Supplementary Files (SF)

SF Part I Calculating the centroid of bone
Export point-cloud data of bone from 3D reconstruction software (Mimics, Materialise, Leuven, Belgium).

(Xi Vi Zi) refer to the coordinate of point, n the number of point cloud, and (XC, Yoo Zc) the centroid of the bone and
joint (the first metatarsal). The calculating equation of centroid is:

1 <n
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An object has center of mass (COM) and centroid, and a homogeneous object’s COM and centroid overlap.
_ ZisoXiP _
=SEt =
, resulting in the overlapping of a homogeneous object’s COM and

(Xm, Y Zm) refer to an object’s COM, p the density. The calculating equation for COM is x,

Z?:oxi Vo = 2?:03’#) — Z?:oyi 7 = Z?:ozip — Z_{l:ozi
n /M np n M np

centroid. The COM and centroid of a heterogeneous object differ, but in scanning accuracy, COM and centroid of bone in

vivo overlap greatly (Fan et al., 2011). In addition, what remains from the bone fossil is the bone’s shape. When and ONLY

when an object rotates around its COM, an object will not translate. We, therefore, take the bone’s centroid as the rotating

point of the bone.

Fan, Y., Fan, Y., Li, Z, Loan, M., Lv, C., and Zhang, B. (2011). Optimal principle of bone structure. PloS One 6(12).

SF Part II Positioning method of the bone and joint
Rotate the bone (first metatarsal, proximal distal phalanx) around X — y — z axes orderly, with its origin at the

centroid of the bone.
Rotate the joint (first metatarsal phalange, MTPJ) around X — y — z axes orderly, with its origin at the centroid of

the first metatarsal.

1) Rotate around axis x
We use OXYyZ to show the spatial rectangular coordinate whose origin is located at centroid of the bone and joint (the

first metatarsal). The bone and joint surface consist of finite points. And E,, Ey, E, stand for moments of Euler (MoE)

(Li et al., 2019) relative to axes X, Y,Z respectively.
The MoE of the bone and joint are:

E, :J.(y2+zz)dp
E, = .[(xz + zz)dp Q).

E, :J'(x2 + yz)dp

The products of Euler of the bone and joint are:

E,, = [xydp
E,, = [ yzdp 3.
E, = _[xzdp

where dp stands for the point cloud of bone and joint surface and (X, Y, Z) for the coordinates of point cloud.
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Let the body coordinate system of bone and joint rotate around the axis x by « . A new coordinate system OX,Y,Z,
will be generated. The relation between point cloud coordinates (Xa, Y, Za) and those of (X, Y, Z) is:
X, =X (a)
y,=ycosa—-zsina  (b) 4).
z,=ysina+zcosa  (C)
Substitute Eq (4b) and (4¢) into E; = I(yi + Zi)dp , MoE relative to axis X, and we will get:

= I((yCOSa— zsina ) +(ysina + zcow)z)dp

x =

J- y®cos’ a —2yzcosasina + z°sin* a + y’sin a y
. p
+2yzsinacosa +2°¢cos’ a

J'(yz(cosza+sin2 a)+ ZZ(Sinza-i-COSZ a))dp (5).

[(y?+2*)dp
E

Eq (5) shows that when rotating around axis x, its MoE relative to axis x is invariable.
Substitute Eq (4a), (4b) and (4c) into the sum of MoE relative to axis y and 2z i.e.

E)+E/ = I(Xi + Zi)dp+_|.(xi + yi)dp , and we will get:
E;’+EZ"=jx2dp+j(z§+y§)dp+1x2dp (6).
By Eq (5), Eq (6) can be expressed as:
Ef+E; :.|.x2dp+j(z2 + yz)dp+fx2dp
:.[(x2+22)dp+J'(x2+y2)dp (7).
=E,+E,

Eq (7) shows that when rotating axis x, the sum of MoE relative to axis y and z is invariable. Together with Eq (5),
when rotating axis x, the MoE of bone and joint are also invariable.

Substitute Eq (4a) and (4c) into E;Z = J(Xi + Z;)ﬁp , and we will get:

Ey = _[(x2 +(ysina + ZCOSa)Z)dp

2 2 ain2 ; 2 Ane2 ®).
:J'(x +y®sin® o+ 2yzsina cosa + 27 €os a)dp

Substitute Eq (4a) and (4b) into | = j(Xi + yj )dp , and we will get:

Ef = _[(x2 +(ycosa - zsina)z)dp

:_[(x2 +y?cos’ a —2yzsina cosa + 225|n2a)dp
Set up the following equation:
f(a 7). =E; -E; (10).
By Eq (8) and (9), Eq (10) can be expressed as:
fle,B7), = I(yz(sin2 o —cos? o)+ 4yzsinacosa + 22(cos’ o — sin o ))dp (11).

Since 2sinacosa =sin2a, cos® a—sin®a =cos2a , Eq (11) can be expressed as:
f(a,B.y), = I(— y2 €0S2¢ + 2yzsin2a + 2 cosZa)dp (12).
Let



af (a’lg’j/)a =O
oa
Change Eq (12) to

o (. B.y), 80(— y? cos2a +2yzsin 2a + 2° cosZa)dp)
oa oa (13).
:'[(Zy2 sin 2a + 4yz cos 2a — 227 sin 2a)dp =0
Hence,

sinZaI yzdp+2c032aj yzdp—sinZaIzzdp:O (14).

Since
sinZaJXde—sinZaszdp:O (15).
Substitute Eq (15) into Eq (14), and we will get:

; 2 ; 2 ; 2 . 240n
sm2a.[ y dp+sm2aj'x dp+ 200520:_[ yzdp—sm2aJ'z dp—sm2a_[x dp=0 (16).
By Eq (2), Eq (16) can be expressed as:
sin2ak, +2cos2ak,, —sin2aE, =0 (17).

Divide both sides of Eq 17 by c0s2« , and we will get:
tan20k, +2E , —tan20k, =0 (18).
Next, we will get:
2E,,
tan 2o = Y (19).
y 2
Then, get the inverse function of Eq (19):

1 2E.,
o = —arctan Y (20).
2 E,—E

y z

2) Rotate around axis y
After rotating around axis x by «, 0X,Y,Z, are used to stand for the spatial rectangular coordinate system of bone
and joint with the origin locating at the centroid of the bone and joint (the first metatarsal). E.., E;Zy, E,. stand for the MoE

of axes X,,Y,,Z, respectively.
The MoE of the bone and joint are:

Ez = [(y2+22 )p
= =j(x§ +22[dp Q@)
Es = (< +y2)p

The products of Euler of the bone and joint are:
Ey = _[ X, Y,dp

E), = .[ y,z,dp (22),

Es, = j X,z,dp

where dp stands for the point cloud of bone and joint surface and (Xa, Y, Za) for the coordinate of point cloud.

Let the body coordinate system of the bone and joint rotate around the axis y by S . A new coordinate system
OX,5Y 52,5 Will be generated. The relation between point cloud coordinates (Xaﬂ, Yopr Zs, ﬂ) and those of (Xa, Y, Za) is:
3



X5 =X, C08B+12,8Inf (a)
yaﬁ' = ya (b) (23)

Z,,=-X,SinB+z,c088 (C)

Substitute Eq (23a) and (23c) into the Eq Eaﬂ _[ X + Zaﬁ)dp , the MoE relative to axis x, and we will get:
E/ :I(xacosﬂ+zasm,8) +(=x,sing+z,cosp) )dp
j[xi cos® B +2x,,z, cos Bsin B+ 22 sin® B+ X2 sin’ ,Bjd

P

—2x_2,8in fcos S+ 22 cos” B

= cos B +sin’ ﬂ)+z (sm S+ cos? ﬁ))d (24).

=Ix +z )dp
=E{,

Eq (24) shows that when rotating around axis y, its MoE relative to axis y is invariable.
Substitute Eq (23a), (23b) and (23c) into the sum of MoE relative to axis x and 2z i.e.

Ef’xﬁ + Egﬁ = J-(yiﬂ + Ziﬂ)dp +J.(X2ﬂ + yiﬂ)dp , and we will get:
E/+EY =ijdp+f(x§ﬂ+zjﬁ)dp+.[y§dp (25).
By Eq (24), Eq (25) can be expressed as:
EY+EY = j yidp+J.(xj + zi)dp+jy§dp

= [(y2+22)dp-+ [(x2 +22 Jp 26).
—E“ +E-

Eq (26) shows that by rotating axis y, the MoE relative to axis x and z are invariable. Together with Eq (24), by rotating
around axis y, the Euler of the bone and joint is also invariable.

Substitute Eq (23b) and (23c¢) into E“ﬂ = I(yi st Zi ﬂ)dp , and we will get:
El = J(yaﬂ +(=x,sin B +z,cos ) )dp

=_[ y2 +x2sin® B —2x,z,sin #¢os B + 22 cos® ﬁ)dp
Substitute Eq (23a) and (23b) into E“ﬂ = J. (Xi st yj ﬁ)dp , and we will get:

Ezzaﬁzj(xacosﬁ+zasinﬁ +ya)dp
:J‘(xicoszﬂ+2xazasinﬂcosﬁ+zjsin2ﬂ+ yi)dp

Set up the following equation:
flapr), =€ -EX (9
By Eq (27) and (28), Eq (29) can be expressed as:
fla,B.y), = _[(xj (0032 B —sin? ﬂ)+ 4x,z,,sin fcos B —1z2 (cos2 £ —sin® ,B))dp (30).
Since 2sinfcosf =sin243, cos® B —sin® B =c0s2/3, Eq (30) can be expressed as:
fla,B.y), = _[(xj C0S2f3 +2X,2, 5in 23 — 2 c0s 23 )dp (31).
Let
of (0‘:,3, 7)ﬁ
op

Since

7).

(28).

=0.



of (e, B.7), a([(xj C0S23 +2x,2,5in28 — 22 cos Zﬂ)dp)
o8 op (32).
:I(— 2x2sin2 B +4x,2, cos2 3+ 222 sin Zﬂ)dp
Hence
—sin2ﬁjx§dp+2c052ﬂjxazadp+sin2ﬂjz§dp =0  (33).
Since
sinZﬂijdp—sinZﬂjyjdp:O (34).
Substitute Eq (34) into Eq (33), and we will get:
—sin Zﬂ.[ x2dp—sin Zﬂj y2dp+ ZCOSZﬂJ- x,z,dp+sin 2“.[ zjdp+sin2aj y2dp=0 (35).
By Eq (21), Eq (35) can be expressed as:

—sin2fE,, +2cos2fE;, +sin2fE;, =0 (36).
Divide both sides of Eq (36) by cos2/ , and we will get:
—tan2pE, + 2 €, +tan2fE, =0 (37).
Next, we will get:
2E”
tan2f =——*=— 38).
p E° _E” (38)

Then, get the inverse function of Eq (38):

1 2EZ
=——arctan| —2-— 39).
ﬂ 2 (EZX_EZJ ( )

3) To rotate around axis z
After rotating around axis x by « and around axisy by B, 0X,zY,zZ,, areused to stand for the spatial rectangular

coordinate system of the bone and joint with the origin locating at the centroid of the bone and joint (the first metatarsal).

EZ, E;yﬂ ,E? stand for the MoE of axes Xopr Yapr Zop TESpECtively.

The MoE of the bone and joint will be:

B = [(y2,+ 22, dp

e = (¢, + 2,0 o

E = (onzﬁ + yozgﬂ)dp

The products of Euler of the bone and joint will be:
Efyﬁ = J. X5 yaﬂdp

= :Jyaﬂzaﬂdp (40,

EY = Ixaﬁzaﬂdp

wheredp stands for the point cloud of bone and joint surface and (Xaﬁ, Yop: Zaﬂ) for the coordinate of point cloud.

Let the body coordinate system of the bone and joint rotate around the axis z by . A new coordinate system

OX,p,Yup,2ap, Will be formed. The relation between point cloud coordinates (Xaﬁy,yaﬂy,zaﬁy) and those of

(Xaps Var2us) i



X5, = X,5COSy — Y, SNy ()

Yop, = XepSiNy +Y,,c08y  (b) (42).
Zopy =Zop (c)
Substitute Eq (42a) and (42b) into the Eq E&” = I (Xi 5y T y2 ﬂy)dp , the MoE relative to axis z, and we will get:
EX = j((xaﬂ CoSy — yaﬂsiny)2 + (xaﬂsiny+ Yop 0037)2)dp
J.[xiﬂ COS” ¥ —2X,,5Y,,COSySiNy + Y2 8in y + X2 sin® y

+2X,5Y,5SINY COSY + Y2, COS° ¥

dp

:I(xj{/,(cos2 y +sin? ;/)+ yjlﬂ(sin2 ¥ +cos? ;/))dp (43).

Eq (43) shows that when rotating around axis z, its MoE relative to axis z is invariable.
Substitute Eq (42a), (42b) and (42c) into the sum of MoE relative to axis x and y, i.e.

Ex+Ey = J‘(yfw +2%, Jdp+ _[(xfw +2%, Jdp, and we will get:
Bl + Egy = [22,dp+ [ (X2, + v2,, Mo+ [ 22,dp
=[22,dp+ [ (x2, +y2, Mp+ [ 22,dp
:j(yiﬁ + Ziﬁ)dpJfI(Xiﬁ + Ziﬂ)dp
=E+E)

Eq (44) shows that by rotating axis z, the sum of MoE relative to axis x and y is invariable. Together with Eq (43), by
rotating axis z, the Euler of the bone and joint is invariable.

Substitute Eq (42b) and (42¢) into Eq E% = j(yjm +22,

(44).

hp , and we will get:
EX = I((xaﬂsiny+ Yop cos;x)2 + ziﬂ)dp
:.[(leﬂsin2 ¥ +2X,5Y,,5INy COSy + Y., COS” y + ziﬂ)dp

2 2
afy + Zaﬁ7

(45).

Substitute Eq (42a) and (42c¢) into E;’yﬂ 7= J‘(X )dp , and we will get:

3 = 0087 -, 5mF 22, b

:I(Xiﬂ COS” ¥ —2X,,5Y,,SINy COSy + Y2 sin’ y + zjﬂ)dp
Set up the following equation:
fHapy), =B -E) @,
By Eq (45) and (46), Eq (47) can be expressed as:
f(a,B.y), = J'(— xjﬂ(cos2 ¥ —sin? y)+ A%, 5Y .5 SIN 7 COS y + yfzﬁ(cos2 7 —sin? ;/))dp (48)
Since 2sinycosA =sin2y, cos’ /4 —sin® y =C0S2y, Eq (48) can be expressed as:
fla,B.y), = I(— X2 C0S2y +2X,;Y,5SiN 2y + Y2, COS Zy)dp (49).
Let
o (. By),
oy -

Since

(46).

0



of (@, B,7), _ a([ (— X543 COS2y +2X,5Y,,;SIN 2y + Y, COS 2;/)dp)

oy oy (50).
:j(inﬁ SiN2y +4X,,Y,;C082y — 2y§ﬂ cosZy)dp
Hence
sin 2yj xiﬁdp +2 cosny Xo5Y,,dP—sin 27] yiﬁdp =0 (51).
Since

sinZyI zjﬁdp—sinZy.[ziﬁdp:O (52).
Substitute Eq (52) into Eq (51), and we will get:
sin 2;/_[ X2 5dp +sin2yj 2. ,dp+ 200527/! xaﬁyaﬁdp—sinZyJ' y,dp—sin 2;/_[ z.,0p=0 (53).
By Eq (40) and (9), Eq (53) can be expressed as:
Sin2)E;7 +2c0s2)E;/ —sin2)E;” =0 (54).
Divide both sides of Eq (54) by cos2y , and we will get:
tan2)E,” + 2E;7 —tan2)E;7 =0 (55).

Next, we will get:
ap
et
tan2y = Eof g (56).
XX yy

Then, get the inverse function of Eq (56):

1 2E
y =—arctan % (57).
2 Ex —Ey
When all the products of Euler become nil, the bone and joint rotation is complete. And then rotate the bone and joint

using the same method until all its products of Euler become nil. After that, rotate the bone and joint in reverse order of
how athlete bones rotate.

Li, R., Fan, Y., Liu, Y., Antonijevic, ., Li, Z., and Djuric, M. (2019). Homo naledi did not have flat foot. Homo Int. Z.
Vgl Forsch. Am. Menschen. 70, 139—146.



SF Part I1I Positioning procedure of the first metatarsal, proximal phalanx and distal phalanx

Use Eq (1) to calculate the centroid of the first metatarsal, proximal phalanx and distal phalanx, respectively.
Translate the bone’s centroid to (—x,, —y,, —Z,) SO that the corresponding centroid will be (0.00,0.00,0.00), with the
bone’s centroid as the rotating point. Use Eq (20) to calculate the angle of bone rotating around axis x. Calculate the
corresponding result by Eq (36) and obtain the angle of rotating around axis y. Calculate the corresponding result by Eq
(1) and obtain the angle of rotating around axis z. Then calculate the corresponding result by Eqgs (21), (37) and (1) and
obtain the angles of rotating around axes xi, y1 and z; accordingly and when the corresponding result calculated by Eq (21)
and the value of rotating around axis x; is zero, the positioning is done. See Table S1 for the positioning result from P1’s
first-time scanning of the first metatarsal, proximal phalanx and distal phalanx.

Table S1 Positioning angles of the first metatarsal, proximal phalanx and distal phalanx
around axes x, y,z, X, yi, and zy.

Item axisx axisy axisz axisx; axisy; axiszi

First metatarsal ~ 34.53 -9.84 2930 0.11 0.06 0.00
Proximal phalanx 44.63 -36.04 31.35 -254 -1.84 -0.42
Distal phalanx ~ 40.77 3820 996 3468 -135 -0.69

See Figure S1 for the rotation procedure.

A Original

Positioned

11117

Rotate Rotate Rotate

First metatarsal i . .
around axis x around axis B around axis z

l\lcdlal.

D, Zima als ¢
Proximal phalanx Rotate Rotate Rotate
around axis x; around axis y; around axis z;

Distal phalanx

Figure S1 Positioning procedure of the first metatarsal, proximal phalanx and distal phalanx (A) Original (scanning)
posture. (B)-(G) Rotating around x, y, z, x;, y; and z,, respectively. When rotating around x,, with an angle of zero, the
positioning is accomplished.

After the first metatarsal, proximal phalanx and distal phalanx were positioned, the bones’ properties were shown by
the software (Mimics). See Figure S1 (H). The detailed information of the point’s coordinate from bones’ three principal
axes and the length, width and height based on bone’s body coordinate system were shown in Table S2.

Table S2 Bone’s properties (Unit: mm)

First metatarsal Proximal phalanx Distal phalanx
X y z Delta  x y z Delta X y z Delta
P2 (i 970 000 000 2 510 00 0o 8 oox 000 0o 1%
ont 1) 000 D00 g D00 TS 00 gy 000 4R 00 1y
Point2 (ais 000 0003286 2% 000 000 1668 P47 000 o0 -nss 26




SF Part IV Positioning procedure of the body coordinate of the first MTPJ

Use Eq (1) to calculate the centroid of the first MTPJ. Translate the first MTPJ’s centroid to the bone’s centroid till
(—x,, =¥, —2,), with the first metatarsal’s centroid as the rotating point. Use Eq (20) to calculate P1’sfirst metatarsal
from the first-time scan and obtain the angle of rotating around axis x to be 34.53°. Calculate the corresponding result by
Eq (36) and obtain the angle of rotating around axis y to be-9.84°. Calculate the corresponding result by Eq (57) and
obtain the angle of rotating around axis z to be29.30°. Then calculate the corresponding result by Eqgs (20), (36) and (57)
and obtain the angles of rotating around axes xi,y1and zito be 0.11°, 0.06°, and 0.00°accordingly and when the
corresponding result calculated by Eq (20) and the value of rotating around axis x; is zero, the positioning is done. See
Figure S2 for the specific results.

Original

rdinate system

First metatarsal
- Proximal phalanx

Distal phalanx

)

E W ' H

Body codrdinate system
1

Medial Medial
-

Positioned

Figure S2 Positioning procedure of the first MTPJ’s body coordinate. (A) P1°s first MTPJ body coordinate from the first-
time scan. (B)-(F) Rotate around axis x, y, z, x;, and y;. (G) Rotate around axis z, till the value reaches 0.00°. (H) P1’s first
MTPJ body coordinate is accomplished.

Original (scanning) posture and positioned posture of the first MTPJ

First metatarsal

Dy 1mse als ¢
Proximal phalanx ” Body coordinate system
Original (9 : { f : "
f | Medial @ Medial ?
\ Medial

Distal phalanx
First metatarsophalangeal joint Positioned

First metatarsal ) Body coordinate system
Proximal phalanx
Original p A ' '
Distal phalanx Positioned

First metatarsophalangeal joint

Figure S3 Scanning posture (original) and positioned posture of the first MTPJ from (A) the first-time scanning and (B)
the second-time scanning.



SF Part V Standardizing the geometric model

Long axis of first metatarsal

Long axis of first metatarsal First metatarsal
Direction
(0.00,0.00.-1)

Intersection
(-0.0799,0.0945,-27.9358)

. Medial

Intersection

Medial B
Long axis of proximal phalanx

Long axis of proximal phalanx

Medial Medial el

Proximal phalanx
Direction . S v
(-0.3464,-0.2927,-0.8913) = w2

Figure S4 Standardizing the first MTPJ geometric model. (A)-(E) P1 — P5, respectively.
SF Part VI Calculating the first MTPJ angle

p1 = (x1, V1, z1)refers to the first metatarsal’s long axis proximal coordinate point. Via Table S2, P1’s proximal
coordinate point isp; = (0.00,0.00,29.05).p, = (x4, V5, Z,)refers to the first metatarsal’s long axis distal coordinate
point. Via Table S2, P1’s distal coordinate point is p, = (0.00,0.00, —32.86). Use p,, p,to draw P1’s first metatarsal
long axis.

p3 = (x3, Y3, zg)refers to the proximal phalanx’s long axis proximal coordinate point. Via Table S2, P1’s proximal
coordinate point isp; = (0.00,0.00,14.83).p, = (x4, V4, Z4)refers to the proximal phalanx’s long axis distal coordinate
point, Via Table S2, P1’s distal coordinate point isp, = (0.00,0.00, —16.64). Use ps, psto draw P1’s proximal phalanx
long axis.

Use Eq (1) to calculate the centroid of the proximal phalanx in Figure S2, taking the centroid of the proximal phalanx
as the rotating point. According to Literature (Fan et al., 2019) shows that p5,p, rotate around axis z with an angle of
0.42°, around axis y of 1.84°, and axis x of 2.54°, respectively. Then rotate around axis z of -31.35°, axis y of 36.04° and
axis x of -44.63°. Now, P1’s distal phalanx long axis proximal coordinate point is ps = (—1.27,—0.75,—30.79), and the
distal one is pg = (—12.17,—9.96,—58.84).

We observed from Mimics software system that the direction of the positioned first metatarsal long axis is
(0.00,0.00,—1), the length 61.91mm while the direction of the proximal phalanx long axis is (0.00,0.00,—1) and the
length 31.47mm. After the rotation, the direction is (—0.35,—0.29, —0.89), and the length 31.47mm.

Set the direction of the first metatarsal long axis as (x4, 4, z1), and that of the proximal phalanx long axis as
(x4,¥2,22). Then, the angle between the two will be:

XX, +YiY, + 4,7,
2. 2. 2 2 2 2
\/Xl +Y, t7; X\/X2+YZ+22

Use Eq (58) to position the angle between the direction of the first metatarsal long axis (0.00,0.00,—1) and that of
the rotated proximal phalanx long axis (—0.35,—0.29,—0.89) to be 26.97< See Figure S4 for details.

6 = arccos (58)
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The first time

100.00,43.28,32.66,

The second time

— »Avinlsion

100.00,45.91,33.02 100.00,48.73,38.20

100.(5(—);48.67.37—.07 100.00,45.24,38.24

Figure S5 Measurement of P1’s first MTPJ angle (between long axes of the first metatarsal and the proximal phalanx).

Fan, Y., Antonijevic, D., Antic, S., Li, R, Liu, Y., Li, Z., et al. (2019). Reconstructing the First Metatarsophalangeal Joint
of Homo naledi. Front. Bioeng. Biotechnol. 7, 167.

11



SF Part VII Positioning the phalanx posture

Original posture

Reposition

Original posture

Reposition

Ist
Original posiiiie <
F \

[ 1

L

Reposition

Original pns‘l\' y

-
2nd

-
e y
b ;" Réplesition
’

-

s o] AV N

Figure S6 Positioning the phalanx posture of P4. (A) Reconstruction of P4’s first MTPJ. (B) Standardization of P4’s
phalanx posture relative to metatarsal in coronal plane. (C) The first MTPJ of P4 before being positioned. (D) The first

MTPJ of P4 after being positioned.

SF Part VIII Structure transformation of the first MTPJ

8
| Medial eunciform .
Toggle lrunspaﬁency

|

3D-view front 3D8icw back Body (coordinate system

Medial y !
- -

Meta 1 bone
R
Vv

‘ “\,
i

3D-viewdleft 3D-view right

' Distal ;ﬂInI

Original posture

Reposition

Figure S7 Structure transformation of the first MTPJ. (A) Positioning the phalanx posture. (B) 3D-view of the first MTPJ
ranging within 0-21 degrees. (C) 3D-view of body coordinate system. (D) Toggle transparency. Rotation is about axis X.
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SF Part IX Geometric model and constraints of the first MTPJ

A i Joint capsule
i B Joint capsule First metatarsal omnt capsule c
Right
Ry ® . g8 O
Mmri-x-‘ i Articular cartilage Articular cartilage Medial cuneiform

Skin
Part
Forces Assembly Medial Geometric constraints

Support column

Left
Back Front I

Figure S8 P1’s geometric model and constraints of the first MTPJ. (A) Observation from different views. (B) Loading
condition of point matrix. The direction of the force is the normal direction of the surface tangent to the action point of the
force. (C) Parts and assembly of the first MTPJ model. (Barefooted models do not include Footwear and Skin.)
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SF Part X P5’s CT cross-section images before and after injury
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Figure S9 P5’s cross-section images (A) before injury. (B) after injury. (B) shows the avulsion fracture of P5.
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SF Part XI Relation between the first MTPJ angle and the stress
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Figure S10 Relation between the first MTPJ angle and the stress. (A)-(C) Relation between the first MTPJ angle and the
maximum, minimum principal stress and von Mises stress when wearing shoes, respectively. (D)-(F) Relation between the
first MTPJ angle and the maximum, minimum principal stress and von Mises stress when being bare-footed, respectively.
x in the equations refers the first MTPJ angle, y refers the stress, and R? refers to the coefficient.
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SF Part XII Positions of the maximum principal stress and minimum principal stress on the joint capsule of

simulated shoe wearing
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Figure S11 Maximum and minimum principal stress of shoe wearing simulation. (A) Maximum principal stress. (B)

Minimum principal stress.
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