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In this part, we provide proofs of main theoretical results of the sparse group lasso convex
clustering (SGLCC). Before that, we shall introduce some notations and establish some useful
properties to facilitate the proofs of Theorems. We first define H̃` = Ip ⊗ (e`1 − e`2)

T ∈ Rp×np is a
submatrix of H̃ = (H̃T

1 , H̃T
2 , · · · , H̃T

|Θ|)
T and provide some results of H, H̃ in Proposition 0.1.

Proposition 0.1 According to the definitions of H and H̃, we have following results.
(1) rank(H) = n− 1 and rank(H̃) = (n− 1)p.
(2) Λmin(H) = Λmax(H) =

√
n and Λmin(H̃) = Λmax(H̃) =

√
n, where Λmin(·) and Λmax(·) are the

minimum nonzero singular value and the maximum singular value of matric, respectively.
(3) The SGLCC model is equivalent to

min
x∈Rnp

{
1
2
‖x− a‖2

2 + γ1 ∑
`∈Θ

ω`‖H̃`x‖q + γ2[(1− α)
p

∑
j=1

uj‖Ejx‖2 + α‖x‖1]

}
, (1)

where Ej = eT
j ⊗ In ∈ Rn×np and a = vec(A), and its optimal solution is denoted as x̂ = (x̂T

1 , x̂T
2 , · · · , x̂T

p )
T .

The following lemma provides a boundary for probability of the quadratic forms of indepen-
dent sub-Gaussian random variables.

Lemma 0.1 ( [1]) Let ε be independent sub-Gaussian random variables with mean 0 and variance δ2. Let
M be a symmetric matrix. Then there exists some positive constants b1, b2 such that,

P(εT Mε > t + δ2tr(M)) ≤ exp
{
−min

(
b1t2

δ4‖M‖F
,

b2t
δ2‖M‖2

)}
, for any t > 0.
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For the sake of simplicity of our analysis, we apply the reformulate technique as in [2].
Note that rank(H̃) = (n − 1)p. Let H̃ = UΣVT

f be the singular value decomposition of H̃,

where U ∈ R|Θ|p×(n−1)p such that UTU = I(n−1)p, Σ ∈ R(n−1)p×(n−1)p is a diagonal matrix,
and Vf ∈ Rnp×(n−1)p such that VT

f Vf = I(n−1)p. Construct a matrix Vg ∈ Rnp×p such that
V = [Vf , Vg] ∈ Rnp×np is orthogonal matrix, that is VTV = Inp, and note that VT

f Vg = 0. Moreover,

let f = VT
f x ∈ R(n−1)p and g = VT

g x ∈ Rp, and thus x = Vf f + Vgg. Similarly, we denote

f ∗ = VT
f x∗ ∈ R(n−1)p and g∗ = VT

g x∗ ∈ Rp, and thus x∗ = Vf f ∗ + Vgg∗.
Hence, based on these notations above and ω` = 1, the model (1) is equivalent to

min
f ,g

1
2
‖a−Vf f −Vgg‖2

2 + γ1 ∑
`∈Θ
‖G` f ‖q + γ2(1− α)

p

∑
j=1

uj‖Ej(Vf f + Vgg)‖2

+ γ2α‖Vf f + Vgg‖1,

(2)

where G` is a submatrix of G = (G1; G2; · · · ; G|Θ|) such that G = UΣ. Note that rank(G) =

(n− 1)p, then there exists pseudo-inverse G+ ∈ R(n−1)p×|Θ|p such that G+G = I(n−1)p. Let ( f̂ , ĝ)
be the solution to (2). Then f̂ = VT

f x̂, ĝ = VT
g x̂ and thus x̂ = Vf f̂ + Vg ĝ.

Proof of Theorem 3.1: By the definition of ( f̂ , ĝ), we obtain that

1
2
‖a−Vf f̂ −Vg ĝ‖2

2 + γ1‖G f̂ ‖1 + γ2(1− α)
p

∑
j=1

uj‖Ej(Vf f̂ + Vg ĝ)‖2 + γ2α‖Vf f̂ + Vg ĝ‖1

≤ 1
2
‖a−Vf f ∗ −Vgg∗‖2

2 + γ1‖G f ∗‖1 + γ2(1− α)
p

∑
j=1

uj‖Ej(Vf f ∗ + Vgg∗)‖2+

γ2α‖Vf f ∗ + Vgg∗‖1.

Using elementary relations 1
2 (‖η1‖2 − ‖η2‖2) = 〈η1 − η2, η2〉+ 1

2 ||η1 − η2||2, we further obtain

1
2
‖Vf ( f̂ − f ∗) + Vg(ĝ− g∗)‖2

2 ≤ εT [Vf ( f̂ − f ∗) + Vg(ĝ− g∗)] + γ1(‖G f ∗‖1 − ‖G f̂ ‖1)

+ γ2(1− α)
p

∑
j=1

uj[‖Ej(Vf f ∗ + Vgg∗)‖2 − ‖Ej(Vf f̂ + Vg ĝ)‖2]

+ γ2α[‖Vf f ∗ + Vgg∗‖1 − ‖Vf f̂ + Vg ĝ‖1].

(3)

Next, we shall build up the relationship between ĝ and g0. By the optimality condition of (2),
we have −VT

g (a−Vf f̂ −Vg ĝ) + β = 0. This, together with ε = a− x∗ = a−Vf f ∗ −Vgg∗, implies

ĝ− g∗ = VT
g ε− β,

where β = β1 + β2, β1 and β2 is subgradient of the third term and fourth term in (2), respectively.
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We shall estimate the first term in the right-hand side of (3). Then

|εT [Vf ( f̂ − f ∗) + Vg(ĝ− g∗)]| = |εT [Vf ( f̂ − f ∗) + Vg(VT
g ε− β)]|

≤ |εTVgVT
g ε|+ |εTVgβ|+ |εTVf ( f̂ − f ∗)|

≤ |εTVgVT
g ε|+ |εTVgβ|+ ‖εTVf G+‖∞‖G( f̂ − f ∗)‖1,

where the first inequality follows from Cauchy-Schwarz inequality, and the last inequality follows
from G+G = I and the Holder’s inequality. We now establish bounds for three terms in the
right-hand side of the inequality that hold with high probability.

Bounds for |εTVgVT
g ε| and ‖εTVf G+‖∞. Using Lemma 0.1 and condition A1, we obtain that

P
(
|εTVgVT

g ε| ≥ δ2
[

p +
√

plog(np)
])
≤ exp

{
−min

(
b1log(np), b2

√
plog(np)

)}
(4)

and

P

(
‖εTVf G+‖∞ ≥ 2δ

√
log(p|Θ|)

n

)
≤ 2

p|Θ| , (5)

see Lemma 6 in [3] for detailed derivation.

Bound for |εTVgβ|. Note that β1 = γ2(1− α)∑
p
j=1 uj

VT
g ET

j Ej(Vf f̂+Vg ĝ)

‖Ej(Vf f̂+Vg ĝ)‖2
when x̂ 6= 0, and thus

‖β1‖2 =

∥∥∥∥∥γ2(1− α)
p

∑
j=1

uj
VT

g ET
j Ej(Vf f̂ + Vg ĝ)

‖Ej(Vf f̂ + Vg ĝ)‖2

∥∥∥∥∥
2

≤ γ2(1− α)
p

∑
j=1

uj‖VT
g ‖2‖ET

j ‖2 = γ2(1− α)‖u‖1.

Moreover, setting h(g) := γ2α‖Vf f̂ + Vgg‖1, we know that

|h(g1)− h(g2)| = γ2α
∣∣∣‖Vf f̂ + Vgg1‖1 − ‖Vf f̂ + Vgg2‖1

∣∣∣
≤ γ2α‖Vg(g1 − g2)‖1 ≤ γ2α‖Vg‖2‖g1 − g2‖2 = γ2α‖g1 − g2‖2,

which implies function h(g) is Lipschitz continuous with constant γ2α. Hence, ||β2||2 ≤ γ2α by
Proposition 2.47 in [4]. Next, we have

‖Vgβ‖2 ≤ ‖Vg‖2‖β‖2 = ‖β‖2 ≤ γ2(1− α)‖u‖1 + γ2α.

We know that εTVgβ is a sub-Gaussian random variable with mean zero and variance ‖Vgβ‖2
2δ2

by Condition A1. Using Chebyshev’s inequality, we have

P
(
|εTVgβ| > t

)
≤
‖Vgβ‖2

2δ2

t2 ≤ (γ2(1− α)‖u‖1 + γ2α)2δ2

t2 .
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Picking t =
√

np, we obtain from the above inequality that

P
(
|εTVgβ| > √np

)
≤ (γ2(1− α)‖u‖1 + γ2α)2δ2

np
. (6)

Together with (4) and (5), we further obtain that

εTVgVT
g ε + |εTVgβ|+ ‖εTVf G+‖∞‖G( f̂ − f ∗)‖1 ≥

δ2
[

p +
√

plog(np)
]
+
√

np + 2δ

√
log(p|Θ|)

n
‖G( f̂ − f ∗)‖1

holds with probability at most c4, where

c4 = exp
{
−min

(
b1log(np), b2

√
plog(np)

)}
+

2
p|Θ| +

(γ2(1− α)‖u‖1 + γ2α)2δ2

np
.

Hence,

|εT [Vf ( f̂ − f ∗) + Vg(ĝ− g∗)]| ≤ δ2
[

p +
√

plog(np)
]
+
√

np + 2δ

√
log(p|Θ|)

n
‖G( f̂ − f ∗)‖1 (7)

holds with probability at least 1− c4.
Furthermore, it is clear that

γ2(1− α)
p

∑
j=1

uj[‖Ej(Vf f ∗ + Vgg∗)‖2 − ‖Ej(Vf f̂ + Vg ĝ)‖2]

= γ2(1− α)
p

∑
j=1

uj(‖x∗j ‖2 − ‖x̂j‖2) ≤
γ2(1− α)

2
(‖u‖2

2 + ‖x∗ − x̂‖2
2),

(8)

where the last inequality follows from triangle inequality and η1η2 ≤ 1
2 (η

2
1 + η2

2). Similarly, the
last term in (3) can be estimated as below:

γ2α[‖Vf f ∗ + Vgg∗‖1 − ‖Vf f̂ + Vg ĝ‖1] = γ2α(‖x∗‖1 − ‖x̂‖1) ≤ γ2α‖x∗‖1. (9)

Substituting the inequality (7-9) into (3) and letting γ1 > 2δ

√
log(p|Θ|)

n , we know

1
2
‖Vf ( f̂ − f ∗) + Vg(ĝ− g∗)‖2

2 ≤ γ1‖G( f̂ − f ∗)‖1 + γ1(‖G f ∗‖1 − ‖G f̂ ‖1)

+
γ2(1− α)

2
(‖u‖2

2 + ‖x∗ − x̂‖2
2) + γ2α‖x∗‖1

+ δ2
[

p +
√

plog(np)
]
+
√

np.
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holds with probability at least 1− c4. Dividing both sides by np/2, we further obtain that

1 + γ2(α− 1)
np

‖x̂− x∗‖2
2 ≤

4γ1

np
‖G f ∗‖1 +

γ2(1− α)

np
‖u‖2

2 +
2γ2α

np
‖x∗‖1

+ 2δ2

[
1
n
+

√
log(np)

n2 p

]
+

2
√

np

≤ 4γ1

np
‖H̃x∗‖1 +

γ2(1− α)

np
‖u‖2

2 +
2γ2α

np
‖x∗‖1

+ 2δ2

[
1
n
+

√
log(np)

n2 p

]
+

2
√

np

holds with probability at least 1− c4.
Proof of Theorem 3.2: Let us prove Theorem 3.2 along the lines of Theorem 3.1. Since ( f̂ , ĝ) is

the global minimizer of (2), we have

1
2
‖a−Vf f̂ −Vg ĝ‖2

2 + γ1 ∑
`∈Θ
‖G` f̂ ‖2 + γ2(1− α)

p

∑
j=1

uj‖Ej(Vf f̂ + Vg ĝ)‖2 + γ2α‖Vf f̂ + Vg ĝ‖1

≤ 1
2
‖a−Vf f ∗ −Vgg∗‖2

2 + γ1 ∑
`∈Θ
‖G` f ∗‖2 + γ2(1− α)

p

∑
j=1

uj‖Ej(Vf f ∗ + Vgg∗)‖2

+ γ2α‖Vf f ∗ + Vgg∗‖1

After some simple manipulations we further obtain that

1
2
‖Vf ( f̂ − f ∗) + Vg(ĝ− g∗)‖2

2 ≤ εT [Vf ( f̂ − f ∗) + Vg(ĝ− g∗)] + γ1 ∑
`∈Θ

(
‖G` f ∗‖2 − ‖G` f̂ ‖2

)
+ γ2(1− α)

p

∑
j=1

uj[‖Ej(Vf f ∗ + Vgg∗)‖2 − ‖Ej(Vf f̂ + Vg ĝ)‖2]

+ γ2α[‖Vf f ∗ + Vgg∗‖1 − ‖Vf f̂ + Vg ĝ‖1].

(10)

Similarly, we obtain that ĝ− g∗ = VT
g ε− β by following the same arguments in Theorem 3.1.

Thus,

|εT [Vf ( f̂ − f ∗) + Vg(ĝ− g∗)]| = |εTVgVT
g ε− εTVgβ + εTVf ( f̂ − f ∗)|

≤ |εTVgVT
g ε|+ max

`∈Θ
‖εTVf G+

` ‖2 ∑
`∈Θ
‖G`( f̂ − f ∗)‖2 + |εTVgβ|,

where the last inequality follows from triangle inequality and Cauchy-Schwarz inequality. Next,
we shall establish boundedness for the three terms on the right-hand side of the inequality.

Bounds for |εTVgVT
g ε| and |εTVgβ|. The boundedness of |εTVgVT

g ε| and |εTVgβ| are estab-
lished in (4) and (6), respectively.

Bound for max`∈Θ ‖εTVf G+
` ‖2. We first notice that εTVf G+

` ∈ Rp. Hence, we obtain that
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‖εTVf G+
` ‖2 ≤

√
p‖εTVf G+

` ‖∞, which implies

max
`∈Θ
‖εTVf G+

` ‖2 ≤
√

p max
`∈Θ
‖εTVf G+

` ‖∞ ≤
√

p‖εTVf G+‖∞.

Thus,

P

(
max
`∈Θ
‖εTVf G+

` ‖2 ≥ 2δ

√
plog(p|Θ|)

n

)
≤ P

(
√

p‖εTVf G+‖∞ ≥ 2δ

√
plog(p|Θ|)

n

)
≤ 2

p|Θ| ,

where the last inequality follows from (5). Together with (4) and (6), we obtain that

∣∣∣εT [Vf ( f̂ − f ∗) + Vg(ĝ− g∗)]
∣∣∣ ≤ 2δ

√
plog(p|Θ|)

n ∑
`∈Θ
‖G`( f̂ − f ∗)‖2

+ δ2
[

p +
√

plog(np)
]
+
√

np

(11)

holds with probability at least 1− c4.

Substituting the inequality (8-9) and (11) into (10), and letting γ1 > 2δ

√
plog(p|Θ|)

n , we obtain
that the following relation holds with propability at least 1− c4,

1
2
‖Vf ( f̂ − f ∗) + Vg(ĝ− g∗)‖2

2 ≤ γ1 ∑
`∈Θ
‖G`( f̂ − f ∗)‖2 + γ1 ∑

`∈Θ

(
‖G` f ∗‖2 − ‖G` f̂ ‖2

)
+

γ2(1− α)

2
(‖u‖2

2 + ‖x∗ − x̂‖2
2) + γ2α‖x∗‖1

+ δ2
[

p +
√

plog(np)
]
+
√

np,

Further, we know

1 + γ2(α− 1)
np

‖x̂− x∗‖2
2 ≤

4γ1

np ∑
`∈Θ
‖G` f ∗‖2 +

γ2(1− α)

np
‖u‖2

2 +
2γ2α

np
‖x∗‖1

+
2δ2

np

[
p +

√
plog(np)

]
+

2
√

np

≤ 4γ1

np ∑
`∈Θ
‖H̃`x∗‖2 +

γ2(1− α)

np
‖u‖2

2 +
2γ2α

np
‖x∗‖1

+ 2δ2

[
1
n
+

√
log(np)

n2 p

]
+

2
√

np

holds with probability at least 1− c4.
In the proofs of Theorems 3.3-3.4, we only need to verify that P(||x̂j||2 = 0)→ 1 holds for an

element j ∈ I c. Without loss of generality, let p ∈ I c, we will prove that P(||x̂p||2 = 0)→ 1, the
similar arguments apply to another elements in set I c.

Proof of Theorem 3.3: Suppose by contradiction that ||x̂p||2 6= 0. The optimality condition of
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optimization problem (1) with q = 1 at x̂p be given by

x̂p − ap + γ1 ∑
`∈Θ

sign((e`1 − e`2)
T x̂p)(e`1 − e`2) + γ2(1− α)up

x̂p

||x̂p||2
+ γ2αsign(x̂p) = 0

which implies that

1√
n
(x̂p − x∗p)−

1√
n

εp +
γ1√

n ∑
`∈Θ

sign((e`1 − e`2)
T x̂p)(e`1 − e`2)

+
1√
n

γ2(1− α)up
x̂p

||x̂p||2
+

1√
n

γ2αsign(x̂p) = 0.

Based on Theorem 3.1 and its discussions, we know that 1
n ||x̂p − x∗p||22 = oP(1), that is, the first

term is of the order oP(1). The term 1√
n εp is of the order oP(1) because the εp is sub-Gaussian

random variable. The fourth term and last term are of the order oP(1) by

γ2(1− α)up
||x̂p||2√
n||x̂p||2

=
γ2(1− α)up√

n
→ 0 and

γ2α||sign(x̂p)||2√
n

→ 0,

respectively.
Without loss of generality, we assume the first component of x̂p is nonzero. Hence, the

first component of ∑`∈Θ sign((e`1 − e`2)
T x̂p)(e`1 − e`2) is of the order OP(n). We know from

γ1 ≥ 2δ

√
log(p|Θ|)

n that the third term diverges to infinity, which contradicts with the optimality
condition. Therefore, x̂p = 0 holds with probability tending to one.

Proof of Theorem 3.4: Let us prove Theorem 3.4 along the lines of Theorem 3.3. Suppose that
||x̂p||2 6= 0. The optimality condition of optimization problem (1) with q = 2 at x̂p be given by

x̂p − ap + γ1 ∑
`∈Θ

e`1 − e`2

|| J̃` x̂||2
+ γ2(1− α)up

x̂p

||x̂p||2
+ γ2αsign(x̂p) = 0

which implies that

1√
n
(x̂p − x∗p)−

1√
n

εp +
γ1√

n ∑
`∈Θ

e`1 − e`2

|| J̃` x̂||2
+

1√
n

γ2(1− α)up
x̂p

||x̂p||2
+

1√
n

γ2αsign(x̂p) = 0.

We only need to discuss the third term because it is different with the case when q = 1. Note that
all entries of x̂ cannot the same, and thus

0 < ||H̃` x̂||2 ≤ ||H̃`||F||x̂||2 =
√

2p||x̂||2.

We also know 1/||x̂||2 = OP(
√

np), and then,(
∑
`∈Θ

e`1 − e`2

|| J̃` x̂||2

)
1

=
n

|| J̃` x̂||2
= OP(n

3
2 ).
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Further, We know from γ1 ≥ 2δ

√
plog(p|Θ|)

n that the third term diverges to infinity, which contra-
dicts with the optimality condition. Hence, x̂p = 0 holds with probability tending to one.
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