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Methods

All analyses were conducted on the “all species” (n = 2,943 observations) and “common species” (n =
2,846  observations)  datasets  provided  by  Zellweger  et  al. (1-2).  The  two  datasets  led  to  similar
statistical results and conclusions. For the sake of simplicity, only the results derived from the “all
species” dataset are shown in this Technical Comment. 

Here,  we  investigated  the  underlying  microclimate  determinants  of  “microclimatic  debt”  and
“thermophilization” observed in understory plant communities. These variables were both computed
from the 95th percentiles of the floristic  temperature distribution between the baseline survey and
resurvey, divided by the time interval between the two surveys (see methods of Zellweger et al. (1)).
Variations in the “microclimatic debt” and “thermophilization” were analyzed considering the effects of
local and global components of microclimate which depicted trends in temperature buffering due to
canopy cover change and global maximum temperatures, respectively, during the growing season (1).

We conducted an explicit comparison of the effects of local and global drivers of microclimate on the
microclimatic  debt  and  thermophilization  observed  in  understory  plant  communities.  That  is,  we
refined  the  linear  mixed-effect  models  (LMM)  framework  as  in  Zellweger  et  al. as  follows:
thermophilization or microdebt = macroTC[the global component of microclimate] + ΔTbuffTbuff[the local component of microclimate] +
macroTC*ΔTbuffTbuff[the  interaction  between  global  and  local  components  of  microclimate] + (1|region).  This model  assumes that
change in macroclimate temperature (macroTC), change in temperature buffering (ΔTbuffTbuff)  and the
two-term  interaction  likely  explain  the  microclimatic  debt  (microdebt)  or  the  community
thermophilization. Here, change in microclimate conditions is not considered as an explicative variable
because  microclimate  conditions  is  computed  as  the  sum  of  macroTC  and  ΔTbuffTbuff.  Instead,  we
accounted  directly  for  ΔTbuffTbuff  in  the  model  in  order  to  disentangle  the  effect  of  local  and global
components of microclimate on plant communities’ reshuffling. Explicative variables were transformed
to z-scores to compare the magnitude of their respective effects. We checked for colinearity between
macroTC and ΔTbuffTbuff, and found that both variables were independent (R² < 0.01).  We fitted LMMs
explaining the plant communities’ thermophilization and the microclimatic debt separately, using the
restricted maximum likelihood parameter estimate to ensure a robust estimate of coefficients (3). We
calculated both the mean effect and the proportion of variation explained by each fixed variable, as well
as their respective 95% confidence intervals through a bootstrap approach (n = 10,000 iterations). The
significance of each variable was determined from the bootstrap distributions for the two alternative
hypotheses of a mean coefficient estimate being greater or lower than zero (i.e. the null hypothesis). To
assess the goodness-of-fit of the models, we also computed the mean marginal (i.e. variance explained
by the fixed effects) and conditional (i.e. variance explained by both the fixed and random effects) R2

values, as well as their respective 95% confidence interval from the set of bootstrap iteration.

All  statistical  analyses were performed in R (version 3.6.3;  4) using the  lme4 (3),  optimx (5) and
merTools (6) packages to fit LMM and to run bootstraps, as well as the MuMIn package (7) to compute
marginal  and  conditional  R2 values.  The  variancePartition package  (8)  was  used  to  compute  the
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proportion of variation explained by each factor in the LMMs. R code supporting analyses are openly
available (9).
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