
Improved productivity through standardized
configurations and testing of Trilinos on advanced

platforms
Roscoe A. Bartlett

rabartl@sandia.gov
Joseph R. Frye

jfrye@sandia.gov
Department of Software Engineering & Research

Sandia National Laboratories

Evan C. Harvey
eharvey@sandia.gov

I. BACKGROUND

Trilinos [8] is a large collection of complex software
providing implementations of advanced computational science
algorithms used to create cutting-edge simulation applications
(APP) codes. Many important customers and projects inside of
Sandia National Laboratories (SNL) rely on Trilinos and drive
its internal development and usage. One particularly important
customer at SNL is the Advanced Technology Deployment
and Mitigation (ATDM) project. This project is focused on
several different physics simulation codes that use Trilinos
including SPARC [6], EMPIRE [5], and GEMMA [10]. (The
details of these codes are not important to this discussion.)
Trilinos and the APP codes must be kept working during active
development on a number of advanced platforms on the road
to exascale sized super computers. Prior to the work described
below, the APP developers and Trilinos developers were
suffering some serious productivity problems and frequent
pain related to the stability of Trilinos on these platforms and
problems with developers being able to reproduce each other’s
build configurations.

Trilinos software is broken down into about 60 “packages”
which then can use upwards of 150 externally pre-installed
Third Party Library (TPL) packages. In addition, some Trilinos
packages are broken down into “subpackages” resulting in a
total of more than 150 packages + subpackages. Required or
optional dependencies can be created between any package
or subpackage to form a directed acyclic graph (DAG) of
dependencies. Individual Trilinos packages and subpackages
can be enabled or disabled and will trigger the implicit enable
of many upstream packages and TPLs to satisfy dependencies.
ATDM currently uses 45 of the 60 Trilinos packages and
117 of the 156 total packages + subpackages. About the
only Trilinos packages that ATDM does not use are legacy

SAND2020-6704 C: This paper describes objective technical results and
analysis. Any subjective views or opinions that might be expressed in the
paper do not necessarily represent the views of the U.S. Department of
Energy or the United States Government. Sandia National Laboratories is
a multimission laboratory managed and operated by National Technology
& Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of
Honeywell International Inc., for the U.S. Department of Energy’s National
Nuclear Security Administration under contract DE-NA0003525.

packages. In other words, ATDM uses almost all of the actively
developed and supported software in Trilinos.

The different sets of possible package enables and disables
and varying the different sets of global and package-level
options likely yields hundreds of thousands or more different
possible configurations of Trilinos. Most of these permutations
configurations will error out during the configuration stage
but many (in theory) should work. Customers only require a
very small subset of the possible configuration permutations to
work and therefore testing must be focused on these customer
focused configurations.

Prior to the work described below, each of these ATDM
APP code teams were taking it upon themselves to maintain
their own tailored configurations of Trilinos; often fighting
similar issues on the same platforms with no coordination
across teams. They would often maintain very long CMake
configuration bash scripts containing hundreds of lines and
more than 100 CMake cache variable settings, which were
duplicated across many different such scripts. If any one of
these options is wrong, it can result in problems with Trilinos
that can take hours, days or longer to debug and correct. In
addition, there were no automated builds or testing of Trilinos
for these configurations and no regular testing on many of
the advanced platforms that drive the ATDM project. These
advanced platforms include a variety of bleeding-edge node
and accelerator architectures including systems with multiple
GPUs per node and various CPU architectures (e.g. Intel
Knights Landing, ARM-based systems, etc.). ATDM APP
developers and even ATDM Trilinos developers would often
encounter broken code when pulling updated versions of Trili-
nos and trying to build on the various ATDM platforms. When
APP developers experienced a broken Trilinos configuration,
it was often difficult for Trilinos developers to reproduce the
cmake configuration, build, and runtime errors that the APP
developers were seeing. This resulted in a serious degradation
in the productivity of the APP developers pulling updated
versions of Trilinos and also for Trilinos developers who tried
to reproduce and address problems with Trilinos.

Over the last two years, many areas of the development,
testing, and integration processes related to Trilinos in the
ATDM project were selected for development in an effort

to improve productivity over existing approaches described
above [3]. Below, we describe the problem of managing
configurations of Trilinos for the ATDM APP codes on the
targeted advanced platforms in a coordinated way and ensuring
the general stability of updated versions of Trilinos for the
code teams on these platforms. Teams outside of this project
helped improve APP developer productivity by adding basic
pull request testing before merging changes to the main Trili-
nos ’develop’ branch as well as APP-specific testing against
Trilinos.

II. STANDARDIZED CONFIGURATIONS OF TRILINOS FOR
ATDM

As a foundation to address the problems with Trilinos in
ATDM, an extensible system for specifying the configurations
of Trilinos was created1. The best way to introduce this system
is to show how a Trilinos or APP developer uses it to config-
ure, build, test, and install Trilinos on any supported system.
After cloning the Trilinos git repository (path <trilinos>)
on any given system, to configure, build, and test any subset
of Trilinos packages, one just does:

cd <some_build_dir>/

source <trilinos>/cmake/std/atdm/load-env.sh \
<build-name>

cmake -GNinja \
-DTrilinos_CONFIGURE_OPTIONS_FILE:STRING=\
cmake/std/atdm/ATDMDevEnv.cmake \

-DTrilinos_ENABLE_<Package1>=ON \
-DTrilinos_ENABLE_<Package2>=ON <...> \
-DTrilinos_ENABLE_TESTS=ON \
<trilinos>

ninja -j16

ctest -j4

The command source <...>/atdm/load-env.sh
<build-name> automatically determines the system be-
ing used. The standard configuration options are extracted
from keywords embedded in the <build-name> string
(see below). This sets up the shell environment for the
requested configuration (including loading the desired com-
pilers, MPI implementation, and the associated TPLs) and
sets other environment variables for options specified as
keywords in the <build-name>. The raw cmake com-
mand that configures Trilinos includes the CMake fragment
file ATDMDevEnv.cmake. The CMake code in this file
pulls build options out of the shell environment set by the
load-env.sh <build-name> command and then sets
various CMake cache variables that fully specify the configura-
tion of any Trilinos package selected to be enabled. In this way,
APP or Trilinos developers can enable any subset of packages
they want to develop on or to reproduce failures.

1https://github.com/trilinos/Trilinos/wiki/
ATDM-Trilinos-Builds

The <build-name> can contain any number of letters and
numbers along with keywords separated by the characters _ or
-. The categories of keywords includes <system_name>,
<kokkos_arch>, <compiler>, <kokkos_thread>,
<rdc>, <complex>, <shared_static> and
<release_debug>. Any missing keywords have
defaults (except for <compiler> but the keyword
default will select the default compiler and MPI for
the system). An unrecognized substring not matching a
defined keyword in <build-name> is ignored. Examples
of valid build names include intel-openmp-opt,
ats1-knl_intel_openmp_static_dbg, and
ats2-cuda-rdc-complex-static-opt. The currently
supported systems include Advanced Technology System
1 (ATS-1, i.e. Trinity), ATS-2 (i.e. Sierra), Commodity
Technology System 1 (CTS-1), Vanguard 1 (i.e. ASTRA) and
many other commodity and advanced technology systems at
SNL and other laboratories supporting the ATDM program.

The included file ATDMDevEnv.cmake also disables
all of the Trilinos packages and subpackages that none
of the ATDM customers need. Developers and specific
customers enable whatever subset of packages they de-
sire setting Trilinos_ENABLE_<Package>=ON. One
can also enable the superset of all of the Trilinos pack-
ages used by the ATDM APP codes by setting the
Trilinos_ENABLE_ALL_PACKAGES=ON. This is called
the “blacklisting” for managing the configurations of Trilinos
and is a very successful stategy of which most Trilinos
developers and users are not aware. This approach ensures
that any Trilinos package that does get enabled has the same
configuration independent of any other Trilinos packages that
get enabled. For example, if the Tpetra package gets enabled,
then it will have the identical configuration regardless what
other Trilinos packages also get enabled. This is a critical
property that is exploited in automated testing of Trilinos to
support ATDM.

New platforms and systems are added in an extensible
way by adding a new subdirectory Trilinos/cmake/
std/atdm/<system_name> which typically includes
a single bash shell source file environment.sh.
In addition, custom configurations can be added
by either passing a second argument to source
<...>/atdm/load-env.sh <build-name>
<some-base-dir>/<custom-system-name> or
registering a new configuration with export export
ATDM_CONFIG_REGISTER_CUSTOM_CONFIG_DIR=
<some-base-dir>/<custom-system-name> and
then including <custom-system-name> keyword in the
<build-name>. In addition to CUDA, compilers, and MPI,
the ATDM Trilinos configuration requires up to 17 different
external TPLs to be pre-installed on a system before an
ATDM Trilinos configuration can be be stood up. The process
for installing these TPLs on a new system is non-trivial and
remains the most significant challenge in getting ATDM
builds of Trilinos up and running on a new platform (but
is beyond the scope of this discussion). The file atdm/

<system_name>/environment.sh loads modules and
sets up environment variables that point these pre-installed
TPLs.

There are numerous advantages to this approach for man-
aging Trilinos configurations:

• The set of “knobs” exposed is reduced from hundreds
of CMake cache variables to just a handful that are sup-
ported in the <build-name> keywords, thus avoiding
many of the pitfalls of Trilinos configuration.

• Trilinos developers that need to reproduce Trilinos builds
and tests can work with raw cmake, make/ninja and
ctest commands instead of having to dig through layers
of wrapper scripts.

• APP developers only need to list the Trilinos packages
their APP directly use (more on that below).

• The correct system (’ats1’, ’ats2’, ’cts1’, etc.) is deter-
mined automatically in most cases.

• It is straightforward to add new systems, compilers, etc.,
to extend the set of builds supported.

• Developers can provide their own custom system config-
urations satisfying the open-closed principle [7].

The software supporting this ATDM Trilinos configuration
system is written in a combination Bash and CMake. Unit
testing is in place for many of the Bash functions that are
used in the system (using the shunit22 test harness). While
bash is not the best programming language, it is well suited
to situations where the primary role is to manage environ-
ments including loading modules, updating the various PATH
variables, etc.

III. ATDM APPLICATION USAGE OF TRILINOS

ATDM APPs that use this ATDM Trilinos each have a
*.cmake fragment file that enables the packages needed for
that APP code. For example, to configure, build, and install
Trilinos to be used by the EMPIRE APP, one does:

cd <some_build_dir>/

export ATDM_DIR=<trilinos>/cmake/std/atdm
export EMPIRE_dir=$ATDM_DIR/apps/empire

source $ATDM_DIR/load-env.sh \
<build-name>

cmake -GNinja \
-DTrilinos_CONFIGURE_OPTIONS_FILE=\
$ATDM_DIR/ATDMDevEnv.cmake, \
$EMPIRE_DIR/EMPIRETrilinosEnables.cmake \

-DCMAKE_INSTALL_PREFIX=<trilinos-install> \
<trilinos>

ninja -j16 install

The version-controlled file
EMPIRETrilinosEnables.cmake contains set()
statements to enable the Trilinos packages used by the
EMPIRE APP.

2https://github.com/kward/shunit2

Once Trilinos is installed, to build the APP code (EMPIRE
in this case) one can load the matching environment for that
Trilinos install using:

source <trilinos-install>/load_matching_env.sh

This loads the same CMake, Ninja, compilers, MPI, and
any other tool needed to use Trilinos and also sets the environ-
ment variable Trilinos_ROOT=<trilinos-install>.
Therefore, the CMake find_package(Trilinos) com-
mand inside the APP’s CMakeLists.txt file will automatically
find this Trilinos install.

This largely eliminates the need for complex wrapper scripts
to drive the configuration, building and installing of Trilinos
and then the usage of Trilinos by an APP code.

The difference between the SPARC and EMPIRE usage of
Trilinos is the set of Trilinos packages that they use. Most
of the packages are identical but there are some Trilinos
packages that are only used by SPARC and some that are
only used by EMPIRE. In the case of GEMMA, it uses a
subset of the packages used by both SPARC and EMPIRE
but Trilinos must be configured with support for complex
floating-point numbers while SPARC and EMPIRE do not
require complex support. But other than that, all of the ATDM
APP codes can be built against the exact same installa-
tion of Trilinos (where one enables the super-set by setting
Trilinos_ENABLE_ALL_PACKAGES=ON). This comes in
very handy when setting up automated builds as described
below.

IV. STABILIZATION OF TRILINOS

Just having a lot of different configurations for Trilinos
organized in the way described above is useless if Trilinos
is broken. Therefore, a critical aspect of providing working
configurations is to put strong testing processes in place.
Maintaining stable versions of Trilinos requires setting up
and running automated builds, running the native Trilinos test
suite, monitoring those builds and tests, and then triaging and
resolving failures in a timely way once they are discovered.
The full set of these processes required [3] is beyond the
scope of this discussion. Below, we just focus on the setup
and stabilization of automated builds of Trilinos.

The black-listing approach described above allows for us
to set up a single set of builds for each platform and build
configuration and then enable the entire superset of packages
used by all of the ATDM APP codes together. In this way,
we don’t need to set up and run different Trilinos builds
specifically for SPARC, EMPIRE and GEMMA in order to
well test Trilinos for usage by these different APP codes
(even each APP code only uses a subset of these packages).
We can just enable the superset of packages by config-
uring with Trilinos_ENABLE_ALL_PACKAGES=ON. For
example, for the ATS-2 platform, only one ats2-cuda-
gnu1-spmpi_static_opt build needs to be tested for
both SPARC and EMPIRE. A specially selected set of build
configurations on each platform is run nightly on the tip of
the Trilinos develop branch. At the time of this writing, this

includes 46 Trilinos builds that submit to the Trilinos CDash
site, covering all of the important ATDM platforms. Currently,
this includes eight different platforms which include builds
for various versions of the Clang, GCC, and Intel compilers,
CUDA, and various MPI implementations and versions.

Only the specific build configurations that are used by that
APP are set up and run. That is, every permutation of possible
<build-name> keywords is not tested. These Trilinos builds
are run once a day and are posted to the Trilinos CDash
site3. The configure, build and test results posted to CDash
are then monitored automatically using a custom CDash
summary tool called cdash_analyze_and_report.py
which maintains a issue status table that is updated and
emailed on a nightly basis.

Failures reported using the cdash_analyze_and_
report.py tool are then triaged and GitHub issues are
created to alert Trilinos developers. Each of these GitHub
issues includes the exact set of commands needed to reproduce
the failures using the ATDM Trilinos configuration described
in Section I. The name of the build that shows up on
CDash (e.g. Trilinos-atdm-ats2-cuda-10.1.243-
gnu-7.3.1-spmpi-rolling_static_opt) can
be directly passed as the <build-name> in the
command source <...>/atdm/load-env.sh
<build-name>. This has allowed any Trilinos developer
to trivially reproduce any build on any machine shown on
CDash in a uniform way.

Side Note: The computational load to run these builds and
tests is too great to do more than a single set of builds in
a 24 hour day. In fact, many days, we don’t even get full
build and test results because of the other loads on the key
advanced architecture machines where these builds have to
be run. Therefore, other testing workflows that might require
running this set of builds multiple times in the same testing
day are just not practical.

V. APPLICATION INTEGRATION TESTING

Each of the ATDM APP codes maintain their own fork of
Trilinos and only update their fork when a sufficient set of
APP tests pass. This insulates the APP developers and users
from the majority of defects that get injected in the Trilinos
develop branch. (In the early years of ATDM, APP codes
directly pulled from the main Trilinos develop branch which
often resulted in significant pain and lost productivity.) Testing
the tip of the Trilinos develop branch against customer
codes has been a critical activity for many past projects [1],
[2], [4], [9] and the ATDM project is no different. In fact, it is
more important given the challenges of maintaining working
code on these advanced platforms. In the ATDM project, daily
integration testing is performed for the SPARC and EMPIRE
APP codes against Trilinos develop. Two very different
integration testing processes are currently used for SPARC and
EMPIRE. Below, we describe the Trilinos integration testing
process for the SPARC APP.

3https://testing.sandia.gov/cdash/

The approach taken for SPARC Trilinos integration test-
ing is to leverage the automated builds of Trilinos already
being performed on the various platforms described above.
The way this works is that the automated builds of Trili-
nos that post to CDash also includes the install of Trili-
nos as a byproduct of the build and test process. Each
Trilinos build is installed into a date-based directory with
the format <base-dir>/YYYY-MM-DD/<build-name>
where <build-name> is the same as the Trilinos CDash
build name (minus the leading Trilinos-atdm- prefix).
There are then SPARC Trilinos integration builds that run
the next day that build against the Trilinos installs from
the previous day and post results to the SPARC CDash site
under the “Trilinos Integration” CDash group. For example,
the build Trilinos-atdm-ats2-cuda-gnu1-spmpi_
static_opt for the testing day 2020-06-25 is installed
under <base-dir>/2020-06-25/ats2-cuda-gnu1-
spmpi_static_opt/ and the matching SPARC Trilinos
integration build for the next testing day 2020-06-26 builds
against that Trilinos install. As these SPARC Trilinos integra-
tion builds show up on the main SPARC CDash site, they are
viewed and failures are triaged along with the other automated
builds of SPARC (against their older currently accepted installs
of Trilinos).

These integration testing processes have been a key part
of maintaining the stability of Trilinos for the ATDM APP
codes while also allowing for frequent, less risky, and less
time consuming updates of Trilinos.

VI. IMPACT ON PRODUCTIVITY

The work setting up and maintaining the ATDM Trilinos
builds on all of these different advanced and supporting plat-
forms represents the most significant improvement in Trilinos
portability testing and stabilization in the 20+ year history of
the project. The creation of this ATDM Trilinos configuration
system, the automated testing of Trilinos on all these plat-
forms, and the resulting stabilization of Trilinos has improved
the productivity of ATDM APP developers significantly. These
developers and users of Trilinos spend far less time dealing
with broken Trilinos builds, having to triage runtime defects in
Trilinos code, and having to report them back to the Trilinos
development team. The improved stability of Trilinos has also
positively impacted non-ATDM customers as well. Simply put,
pulling updated code that does not build or run correctly is
extremely disruptive and kills productivity (paraphrase from
an ATDM APP developer a couple of years ago). Beyond
that, broken software degrades trust and has other larger
impacts that are difficult to directly measure. These efforts
have significantly reduced the pains experienced by the APP
development teams.

The impact on the productivity of Trilinos developers
themselves due to these efforts is less clear. On one hand,
configuring and building Trilinos on these various platforms
to reproduce Trilinos bugs has been made much easier for
Trilinos developers (and less work for APP developers to
explain this to Trilinos developers). On the other hand, running

and cleaning up the native Trilinos test suite on all of platforms
and build configurations has been a lot of work which has
fallen on the Trilinos developers. (It is difficult to detect
new failures if you already have large numbers of perpetually
failing tests in a given build.) Now, when most build or runtime
defects get injected into Trilinos, the native Trilinos test suite
will often catch them and then Trilinos developers will need
to triage the failures and fix them. Before, it was often the
APP developers who experienced broken builds and runtime
behavior in Trilinos through running their APP’s test suite.
And then it was the APP developers who had to do the first
round of triaging of Trilinos defects and then report them.
That saved the Trilinos developers some upfront work. So
the net impact on the productivity of these efforts on Trilinos
developers themselves is unclear.

Our goal is to improve ATDM APP developer productivity
by reducing their bug reporting, triaging, and removal effort
across the entire ATDM program; conversations indicate that
a good deal of the Trilinos debugging burden was shifted from
ATDM APP developers to the Trilinos developers.

REFERENCES

[1] R. Bartlett. Daily integration and testing of the development versions
of applications and Trilinos. Technical Report SAND2007-7040, Sandia
National Laboratories, 2007.

[2] R. Bartlett and et. al. ASC vertical integration milestone. Technical
Report SAND2007-5839, Sandia National Laboratories, 2007.

[3] R. Bartlett and J. R. Frye. Creating stable productive cse software
development and integration processes in unstable environments on the
path to exascale. pages 1–8, 2019.

[4] R.A. Bartlett. Integration strategies for computational science. In Soft-
ware Engineering for Computational Science and Engineering, 2009.
SECSE ’09. ICSE Workshop on, pages 35 –42, 23-23 2009.

[5] Matthew Tyler Bettencourt, Eric C Cyr, Richard Michael Jack Kramer,
Sean Miller, Roger P. Pawlowski, Edward Geoffrey Phillips, Allen C.
Robinson, and John N. Shadid. Empire - em/pic/fluid simulation code.
8 2017.

[6] Paul Crozier, Micah Howard, William J. Rider, Brian Andrew Freno,
Steven W. Bova, and Brian Carnes. Advanced technology and mit-
igation (ATDM) SPARC re-entry code fiscal year 2017 progress and
accomplishments for ECP. 9 2017.

[7] R. Martin. Agile Software Development (Principles, Patterns, and
Practices). Prentice Hall, 2003.

[8] The Trilinos Project Team. The Trilinos Project Website.
[9] John A. Turner, Kevin Clarno, Matt Sieger, Roscoe Bartlett, Benjamin

Collins, Roger Pawlowski, Rodney Schmidt, and Randall Summers.
The virtual environment for reactor applications (vera): Design and
architecture. Journal of Computational Physics, 326:544 – 568, 2016.

[10] Langston William and et. al. Massively parallel frequency domain elec-
tromagnetics simulation codes. Technical Report SAND2018-0700C,
Sandia National Laboratories, 2018.

