
libEnsemble: A Python Library for Dynamic
Ensemble-Based Computations

David Bindel1,2 Stephen Hudson1 Jeffrey Larson1

John-Luke Navarro1 Stefan M. Wild1

1Argonne National Laboratory 2Cornell University

Overview
libEnsemble is a Python library for coordinating the
concurrent evaluation of dynamic ensembles of calcula-
tions. The library is developed to use massively parallel
resources to accelerate solving design, decision, and
inference problems and expand the class of problems
that can benefit from increased concurrency levels.

libEnsemble aims for the following:

• Extreme scaling

• Resilience/fault tolerance

• Monitoring/killing of tasks (and recovering resources)

• Portability and flexibility

• Exploitation of persistent data/control flow

libEnsemble can coordinate large numbers of parallel
instances (ensembles) of simulations at huge scales.

Manager and Workers
libEnsemble employs a manager/worker scheme that
can communicate through MPI, Python’s multipro-
cessing, or TCP. The manager allocates workers to
asynchronously execute gen_f generator functions and
sim_f simulation functions, directed by a provided
alloc_f allocation function. Workers can control any
level of work, from small sub-node tasks to huge many-
node simulations.

Executor Module
An Executor interface is provided so libEnsemble
routines that coordinate tasks (user applications) are
portable, resilient, and flexible. The Executor automati-
cally detects allocated nodes and available cores and can
split up tasks if resource data is not supplied.

The Executor is agnostic of both the job
launch/management system and selected man-
ager/worker communication method. The main
functions are submit(), poll(), and kill().

On machines that do not support launches from com-
pute nodes, the Executor can interface with the Balsam
library, which functions as a proxy job launcher that
maintains and submits jobs from a database on front end
launch nodes:

Running at Scale
OPAL Simulations
• ALCF/Theta (Cray XC40) with Balsam, at Argonne National Laboratory

• 1030 node allocation, 511 workers, MPI communications.

• 2044 2-node simulations

• Object Oriented Parallel Accelerator Library (OPAL) simulation functions.

Histogram of completed and killed simulations (binned by
run time). Killing tasks once they are identified as redundant
improves efficiency of ensembles.

Total number of Balsam-launched applications running over
time. The startup delay is due to parallel imports of Python
libraries.

Using libEnsemble
The user selects or supplies a generator function
gen_f that generates simulation input and a simula-
tion function sim_f that performs and monitors simu-
lations. Users parameterize these functions and initiate
libEnsemble in a calling script.

For example, the gen_f may contain an optimization
routine to generate new simulation parameters on-the-
fly based on results from previous sim_f simulations.

Potential use-cases include:
Generator Functions:

• Bayesian parameter
estimation

• Surrogate models
• Sensitivity analysis
• Design optimization
• Supervised learning

Simulation Functions:

• Particle accelerator
simulations

• Subsurface flow
• PETSc simulations
• DFT calculations
• Quantum chemistry

Flexible Run Mechanisms
libEnsemble is developed, supported, and tested on sys-
tems of highly varying scales, from laptops to machines
with thousands of compute nodes. On multi-node sys-
tems, there are two configuration modes that determine
how libEnsemble runs and launches tasks on available
nodes.

Distributed: Workers are distributed across allocated
nodes and launch tasks in-place. Worker processes
share nodes with their applications.

Centralized: Workers run on one or more dedicated
nodes and launch tasks to the remaining allocated
nodes.

Dividing up workers and tasks to allocated nodes is
highly configurable. Multiple workers and their func-
tions can be assigned to a single node, or multiple nodes
can be assigned to a single worker and it’s routines.

Supported Research Machines
libEnsemble is tested and supported on the following
high-performance research machines:

Machine Location
Summit Oak Ridge National Laboratory
Theta Argonne National Laboratory
Cori National Energy Research Scientific

Computing Center
Bridges Pittsburgh Supercomputing Center

Download or Contribute
libEnsemble is available through pip:
pip install libensemble

conda through the conda-forge channel:
conda install -c conda-forge libensemble

Spack:
spack install py-libensemble

libEnsemble is in-development on GitHub:
https://github.com/Libensemble/libensemble

Documentation and tutorials are available on
Read the Docs:
https://libensemble.readthedocs.io


