Supporting Information

How does the mono-triazole derivative modulate Aβ₄₂ aggregation and disrupt protofibril structure: Insights from molecular dynamics simulations

Amandeep Kaur,^a Anupamjeet Kaur,^a Deepti Goyal*^a and Bhupesh Goyal*^b

^aDepartment of Chemistry, Faculty of Basic and Applied Sciences, Sri Guru Granth Sahib World University, Fatehgarh Sahib–140406, Punjab, India ^bSchool of Chemistry & Biochemistry, Thapar Institute of Engineering & Technology, Patiala– 147004, Punjab, India

*Corresponding authors

E-mail: <u>bhupesh@thapar.edu</u>; <u>deeptig@iitbombay.org</u>

Table of contents

Figure S1. The correlation between simulated and experimental NMR chemical shifts for S3 C α and C β atoms of A β_{42} monomer is shown in panel a and b, respectively. The ${}^{3}J_{NH-H\alpha}$ coupling constants values of A β_{42} monomer residues obtained from the simulation and experimental data is shown in panel c.

Figure S2. The 2D LigPlot⁺ map of the representative member of cluster 1 in $A\beta_{42}$ S4 monomer-**4v** complex displaying the hydrophobic contacts of **4v** with $A\beta_{42}$ monomer residues. A hydrogen bond (0.25 nm) was observed between the oxygen atom of -C=O group of ester of **4v** with the backbone NH of Gly37 of $A\beta_{42}$ monomer.

Figure S3. The root–mean–square deviation (RMSD) and root–mean–square fluctuation S5 (RMSF) of $A\beta_{42}$ monomer (red) and $A\beta_{42}$ monomer–**4v** complex (blue) during simulation are shown in panel a and b, respectively.

Figure S4. The RMSD of the triplicate simulations of $A\beta_{42}$ monomer is shown. S6

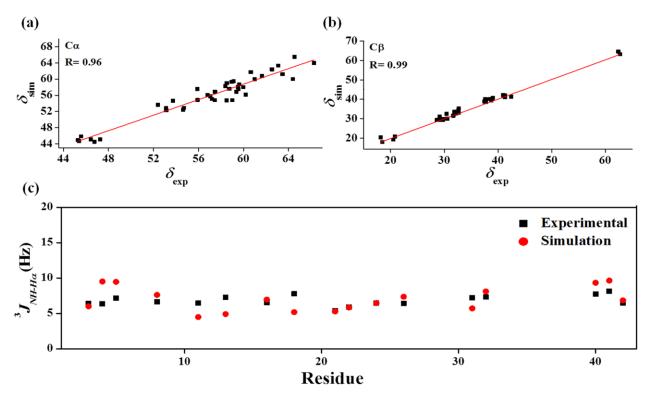

Figure S5. The correlation between simulated and experimental NMR chemical shifts for S7 C α and C β atoms of A β_{42} protofibril is shown in panel a and b, respectively. The ${}^{3}J_{NH-H\alpha}$ coupling constants values of A β_{42} protofibril residues obtained from the simulation and experimental data is shown in panel c.

Figure S6. The RMSD and radius-of-gyration (R_g) of A β_{42} protofibril (wine) and A β_{42} S8 protofibril–4v complex (orange) during simulation are shown in panel a and b, respectively.

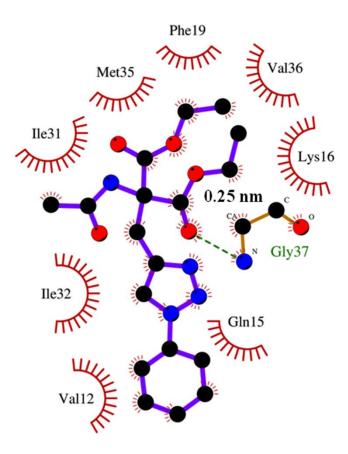

Figure S7. The RMSD of the triplicate simulations of $A\beta_{42}$ protofibril is shown. S9

Figure S8. The residue–residue contact map of chain D and E of A β_{42} protofibril in A β_{42} S10 protofibril and A β_{42} protofibril–**4v** complex is shown in panel a and b, respectively.

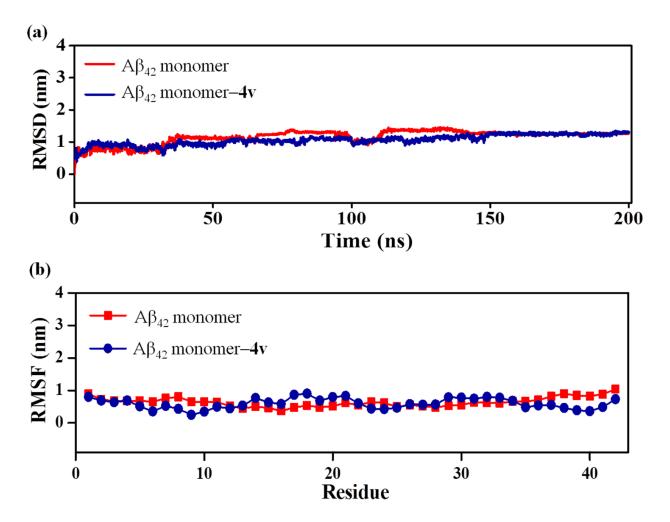

Table S1. The secondary structure component statistics of $A\beta_{42}$ monomer and $A\beta_{42}$ S11 protofibril for triplicate MD simulations. The standard errors of the mean were calculated by dividing the simulation data into four long, non-overlapping blocks.

Figure S1. The correlation between simulated and experimental NMR chemical shifts for C α and C β atoms of A β_{42} monomer is shown in panel a and b, respectively. The ${}^{3}J_{NH-H\alpha}$ coupling constants values of A β_{42} monomer residues obtained from the simulation and experimental data is shown in panel c.

Figure S2. The 2D LigPlot⁺ map of the representative member of cluster 1 in $A\beta_{42}$ monomer–**4v** complex displaying the hydrophobic contacts of **4v** with $A\beta_{42}$ monomer residues. A hydrogen bond (0.25 nm) was observed between the oxygen atom of –C=O group of ester of **4v** with the backbone NH of Gly37 of $A\beta_{42}$ monomer.

Figure S3. The root–mean–square deviation (RMSD) and root–mean–square fluctuation (RMSF) of A β_{42} monomer (red) and A β_{42} monomer–**4v** complex (blue) during simulation are shown in panel a and b, respectively.

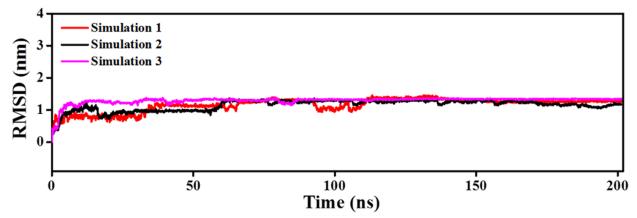
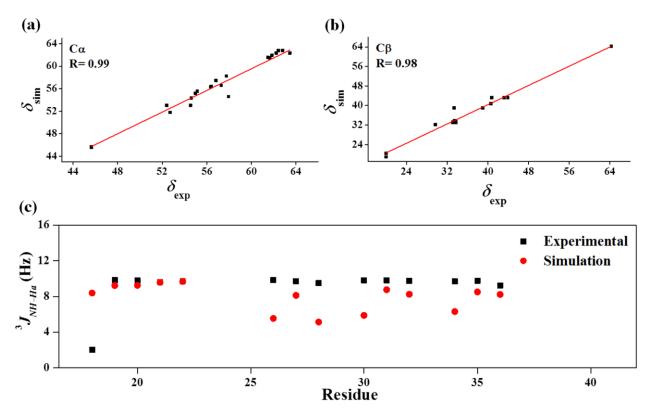
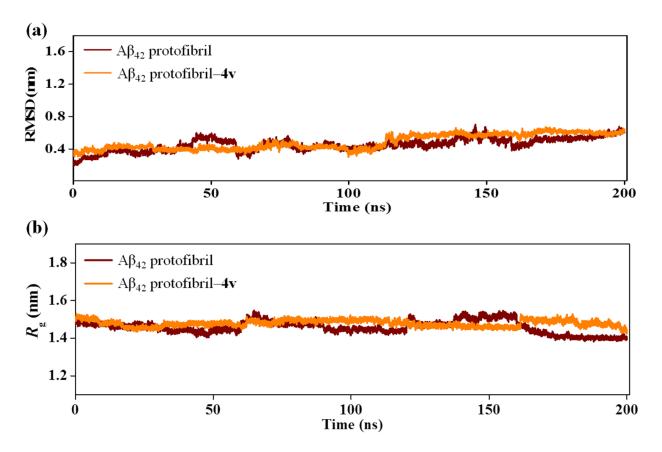




Figure S4. The RMSD of the triplicate simulations of $A\beta_{42}$ monomer is shown.

Figure S5. The correlation between simulated and experimental NMR chemical shifts for C α and C β atoms of A β_{42} protofibril is shown in panel a and b, respectively. The ${}^{3}J_{NH-H\alpha}$ coupling constants values of A β_{42} protofibril residues obtained from the simulation and experimental data is shown in panel c.

Figure S6. The RMSD and radius-of-gyration (R_g) of A β_{42} protofibril (wine) and A β_{42} protofibril–**4v** complex (orange) during simulation are shown in panel a and b, respectively.

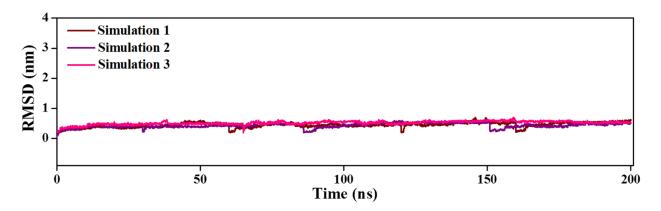
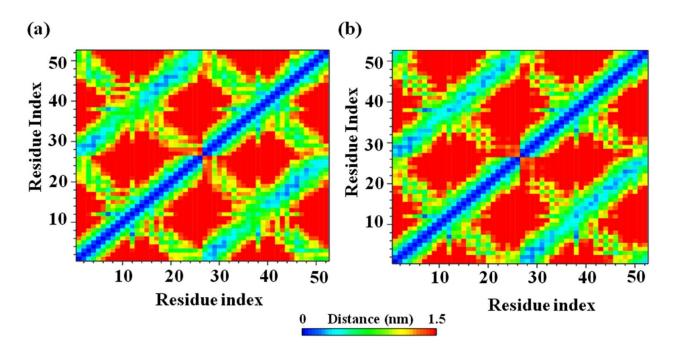



Figure S7. The RMSD of the triplicate simulations of $A\beta_{42}$ protofibril is shown.

Figure S8. The residue–residue contact map of chain D and E of A β_{42} protofibril in A β_{42} protofibril and A β_{42} protofibril–**4v** complex is shown in panel a and b, respectively.

Table S1. The secondary structure component statistics of $A\beta_{42}$ monomer and $A\beta_{42}$ protofibril for triplicate MD simulations. The standard errors of the mean were calculated by dividing the simulation data into four long, non-overlapping blocks.

Model	Simulation	Secondary structure component (%)					
system		Coil	^{<i>a</i>} β–sheet	Bend	Turn	^b Helix	Chain_
							Seperator
Αβ ₄₂	1	22.5 ± 2.8	9.0 ± 2.9	19.2 ± 3.7	24.2 ± 1.4	27.0 ± 5.1	0
monomer	2	26.7 ± 0.6	9.7 ± 2.9	25.0 ± 3.2	15.0 ± 1.9	23.2 ± 3.5	0
	3	20.7 ± 0.7	10.5 ± 1.5	17.0 ± 0.4	26.5 ± 0.6	25.0 ± 1.4	0
Aβ ₄₂ protofibril	1 2	32.7 ± 1.2 31.7 ± 1.7	54.5 ± 1.9 56.2 ± 1.6	9.5 ± 0.6 8.5 ± 0.2	0.2 ± 0.2 0.2 ± 0.2	0 0	3.0 ± 0 3.0 ± 0
1	3	37.2 ± 3.1	48.7 ± 3.9	10.7 ± 1.3	0.5 ± 0.2	0	3.0 ± 0

 ${}^{a}\beta$ -sheet= β -strand + β -bridge; b Helix= α -helix + 3_{10} -helix + π -helix