how they work together to

resolve conflicts [131–134]. On the other side, researchers used the method due to its

characteristics regarding independence. They applied the concept of free flight on the

agent-based modeling to evaluate decentralized air tra�c control systems [18,135,136].

Prescribed models have two critical deficiencies. They are coming from the charac-

teristics of functions that generate predefined output. Fundamentally, their functions

do not create solutions, they evaluate the situation and only able to one of the ele-

ments in the predefined set of items. Because of this structure, the prescribed models

possess limitations in quality of output, the flexibility of the models, and depth in

situation awareness.

The set of solutions is hard to be very specific and detailed. Conflict resolution

maneuver is a complicated decision. If there is a conflict between two aircraft, ATCo

must decide which aircraft to deviate from its nominal route and how. Since solutions

are predefined, it is not so di�cult to decide which aircraft to alter and which maneu-

ver option to apply. However, how much to alter is very subjective and case-specific
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factor. ATCo maneuver is not just asking an aircraft to climb up or down, and it

can also be altering next waypoint to somewhere else so that the aircraft needs to

change its heading. Moreover, a specific maneuvering option and context are subject

to change if the environment changes due to weather or other aircraft. Thus, it is

challenging to prepare a master set of solutions that have all possible solutions. Itan

is a standard issue of the prescribed models. For example, Waller & Scanlon and

Carpenter & Kuchar’s predefined models only able to provide resolution maneuver

with fixed climbing and turning angle. The prescribed models are more suitable to

narrow down a solution pool.

Since there are limitations on the output variation, situations a model can resolve

is limited. Their functions lack flexibility because one function can only provide a

solution for one type of cases. So, the models become case specific. If a model wants

to cover many situations, it requires at least that many functions in it. However,

it is challenging to collect all possible conflict situations and categorize them into

some instances. The method is useful when its target system is simple. However, the

current air transportation system is sophisticated than in earlier years, and it will

add more complexity to the next generation. Thus, it will be challenging to conduct

aircraft conflict resolution tool solely with prescribed models.

The performances of prescribed models are highly dependent on input factor eval-

uation processes. Intuitively, a case-specific solution only works for the corresponding

case, and we can provide a case-specific solution only when we know the problem be-

longs to that case. If the chosen factors are misleading, the models will o↵er unrelated

solutions, which will lead to failure of the tra�c control system. Thus, determining

a set of input factors that present a case is the critical procedure during the devel-

opment of the model. This procedure should include a step to prove that the chosen

factors can represent the case e↵ectively along with identifying their candidates. The

proof itself is another complicated problem because it will require some amount of

empirical or theoretical work that is not defined.
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D.4 Mathematical Studies of ATCo Actions

Researchers approach mathematically to construct automated conflict detectors

and resolvers. Since the 1990s, aircraft equip the tra�c collision avoidance system

(TCAS), which monitors airspace around an aircraft to identify active transponder-

equipped objects such as other aircraft. Based on received signals, TCAS automati-

cally calculates the status of other aircraft (climbing or descending). From the 1980s,

as technologies and concepts of TCAS established, researchers also seek to develop

mathematical models and many types of research published after 1990. In one way,

the optimal conflict resolution can be considered as extending the concept of TCAS

to not only identifying potential threats to an aircraft, but also provide remedies to

avoid any conflict. As demand and volume of the air tra�c increases, interest on

improving its control systems also grown together.

Formulation of mathematical conflict resolution models generally follows the pro-

cess described below. First, a practitioner constructs a set of equations to describe the

conflicts. This set of equations includes an objective such as what kinds of factors to

consider in a model and what to minimize or maximize. Also, equations have variables

that reflect factors or conditions. For example, this phase includes implementing the

dynamics of aircraft such as its movement. Intuitively, as the number of equations

and variable increase, the model becomes more complicated and may reflect more

details regarding the conflicts. Second, a practitioner chooses an algorithm to solve

the set of equations. Some algorithms must be modified to fit due to its fundamental

structure that was designed for other problems. Sometimes a practitioner first comes

up with a solver than formulating a set of equations that will fit the algorithm. Third,

a practitioner tests a model by simulating aircraft conflict cases applying scenarios or

actual flight data.

Objectives of the optimal conflict resolution models are simple and straightfor-

ward: to avoid aircraft conflicts. However, the researchers took various direction to

achieve the goal. Also, there are many ways to categorize the studies. This section
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synthesizes those categories. The first subsection describes how the researchers frame

the aircraft conflicts. Then, the following subsections list mathematical variations

such as algorithm types, constraints, and variables.

The most obvious factor to categorize the studies is a flight condition. There are

two di↵erent types of conditions considered in the studies; nominal (controlled) and

free flights. In nominal condition, two assumptions are widely used. First, the studies

assume that air tra�c controllers are responsible for the maneuvers just like the

conventional air tra�c control operations. Thus, most studies consider the nominal

condition and focus on the separation assurance. Second, aircraft have deterministic

movements. Studies assume all flights have their predefined flight trajectories and

strictly follow theirs. Thus, there is no uncertainty in movements of aircraft unless

specific execution is given to avoid any conflict. With this assumption, studies predict

and detect conflicts conveniently.

Other researchers envision the free flight in the future with technologies to support

it. In this case, ATCos do not control flights and pilots are responsible for the

separation assurance. Since aircraft can fly freely, there are no predefined trajectories,

which creates uncertainties in aircraft behaviors. It makes the predictions to be

challenging. For example, an aircraft can encounter unexpected conflict due to sudden

changes from other aircraft. Thus, a model should monitor movements of each aircraft

very closely with a short time interval for the accuracy of prediction. Also, the

accuracy of conflict prediction is relatively lower than the nominal condition and

more complicated and requires more computations to detect them. Due to these

characteristics, a solution for conflict may continuously change as a circumstance

change.

Another critical factor to consider is how to frame the problem. Based on the

reviewed literature, there are two di↵erent ways to define the aircraft conflict: sub-

jective and objective point of view. In a straightforward case, aircraft conflict occurs

when there is a pair of aircraft that will lose separation or even collide in the future

due to their current statuses such as heading, airspeed, and altitude. From a sub-
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jective point of view, other aircraft become objects that one aircraft should avoid.

Thus, other aircraft are considered as obstacles or even considered as threats to an

aircraft. Also, not only aircraft but also weather and landscapes are also considered

as obstacles. In this type of perspective, an aircraft must find its way out from any

dangerous circumstances. Thus, the model cannot control the obstacles, and only

a target aircraft make maneuvers against them. The objective point of view takes

precisely the opposite approach. It considers a conflict as one event itself to solve,

which means all objects included in the situation must cooperate to find a solution.

Depends on the method, a model selects the best resolution to either aircraft in a

conflict or model performance regarding its objective. So one solution may require a

maneuver for an aircraft while another one requires maneuvers for multiple aircraft.

State of the conflicts considered in the studies is another critical standard. The

models apply to either one of the two states: nominal and close quarter conflicts.

Nominal conflicts are predicted conflicts that may cause a LOS or collision with

reasonable time to respond and the close quarter ones are cases without enough time.

Most mathematical models ensure separation for the nominal conflicts. In the current

air tra�c management operations, ATCos manage conflicts in this state daily, and

the primary purpose of their actions are avoiding overlaps of aircraft’s safety zones

by assuming all aircraft move as intended. Thus, models designed for the nominal

conflicts aims for providing conflict resolution recommendations to ATCos or even

replacing their task. Opposite to the nominal state, there are models focused on the

resolutions for close quarter cases, which have a closer relationship with the concept

of TCAS. Some models include resolution algorithms for both cases.

Among many mathematical approaches, most researchers adapted optimization

methods. Optimization has benefits compared to other mathematical methods. All

mathematical approaches can provide conflict resolutions. Unlike others, optimization

models generate multiple solutions and choose the best one based on their objective

functions. The goal of objective functions is either maximize or minimize some per-

formances. To utilize this characteristic, researchers construct cost metrics and guide
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their models to provide results that are guaranteed to spend minimum cost. For air

tra�c management, the most critical cost metric is the safety of aircraft. Safety can

be interpreted in many ways, but typically it is considered as a separation between

aircraft. Besides the safety, researchers consider other cost metrics such as fuel con-

sumption, total travel time, deviation from the original trajectory, and even workload

of operators. After researchers determine a set of the objectives, they quantify the

objectives into a series of variables and constants. Then, they decide what kind of

constraints should be considered in the model. The variables used for the objective

function must be included in the constraints to narrow down possible solutions. After

the model is completed, researchers compute the objective function and constraints

together to find a solution that satisfies all conditions.

Researchers determine specific algorithms to apply in the optimization models

based on how to formulate the models. Geometric algorithms are the most common

methods for the air tra�c conflict. Fundamentally, aircraft conflicts are a geometric

problem, because two or more objects are expected to be at the same location at

the same time. Thus, this approach is one of the simplest and the most straight-

forward methods. This method focuses on geometric deviations from the nominal

trajectory of aircraft. Most studies adapted this approach utilizes velocity vectors

of aircraft to measure the deviations, and their accuracy and realism depend on the

other constraints to define movements of aircraft and their surroundings [21,137–152].

Additionally, due to the characteristics coming from the movements, a structure of

optimization models are non-linear functions. While some models took a fundamental

and straightforward approach with geometric algorithms for the separations, others

consider performance metrics such as the economic cost of taking specific maneuvers

to aircraft. When the objective function becomes more complicated, researchers ap-

ply techniques such as game theory or genetic algorithms to find solutions [146,152].

Listed techniques are widely used in economics and operation research area. Game

theory provides gains and losses on conflict resolutions, which enables practitioners

to make mixed strategies (mixed solution consists of a win for one objective and vice
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versa) for an improvement in overall performance. Genetic algorithms find better

solutions from a pool of solutions during the iterative process. So, the algorithms

take multiple iterations until they find the best solution or whether the iteration is

exhausted.

A stochastic approach is another common mathematical method. The fundamen-

tal reason for utilizing a stochastic approach is accounting uncertainties in aircraft

movements. Even if aircraft should follow its flight plan or nominal trajectory, it is

always possible that there is a probability that it will not. Also, even if we consider

an aircraft is following its path, there are always small deviations due to many factors

such as error tolerance from sensors equipped in aircraft or radars. Unlike optimiza-

tion models, this type of models does not have objective functions. However, their

algorithms always choose the safest solution: having the least amount of chance to

have a collision. This approach is more suitable for making sudden maneuvers to avoid

unexpected situations. Stochastic models predict the worst-case scenarios, which the

most dangerous movements that other objects can take against an aircraft [153–157].

Based on the predicted movements and probabilities to take those actions, the models

construct solutions that will avoid the threats. If it is impossible to avoid the threats,

models will choose solutions that will take the least amount of risk. Due to these

characteristics, stochastic approaches are more suitable to close quarter situations

where an aircraft must make dramatic maneuvers to react to unexpected situations

such as aircraft in close distances. Other studies implemented stochastic models for

free flight conditions due to its capability to handle uncertainties in movements of

objects.

The optimization and stochastic models are essential approaches to finding aircraft

conflict resolutions. However, other mathematical models are approaching with an

entirely di↵erent point of view. Force-field models are one of them. The method

is initially developed for robots to reach their goals without colliding to surrounded

obstacles. All objects in this method have two di↵erent characteristics like magnets;

attractive and repulsive forces. Objects have an attractive force toward their goals, so
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they want to keep moving toward the goals. At the same time, they have a repulsive

force against other objects so that they can always be located certain distances apart

from others. Since the method was initially developed for the robots on the ground,

researchers modified to fit into the air tra�c. Original methods only consider one

robot at a time, and a robot deals with its obstacles one by one. Also, the obstacles

do not necessarily move. Aircraft conflicts are more complicated than this case: not

only objects are moving at high speed, but also conflicts are not always one to one

situations. Researchers took three di↵erent directions by prioritizing aircraft to reflect

the characteristics of air tra�c [158–165]. Global prioritization set priorities to all

other aircraft in its environment [158, 159, 162–165]. If there are higher and lower

priority ones to consider at a time, a model ignores lower ones. The order of priority

can be set in many ways, and it is recommended to re-order periodically. Opposite

to the previous method, local prioritization set pairwise priority orders based on a

geometry of nearby aircraft [161]. Thus, as an aircraft moves, objects in the search

range of aircraft change and their priority also changes as their distances to the

aircraft. Local coordination takes a little bit di↵erent approach compared to the two

previous methods. Instead of labeling priority orders on objects regarding a subjective

point of view, each object only deals with others that are threatening [160].

Instead of purely focusing on mathematical functions, some studies took a slightly

di↵erent path: heuristic approaches. Knowledge-based studies utilize mathematical

functions to understand a problem and pick a proper knowledge and how to apply

it [166]. Before this process, the method should obtain solutions and how to catego-

rize them a↵ect its performance critically. Another heuristic method is agent-based

modeling. This method focuses on the interaction among di↵erent agents (aircraft

and ATCos). Each agent has their preferences, and they must work together to find

a solution that everyone satisfies [167,168]. If there is a conflict, the model generates

a solution and provide it to aircraft involved in the case. They decide whether they

agree with it or not depending on their preferences and constraints. If there is a
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rejection, the model modifies the solution to meet the requirements of the agent who

rejected the previous one. This process iterates until everyone agrees.

Along with the algorithms to compute aircraft conflict resolutions, accuracy and

performance of mathematical models are critically dependent on factors considered

in the computations. Researchers translate the factors of the air tra�c into variables

in their models and utilize them to form constraints. These factors include any

information about aircraft, surroundings, and the structure of the air tra�c system.

Dynamics and physics of aircraft are one of the most crucial factors in the models.

Dynamics include specifications of aircraft such as type, size, weight, minimum and

maximum airspeed, power, etc. Physics include the motion of aircraft such as e↵ects

of a heading angle, descending, and ascending. These factors govern whether an

aircraft in a model can behave realistically. If a model does not reflect physics of

aircraft, conflict resolutions may include radical movements that an aircraft cannot

follow. Also, ignoring some factors will generate resolutions that an aircraft can

follow, but the operator will not execute due to other reasons such as the safety of

passengers. Unlike the physics, some studies ignore the dynamics and assume that

all aircraft have identical specifications to only focus on maneuvering matters.

Many studies adopt rules of the current air tra�c management system. For ex-

ample, studies reflect aspects of operators so that the models deal with conflicts in

a sequential order that is determined by the severity of the cases often calculated

by a distance between two aircraft and time left before the loss of separation. Also,

choosing a resolution that satisfies objective functions and constraints among varies

solutions also can be considered as mimicking decision making a process of air tra�c

controllers despite the mechanism of generating the solutions. If the studies focus on

avoiding a LOS among aircraft, they implemented the concept of the safety zone that

the current system utilizes to determine aircraft conflicts. Also, studies are extending

this concept to have their safety regions.

Primarily, mathematical conflict resolution models include variables to represent

at least two objects, aircraft in most cases, in a conflict. Complicated models have
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multiple aircraft that not only have multiple conflict pairs but also conflicts caused

by multiple aircraft. With aircraft, there are studies include other types of objects

in their models. To make the models more realistic, some studies adapted weather

changes in their simulation environment. Abnormal weathers such as a storm are

considered as a large-size obstacle to avoid if they appear on the nominal trajectory

or new one to avoid the conflicts. Another type is immobile objects such as featured

terrain. If an aircraft should fly at a low altitude, tall buildings and telegraph towers

become obstacles.

Mathematical aircraft conflict resolution models put constraints on aircraft move-

ments other than considering the physics of aircraft. Studies divide aircraft move-

ments horizontally or vertically. In horizontal trajectory models, studies assume that

aircraft fly at the same altitude and vice versa. Thus, there is either horizontal or

vertical maneuvers exist depending on this constraint. There are studies consider-

ing both horizontal and vertical maneuvers. Early studies tend to consider only one

type of maneuvers (more horizontal maneuvers) and recent studies deal with both

maneuvers at the same time.

Researchers build simulations to test the performances of their mathematical con-

flict resolution models. The simulations require input data to test the performances,

which should reflect air tra�c conflicts. Depend on how a model takes specific factors

and what is required to generate output, each study includes di↵erent characteristics

and factors in their input data. For example, it includes the size and complexity of

air tra�c situations in the input. With the output, researchers analyze them in many

ways. Especially for optimization models, researchers validate the results to check

whether the solutions are optimal regarding their objective functions and constraints.

The most apparent standard to categorize the experiments is a type of the air traf-

fic conflicts considered in the simulations. Commonly, we divide them into a conflict

caused by a pair of aircraft or multiple of them (global conflict). Typically, mathe-

matical models are only able to resolve a conflict of one pair of aircraft at a time. To

resolve global conflict, those models resolve conflicts of any two aircraft in the situ-
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ation until every aircraft is safe. Also, conflicts do not only consider aircraft. There

are experiments testing conflicts between aircraft and other obstacles and multiple

aircraft with other types of obstacles such as weather conditions.

The number of aircraft in the input is another category. To generate resolutions for

aircraft conflicts, experiments need at least two aircraft. However, there are studies

with single aircraft that focus on avoiding other types of objects. Also, a large number

of aircraft in input does not necessarily mean it includes that much of conflicts.

Besides factors related to the conflicts, behaviors of aircraft in the input is another

critical characteristic. All aircraft in the input are moving objects, and the input de-

terministically or stochastically controls their movements. Deterministic input has

perfect information of aircraft and aircraft move as written. Thus, models already

know how aircraft will behave. Stochastic movements are more dynamic. Aircraft

move freely within given boundaries. It makes models to have di�culties in predict-

ing the future. Generally, models designed for free flight and close-quarter conflicts

implement stochastic input for their simulation.

The last category to discuss is the origins of the input. There are two di↵erent

sources on the aircraft movements. Majority of studies generated their flight trajec-

tory data. It can be as simple as two identical aircraft moving straight forward in

same airspeed and altitude and toward each other. Some studies put more details and

variations to the trajectories to give complexity to the input. Only a small portion

of studies implemented actual flight data. Intuitively, generating input scenarios are

convenient in many ways then applying real-world ones. However, in earlier studies,

it was very challenging to obtain the real data due to their accessibility to the public.

Results of experiments vary by the type of mathematical approaches. Optimiza-

tion models provide the conflict resolutions, and they are optimal regarding their

definitions and setups. However, other types of mathematical approaches not always

generate ideal solutions. Since probabilities highly govern stochastic models, it is

impossible to have 100% safe resolution, and it gets more challenging as the conflict

situation becomes more complicated. In force field approaches, sometimes aircraft
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are in steady states. Due to directions of recursive forces from other objects, some

aircraft cannot find a way out, and they stop moving.

Not only each study but also the mathematical approach itself have shortcom-

ings. This section focuses on addressing limitations of the studies regarding their

applicability to the air transportation system because the goal of studies is develop-

ing aircraft conflict resolution tool for the system. Also, this section only focuses on

limitations of the mathematical models without comparisons between other types of

methods.

One of the essential characteristics of the aircraft conflict resolution models is they

are intended to resolve real-world problems. In general, if a solution to a problem

is provided without fully understanding a problem is highly doubtable, and a simi-

lar situation is occurring from the mathematical models. The models solve aircraft

conflict resolutions in their ways. As constraints, they reflect some realities in the

models, but it is limited, and the level of reflection varies. For example, one model

ignores dynamics or aircraft while another model ignores their physics. Some results

show very radical and complicated movements that wither pilot nor ATCo will ac-

cept. Moreover, some models utilize strong assumptions such as the same airspeed

or altitude. At this point, we do not know what is the right amount of information

that must be included in the mathematical models. However, it does not mean we

can punch in some numbers to a calculator and see if it can give us an output. Un-

fortunately, most studies only focus on whether some mathematical algorithms can

solve this type of problem.

Another deficiency of the mathematical models, specifically optimization models,

is in the characteristics of their solutions. Mathematical solutions lack flexibility.

Researchers programmed these models to follow and satisfy objective functions and

constraints strictly. Often the objective functions are minimizing deviations from the

nominal trajectory. To avoid conflict and minimize the deviation, the models must

choose a route that each aircraft pass each other very carefully. In some studies, the

distance is the safety zone and even shorter than that. The studies generate these
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solutions in scenarios where there are not many aircraft present at a time. The solu-

tions are mathematically correct, but we need to consider whether it is operationally

the best answer carefully. If we have plenty of airspace for aircraft in a conflict, tak-

ing the risk of putting two aircraft close to each other maybe not the best answer.

Also, the optimization models require perfect information to generate solutions. If

one aircraft or one factor considered in a model does not behave as it should, the

solution becomes useless. In the real world, things do not happen as they should.

One of the reasons why the studies limited their experiments with the small num-

ber of aircraft and making strong assumptions is due to computational di�culties.

Computational di�culty increases exceedingly as the mathematical models become

more complicated. The complexity increases only when the models reflect more as-

pects of the problem. Moreover, many studies do not state how long it takes to

generate solutions. The computation time is essential in this case because if we want

to utilize mathematical aircraft conflict resolution models to the real-world, response

time becomes the most critical factor.

The last point to discuss is problems that appear if we adopt the mathematical

resolution models to the air tra�c management system. As stated previously, the

primary purpose of the studies is developing a decision supporting tool for ATCos.

The studies only consider mathematical perspectives, which means their algorithms

do not consider how ATCos resolved conflicts so far. An immediate problem will arise

if we apply the models to the current system. The models will generate solutions,

but we do not know whether ATCos will understand the solutions and accept them.

Moreover, to make ATCos understand the solutions, they must fully understand how

the algorithms work and why they make such decisions. It will create a severe conflict

between the tools and operators, and it will a↵ect the system negatively. For example,

if ATCo does not understand or agree with decisions from the models, ATCo must

take additional steps such as trying to understand the solution from the models or

reconsider his/her decision. It will take a longer time than the current system where

ATCos make decisions and execute them.
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