Handheld, non-contact and 80°-wide-view retinal camera for Retinopathy of Prematurity

Guillem Carles, Miguel Preciado, Paul Zammit, Ross Drysdale, Andrew Harvey

Guillem.CarlesSantacana@glasgow.ac.uk

#3193631

Background

- > ROP diagonsis requires observing the retinal periphery
- Detection of Plus disease is important
- Mainly done using indirect ophthalmoscopes or
- Contact-based retinal camera Retcam
- > Treatment is decided upon in situ retinal exploration
- ➤ Decision/monitoring not based on recorded images

The goal

- Visualise retinal periphery, i.e. wide views
- > Record images for monitoring and analysis
- > Handheld and compact

The problem

- > Attempting wide field compromises image quality
- > Images contaminated by reflections
- > Especially using a handheld and non-contact device

The solution

- Computational imaging: joint optics and computation design
- ➤ Series of images in a pseudo-snapshot, <200ms
- ➤ Illumination designed for diversity and non-redundancy
- Post-detection computation produces high-quality images

Computational imaging enables reflex-free wide-field images

Wide-field, hanheld and no eye contact imaging for ROP

Conclusions

- > 80° field-of-view handheld and non-contact retinal camera
- Based on computational imaging for high-quality reflex-free
- Demonstrated on adult volunteers
- Good quality for general-purpose wide-field screening
- > e.g. Diabetic Retinopathy
- Optimised for ROP monitoring:
- > Fits in incubator
- No stress to infants due to contact
- Oximetry enables vein/artery classification
- Assists Plus disease diagnosing

