Evaluation of Fused Aromatic-Substituted

Diketopyrrolopyrrole Derivatives for Singlet Fission Sensitizers

Li Shen[†], Jitao Lu[†], Heyuan Liu[‡], Qingguo Meng^{†,*}, Xiyou Li^{‡,⊥},*

[†]College of Chemical Engineering and Environmental Chemistry, Weifang University, Weifang, 261061, China

[‡]School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, 266580, China

[⊥]Institute of New Energy, China University of Petroleum (East China), Qingdao, 266580, China

To whom correspondence should be addressed: <u>mengqg@wfu.edu.cn</u>, <u>xiyouli@upc.edu.cn</u>

1. Solvation effect on SF relevant excited state energies

The solvation effect was evaluated by polarizable continuum model (PCM). Two common solvents, namely toluene (Tol) and dichlorimethane (DCM), were considered. They show quite similar results for both $E(S_1)$, $E(T_1)$, and $E(T_2)$, and the maximum difference of which is ~ 0.11 eV. As a result, $E(S_1)$, $E(T_1)$, and $E(T_2)$ were calculated with toluene taken as solvent for all DPP derivatives in this work.

Table S1. Adiabatic Excitation Energies [eV] of DPP derivatives in different solutions.

Compound	Solvent	E(S ₁)	E (T ₁)	E (T ₂)
1T-DPP	Tol	2.152	1.041	2.550
	DCM	2.047	1.051	2.529
F2T-DPP	Tol	1.958	0.971	2.319
	DCM	1.847	0.979	2.305
F3T-DPP	Tol	1.827	0.934	2.164
	DCM	1.714	0.942	2.153

Figure S1. Molecular Structures of *n***F**-**DPP** and *n***T**-**DPP**.

Figure S2 y_1/y_0 of *Fn*F-DPP and *Fn*T-DPP with respect of the number (*n*) of fused thiophene and furan rings.

Figure S3 $E(T_1)$ of fused and non-fused aromatic substituted DPP derivatives with respect to the number (n) of thiophene and furan rings on each sides.

Figure S4 (a) $E(S_1)$, $E(T_1)$ and $E(T_2)$, as well as (b) ΔE_{SF} and ΔE_{TTA} of **R-FBF'-DPP** and **R-TBT'-DPP**.