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Overview

A chemical category is a group of chemicals whose physicochemical and human
health and/or ecotoxicological properties and/or environmental fate properties are

likely to be similar or follow a regular pattern, usually as a result of structural
similarity. - OECD

- Applications of chemical categorization include first tier assessment efforts
and read across from structurally similar analogs:

* Toxic Substances Control Act (TSCA) New Chemical Program Chemaical
Categories (NCC; US EPA)

- ECOSAR (focus of presented work)




US EPA ECOSAR Chemical Classifications

. Class-based SAR to predict aquatic toxicity

- Classification scheme 1dentifies excess toxicity

- Estimates acute and chronic toxicity based on
i accumulated data and past decisional precedents
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/g e e Acute Effects: Chronic Effects:
(@ = Fish 96-hr LCy, Fish ChV
Daphnid 48-hr ECy, Daphnid ChV
Algae 72/96-hr EC;, Algae ChV

. Profiler in OECD QSAR Toolbox




Narcosis vs. specific-acting toxicity MOA
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Potential approach for updating chemical
categories

Multiple

- Almost half of all New Chemical inventories

Not across regulatory jurisdictions cannot be
categorized categorized using NCC or ECOSAR
45%

- Some fall into multiple categories

How to update?

« Incorporate New Approach Methodologies (NAMs) — i.e., ToxCast and
Tox21 biological activity information

- Apply cheminformatic approaches




(General approach

 Well-defined MOA (narcosis vs. specific-acting) )
« NAM data in vitro toxicity data
Training | * in vivo toxicity data

set  Representative of chemicals of interest for prediction Y,
chemicals

~

1. ECOSAR classes

« 2. NCC

* 3. Chemotype fingerprints (ToxPrints)
J
N

NAM data, chemotypes and combination of both
Evaluate different machine learning algorithms




Training set chemicals

1. Chemicals with in vivo eco-data — from
the EnviroTox! database — 4016

2. Sub-selection for chemicals with NAM
data (ToxCast and Tox21) - 1904

3. MOA predictions based on 4 publicly-
available classification models

Consensus = VERHAAR, ASTER, OASIS, TEST

MOA.: = Each predicts Narcotic, Specific-Acting
N S(Ezggz) )01‘ or Unclassified

Consensus MOA with confidence scores?

Examples: Results:

NNNN =N, score=3 880 Narcotic

NNSN = N, score= 2 . o .
SUSS = S, score= 2 350 Specnflc-.a.ctmg
.. : NUNS=U, score=0 674 Unclassified
Tralnlng Set Chemlcals 1Health and Environmental Sciences Institute (HESI). 2019. EnviroTox Database &

Tools. Version 1.1.0 Available: http://www.envirotoxdatabase.org/
2 Kienzler et al.. Environ Toxicol and Chem. 2019, 38(10) 2294-2304




Characterize training set chemicals:
ECOSAR classes

Consensus MOA

Not classified NaI‘C.OFIC |
| Specific-acting

|| Unclassified

EcoSAR

lassificatio

Neutral Organics non-Neutral Organics

S

Non-Neutral Organics:
includes narcotics (e.g., esters)

Neutral Organics:
“enriched” 1n narcotics




Characterize Training Set Chemicals:
ToxPrints

e Pull in chemotype information for
our chemicals via ToxPrints

* Publicly available tool
 EPA Comptox Chemistry Dashboard

ToxPrints:

729 chemical features
Chemically interpretable
Coverage of diverse chemistry
Includes scaffolds, functional
groups, chains, rings, bonding
patterns, atom-types
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Yang et al. J. Chem. Inf. Model. 2015. Richard et al., Chem. Res. Toxicol. 2016,
29(8) 1225 — 1251; Strickland et al., Arch Toxicol. 2018 92(1) 487 — 500; Wang et
al., Environment International 2019, 126 377 — 386




Classification model development
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Preliminary results

* Random Forest provided the best model results:
* Trained on a “balanced” down-sampled subset (675 c MOA N+S)
* Training Out-of-Bag (OOB) error rate = 10.2%
* Total Accuracy on the full N+ S data set = 94.5% (1230 c MOA N+S)
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Example: Differences in model prediction

vs. cMOA: Triasulfuron

« N-sulfonylurea herbicide

 Model prediction:

EnviroTox consensus MOA:

ECOSAR classification:
* S(=0)_sulfonyl ToxPrint is enriched in the specific-acting

MOA space and 47 assays
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Predicted MOAs of the Unclassified set

- 674 chemicals 1n the EnviroTox dataset that had low confidence or
ambiguous consensus

- Applied model to the Unclassified set and compared predictions to ECOSAR
classification

361 predicted as Narcotic 313 predicted as Specific-acting

ECOSAR Classified

ECOSAR Not Classified
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Unclassified chemicals, predicted Specific-
Acting: Enriched ToxPrints
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these features might be useful for refining chemical categories to
capture more of the chemicals currently unclassified
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Summary

- Identified relevant NAM information to develop a classification model for
specific-acting MOAs

- Explored differences in predicted and consensus MOA via chemotype
enrichments

- Used model to inform ECOSAR unclassified chemicals

- Majority of unclassified chemicals were predicted to have a specific acting
MOA

- Identified primary chemotypes for specific acting MOAs




Next steps/ongoing work

- Leverage more invitroDB chemicals beyond the 1905 EnviroTox chemicals
- Generated KNIME workflow for the consensus MOA calls

- Greater coverage of the NAM assay space
+ >7000 chemicals with MOA calls
- Integration of HT'S and transcription assay data

- Use methods to inform classification models for TSCA (New Chemical
Categories)

- Use chemotype enrichments to identify potential bioassays with bioactivity

Thank you!
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