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SUMMARY 
 

Soil microbial ecology is a rapidly evolving field of science dedicated to understanding how 

soil microorganisms interact with each other and their environment. The term “soil 

microorganisms” refers to bacteria, archaea, fungi, and viruses that live within the soil 

environment. They are an essential component to Earth’s ecosphere through the roles they play 

in biogeochemical cycling, decomposition processes, and nutrient regulation, all of which affect 

ecosystem scale productivity and global climate patterns. The ability of soil microbial 

communities to perform these functions is determined in part by the genetic capacity of the 

community to produce enzymes and other proteins required for biochemical transformations, and 

the rate at which these functions occur may be influenced by the abundance of microorganisms 

and their associated genetic capacities, as well as biotic and abiotic environmental factors that 

influence community structure and affect enzyme kinetics. This dissertation explores the 

relationships between soil microbial community structure, the genetic functional capacity of the 

community to decompose soil organic matter (SOM) and cycle nutrients, and variations in the 

biotic and abiotic environment. 

Plant-microbe interactions have been an active area of research for decades, and while 

symbiotic relationships have been well established between plants and soil microbes, much less 

is known about taxa-specific associations or the mechanisms behind the establishment and 

maintenance of microbial community symbionts. Chapter 2 examines the relationships between 

soil bacterial communities and ash trees in temperate deciduous forest ecosystem impacted by 

the effects of emerald ash borer (EAB), an invasive beetle introduced from Asia that kills >99% 

of ash trees. The goal of this study was threefold; 1) to determine if ash trees associate with a 

unique assemblage of bacteria, 2) to predict potential functional shifts within the belowground 
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community and subsequent consequences for ecosystem dynamics in response to the loss of ash 

trees from the system, and 3) to explore relationships between bacterial relative abundances, the 

functional roles they facilitate, and tree community composition. In comparing plots that 

contained ash trees to those that did not, our results showed distinct differences in soil microbial 

community structure, primarily driven by differences in the Acidobacteria phylum. Greater 

estimated gene abundances for genes related to carbohydrate metabolism, sulfur cycling, and 

phosphorus cycling in plots without ash trees suggests that belowground functional capacity may 

also be affected by the presence (or loss) of ash trees. However, co-occurring influential factors 

such as soil pH or corollary relationships with other tree species could not be ruled out as 

underlying driving forces of bacterial community structure, thus making it difficult to predict the 

effects of the rapid removal of ash trees from this ecosystem due to emerald ash borer 

infestation. To resolve these issues and gain a more thorough understanding of how vegetation 

shifts might affect belowground dynamics requires a more detailed examination that separates 

and clarifies the relationships between soil chemistry and microbial community structure. 

Compared to the rapid removal of a dominant tree species from a forest due pest infestation, 

vegetation shifts in the Arctic occur at a much slower pace, transitioning from tussock grass 

species to shrub or sedges species over decadal time scales. Due to major differences in climate 

and geology, Arctic soils have many unique characteristics that differentiate them from 

temperate forest soils. Seasonal freeze-thaw cycles repeatedly churn and mix the soil layers (i.e. 

cryoturbation) resulting in highly unaggregated soil structure with very high particulate organic 

matter content. Additionally, these soils contain nutrient-rich carbon (C) substrates that have 

been buried and frozen for long periods of time, potentially millennia, which has limited 

microbial decomposition of these substrates. As global temperatures rise, thawing soils may 
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alleviate this temperature limitation, resulting in increased rates of decomposition, microbial 

metabolism, and C mineralization, releasing greenhouse gases into the atmosphere, and further 

accelerating climate change. Chapter 3 examines how variations in temperature (via soil 

incubations) and soil chemistry (via site and soil layer differences) affect soil bacterial 

community structure, specifically identifying which bacterial taxa are most differentially affected 

by thawing soils from different soil layers and analyzing the relationships between these specific 

taxa and influential soil chemical factors characterized by Fourier transformed infrared (FTIR) 

spectroscopy. The results show that the greatest bacterial abundance responses to increased 

temperatures occur in permafrost soils and primarily occur in four taxonomic classes, Alpha-, 

Beta-, and Gammaproteobacteria, and Sphingobacteriia from the phylum Bacteroidetes. The 

relative abundances of these bacterial classes were also positively correlated with C 

mineralization, suggesting they may be major contributors to SOM decomposition in thawing 

permafrost soils. In addition, analysis of FTIR spectra showed absorbance peaks associated with 

silicates, and peak ratios associated with amides:aliphatics (a proxy for SOM degradation state), 

had the greatest influence in driving bacterial community structure. Altogether, these results 

provide insights into how FTIR spectral analysis may be used to predict bacterial community 

structure, and how Arctic bacterial communities respond to warming in the context of a 

controlled incubation laboratory experiment.  

In chapter 4, I examine bacterial community responses to experimental soil warming within 

the context of their natural environment. Climate change predictions for Arctic regions include 

increased temperature and precipitation (i.e. more snow), resulting in increased winter soil 

insulation, increased soil temperature and moisture, and shifting plant community composition. 

Using an 18-year snow fence study site designed to mimic anticipated increases in precipitation 
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and temperature in the Arctic, I collected soil cores from three pre-established treatment zones 

representing varying degrees of snow accumulation, where Deep snow is approximately	100%, 

and Intermediate snow is approximately 50%, of increased snowpack relative to the control, and 

Low snow approximately 25% decreased snowpack relative to the control. We performed16S 

rRNA amplicon sequencing to reveal phylogenetic community differences between samples and 

determine how soil bacterial communities might respond (structurally and functionally) to 

changes in winter precipitation and soil chemistry. We analyzed relative abundance changes of 

the six most abundant phyla (ranging from 82-96% of total detected phyla per sample) and found 

four (Acidobacteria, Actinobacteria, Verrucomicrobia, and Chloroflexi) responded to deepened 

snow. All six phyla correlated with at least one of the soil chemical properties (%C, %N, C:N, 

pH); however, a single predictor was not identified, suggesting that each bacterial phylum 

responds differently to soil characteristics. Overall, bacterial community structure (beta 

diversity) was found to be associated with the snow accumulation treatment and all soil chemical 

properties. Bacterial functional potential was inferred using ancestral state reconstruction 

(PICRUSt) to approximate functional gene abundance, revealing a decreased abundance of genes 

required for SOM decomposition in the organic layers of the deep snow accumulation zones. 

These results suggest that predicted climate change scenarios may result in altered soil bacterial 

community structure and function, and indicate a reduction in decomposition potential, alleviated 

temperature limitations on extracellular enzymatic efficiency, or both. To more accurately 

determine the genetic functional responses of the soil microbial community to this long-term 

snow depth manipulation, further sequencing would be necessary. 

Finally, in chapter 5 I use shotgun sequencing on the same metagenomic samples obtained in 

chapter 4 to further characterize the soil microbial community’s functional responses to altered 
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snow accumulation, focusing on the community’s genetic capacity to produce enzymes required 

for SOM decomposition and nutrient cycling, which will ultimately influence the fate of C stored 

in this ecosystem. In addition to more reliable functional information, shotgun sequencing also 

provides information on fungal community dynamics in relation to bacteria. We found that soil 

microbial communities under deeper snowpack have higher bacteria:fungi relative abundance 

ratios, decreased relative abundance of genes encoding enzymes for the breakdown of 

hemicellulose, chitin, and starch, and increased relative abundance of genes required for nitrogen 

fixation, ammonification, and nitrate reduction, but only past a snow-depth threshold 50-100% 

greater than the control. Additionally, genetic evidence suggested a phosphorus substrate 

preference shift from insoluble to soluble organic forms with increasing snow pack. These results 

substantiate the results from chapter 4 and suggest predicted increased snowfall and soil 

temperatures in the Arctic may 1) increase soil nutrient availability, potentially facilitating plant 

community shifts, and 2) decrease fungal abundance leading to reduced SOM decomposition 

potential and the possible re-accrual of soil C in this ecosystem over time. 
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Some days are different. 
One could almost believe that one day is just like another. 

But some days have something a little more. 
Nothing much. 

Just a small thing. 
Tiny. 

Most of the time we don’t notice these things, 
Because little things are not made to be noticed. 

They are there to be discovered. 
When we take the time to look for them… 

the small things appear. 
Here or there. 

Tiny. 
But suddenly so present… 

they seem enormous. 
The small things are treasures. 

True treasures. 
There are no greater treasures than the little things. 

One is enough to enrich the moment. 
Just one is enough to change the world. 

 
 

Selection from “Little Bird” by Germano Zullo 
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1 PERSONAL STATEMENT 

1.1 In the beginning… Motivation 

Upon entering graduate school, I had only a vague idea of the direction my research would 

take. I did not have a M.S. degree project that I might continue or that might lead me into more 

focused areas of interest. I was not “continuing” my education so much as going back to it. 

Having graduated with a B.S. degree in cell and structural biology over decade earlier, my path 

back to graduate school was a winding one. I had chosen an atypical career path after graduation, 

deciding that instead of focusing on a career in clinical laboratory work, I would focus on being a 

musician in a touring rock band. And although unstable, this period of my life was integral in 

developing a conception and philosophy of existence and mankind’s role in it, by broadening my 

horizons, opening my eyes to the larger world, and allowing me to immerse myself in nonfiction 

books, the most influential of which include Hawking 1988, Sheldrake 1990, Wilson 1992, 1998, 

Chapin et al. 2002. Years of touring resulted in endless hours in the van on the way to the next 

show, providing ample time for reading and reflection, as an ever changing and often beautiful 

landscape passed by. It was during this time that a passion for environmental science and 

conservation began to emerge, spurred by the realization that non-human life on Earth was under 

one of the greatest threats it has faced in millennia, the ever-growing human population. With 

previous experience in microbiology working in hospital laboratories and a deep seeded interest 

in agriculture having grown up in a farming family, my curiosities were driven naturally towards 

the field of soil microbial ecology, one of the fastest growing fields of science with enormous 

potential for discovery and application. And thus, my graduate journey into soil science, 

microbial genomics, and ecosystem dynamics had begun.  
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1.2 Being small in a large world 

My first few years in graduate school were exploratory. I tried and failed many times to set 

up laboratory experiments based on my developing ideas, which at the time were very scattered. 

However, each failure lead to a new idea, typically inspired from reading the literature. Reading 

was essential to my development during this stage. Review articles helped to provide context 

into the current state of the field, revealing unanswered questions, identifying useful laboratory 

and field techniques, and providing literature for further reading. I began to realize the degree of 

complexity inherent in soil ecosystems and to understand the challenges associated not only with 

identifying and characterizing soil microbial communities, but also with determining how they 

might affect global processes, and in turn, be affected by them.  

Soil microbes primarily affect larger scale properties through their metabolic activity, 

biogeochemical cycling, and decomposition processes, which regulate nutrient turnover affecting 

plant community diversity and productivity (Van Der Heijden et al. 2008), and release a variety 

of gases into the atmosphere, including a number of greenhouse gases such as N2O, CO2, and 

CH4 (Oertel et al. 2016). Because of the extraordinarily vast number of microbes in the 

environment, these processes easily scale up to global level importance. Some estimates predict 

the total number of prokaryotic cells on Earth to be 4-6×1030, equaling 350 –550 Pg of C, with 

2.6×1029 of those inhabiting soils (Whitman et al. 1998). However, bacterial abundances can 

vary greatly between geographic regions, habitats, and ecosystem types due to differences in 

climate, topography, or other environmental factors, and this can affect the amount of influence 

microorganisms may have in any particular system. In the following years, the more I learned 

about microbial controls over ecosystem dynamics, as well as environmental influences over soil 

microbial community structure, the more focused my interests became. This idea of something 
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so small having such a large impact is a dichotomy that continues to fascinate me, and linking 

these spatial scales became a primary motivator in my research moving forward. 

1.3 The soil environment  

The soil environment is unique in its complexity. There are many soil types, made up of 

varying materials, structures, chemistries, and other characteristics unique to each ecosystem and 

changing with soil depth. The soil matrix is made up of minerals, organic matter, water, and pore 

space, and its structure, which is partially determined by soil aggregate formation, is often 

changing as physical and biological processes occur (Bronick and Lal 2005). Soil 

microorganisms live within this soil matrix, typically in the pore spaces, in water films, or 

attached to the surfaces of organo-mineral complexes in biofilms (Young and Crawford 2004, 

Flemming and Wingender 2010). In addition, soil microbes have evolved alongside a myriad of 

other organisms, including micro- and macrofauna and rooting plant species, and therefore many 

have become obligate symbionts, requiring a consortium of other microorganisms, or perhaps a 

host symbiont such as a plant or an animal, to perform necessary life functions (Zilber-

Rosenberg and Rosenberg 2008, Lambers et al. 2009). This makes soil microorganisms very 

difficult to culture, isolate and characterize in vitro using standard microbiological techniques. 

Prior to genomic sequencing technology, it is estimated that only 0.1 to 1% of soil microbes were 

known (Torsvik et al. 2002, Rappé and Giovannoni 2003), however current estimates now 

predict global microbial diversity to exceed 1 trillion species (Locey and Lennon 2016). 

Therefore, it soon became obvious that to address my emerging questions related to how soil 

microbial communities respond to changing environments would require the use of modern 

genomic techniques in concert with experimental field manipulations or opportunistic natural 
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disturbances, and soil chemical/physical characterization. 

1.4 Modern tools and technology – The age of genomics 

After determining the types of data I would need to explore soil microbial communities in 

their natural environments, I began searching for opportunities and funding to initiate my 

projects. While high-throughput sequencing methods have become more affordable, it can still 

be relatively expensive. Fortunately, I was able to become involved in previously established 

projects/experiments that fit well with my research questions and was able to secure funding for 

genomic sequencing of soil microbial communities which would provide me with an enormous 

wealth of taxonomic and functional data. As opposed to older microbiology methods which must 

remove the organism from its natural environment for characterization, the sequencing approach 

instead allows the direct extraction of genomic materials from a minimally disturbed 

environment, essentially providing researchers with a snapshot of the microbial community and 

its genetic functional capacity.  

However, it is important to recognize the many caveats that exist when using these methods, 

some of which stem from technical variation and uncertainty associated with sample collection, 

nucleic acid extraction, PCR amplification, and sequencing bias, but others that are inherent to 

microbial ecology, such as varying gene copy numbers between different microorganisms. These 

caveats, which also inevitably result in proportional data, can make it difficult to draw 

biologically meaningful or accurate conclusions and has spurred the development of entirely new 

areas of research in bioinformatics and statistical analysis. Thus, in order for me to understand 

and correctly interpret my results, I had to gain a basic understanding of these methods. Learning 

various computer languages (i.e. unix/linux, python, R) to work with large genomic files and 
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data sets, while simultaneously learning how and when to use constantly evolving statistical 

analyses, was one of the most challenging periods of my graduate school experience. However, it 

was necessary in order to identify patterns within such large data sets linking soil microbial 

abundances to both biotic and abiotic environmental factors, which act on each other both 

directly and indirectly. These relationships, interactions, and feedbacks are at the heart the 

challenges we face as microbial ecologists and is what makes the study of soil microbial 

dynamics so complex. And this led me to the development of a conceptual framework from 

which I could more holistically interpret my results (Figure 1.1). Using this context as a guide 

enabled me to more fully understand what could be happening in any given ecosystem, and how 

and why soil microbial communities respond the way they do to changing environments. The 

following chapters provide examples of this and have launched me into a brave new world of 

emerging questions and bright horizons. Enjoy the ride! 

 

 

Figure 1.1.  Conceptual diagram representing the relationships, interactions, and feedbacks that 
occur between soil microorganisms and both biotic and abiotic environmental factors. Solid lines 
indicate direct effects while dotted lines indicate indirect effects.  
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2 EVIDENCE OF ASH TREE (FRAXINUS SPP.) SPECIFIC ASSOCIATIONS WITH 
SOIL BACTERIAL COMMUNITY STRUCTURE AND FUNCTIONAL CAPACITY 

This chapter is a reprint (with minimal reformatting) of an original article published by MDPI 
journals in the journal Forests. It has been licensed under an open access Creative Commons CC 
BY 4.0 license, where the authors retain the copyright. There is no need for reproduction 
permissions from the publisher. 

Ricketts, M. P., C. E. Flower, K. S. Knight, and M. A. Gonzalez-Meler. 2018. Evidence of ash 
tree (Fraxinus spp.) specific associations with soil bacterial community structure and 
functional capacity. Forests 9:1–16. 

2.1 Introduction 

Anthropogenic disturbances to Earth’s ecosystems have the potential to alter the abundances 

and distributions of organisms worldwide, (Parmesan and Yohe 2003; Settele et al. 2014) and 

therefore the structure and function of their environments (Cramer et al. 2001; Drewniak and 

Gonzalez-Meler 2017; Gonzalez-Meler, Rucks, and Aubanell 2014; McNickle et al. 2016). Such 

disturbances include warming air temperatures, changing precipitation patterns, severe weather 

events, atmospheric nutrient deposition, or the introduction of invasive species. In temperate 

forest ecosystems of eastern North America, ash trees (Fraxinus spp.) have suffered significant 

declines over the past two decades due to the infestation of the invasive emerald ash borer (EAB; 

Agrilus planipennis), a wood boring beetle introduced from Asia (Cappaert et al. 2005; Wang et 

al. 2010). The EAB selectively deposits eggs on the bark of ash trees where hatched larvae 

burrow into cambial tissue to feed, creating serpentine galleries and severing the distribution of 

water and nutrients between the roots and shoots (Flower et al. 2018). This results in ~99% ash 

tree mortality within two to five years after infestation (McCullough and Katovich 2004; Knight, 

Robert, and Rebbeck 2008) and complete mortality within a stand in roughly five to seven years. 

(Costilow, Knight, and Flower 2017). Ash trees are widely distributed throughout North America 
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and are a major component of forest and urban tree communities, representing roughly 2.5% of 

the aboveground biomass stocks in the US and storing ~0.303 Pg of carbon (C) (Birdsey 1992; 

Birdsey and Heath 1995; Goodale et al. 2002; Flower, Knight, and Gonzalez-Meler 2013). The 

widespread decline of ash has multiple cascading effects on ecosystem productivity, structure, 

and function, as the transformation from live standing biomass to fallen trees (Higham et al. 

2017), plant litter, and soil organic matter (SOM) unfolds. Specifically, rapidly reduced water 

flux and plant respiration, coupled with large inputs of coarse woody debris and altered tree 

community composition, may significantly alter ecosystem hydrology, C and nutrient dynamics, 

forest tree community succession, edaphic factors, and belowground microbial community 

structure and function (Lovett et al. 2006; Telander et al. 2015; Flower and Gonzalez-Meler 

2015; Flower et al. 2018). 

Soil microorganisms play a key role in the decomposition of SOM and regulation of nutrient 

availability to plants (Hopkins et al. 2013; Cheng et al. 2014), both of which have important 

implications for ecosystem biogeochemical cycling and net primary productivity (NPP) (Van 

Der Heijden, Bardgett, and Van Straalen 2008). Microbial functional responses to disturbances 

or environmental shifts, such EAB-induced ash decline, are dependent on the microbial 

community’s resilience to change and the degree of functional redundancy within the community 

(Allison and Martiny 2008). While functional redundancies often exist between microbial taxa, 

large shifts in microbial community structure may result in the altered functional capacity of the 

community to access and degrade SOM or perform nutrient transformations and mobilization 

(Ricketts et al. 2016; Bailey et al. 2013; Schimel and Schaeffer 2012; Allison and Martiny 2008). 

Thus, identifying factors that influence microbial community structure is important to 

understanding potential changes in the functions of decomposers. A variety of edaphic factors 
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are thought to influence soil microorganisms, including pH, C-availability, moisture, O2 

availability, and bulk density (Fierer 2017). In particular, soil pH has been shown to be one of 

the governing forces driving soil microbial community structure (Fierer and Jackson 2006; 

Lauber et al. 2009; Cho, Kim, and Lee 2016). Aboveground vegetation may also influence 

belowground microbial community structure, with specific plant species associating with (and 

even recruiting) unique microbial assemblages (Schlatter et al. 2015; Bakker, Bradeen, and 

Kinkel 2013; Prescott and Grayston 2013). These above-belowground associations are most 

often studied at the community or ecosystem level (e.g. forest vs. grassland, deciduous vs. 

coniferous forests), while soil microbial associations with individual plant species or genera 

remain poorly understood. 

This study aimed to examine soil microbial community associations with ash trees to better 

understand belowground consequences of EAB disturbance. Microbial functional potentials were 

estimated with respect to nutrient and C-cycling processes that, in turn, may affect forest 

recovery trajectories. If soil microbes exhibit a different community structure under stands with 

ash trees when compared to stands without ash trees, this would suggest a strong, genera specific 

relationship between the presence of, decline of, or mortality of ash trees and soil microbial 

communities. If instead belowground microbial communities are similar across the 

heterogeneous forest landscape, this would indicate a whole forest, community level influence 

governed by varying degrees of environmental, physical, and edaphic factors. To address these 

competing hypotheses, we used 16S rRNA metagenomic sequencing methods, which specifically 

target bacterial and archaeal organisms, to analyze archived soil DNA samples collected from 

paired ash and non-ash forest plots in 2011 during the early stages of EAB infestation. If 

differences were observed in the soil bacterial community structure between ash and non-ash 
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plots, then we expected the functional potential to cycle C and nutrients to reflect the specific 

differences in the bacterial community. This work provides a unique snapshot of soil bacterial 

communities, their functional potentials, and their associations with dominant tree genera, during 

the early stages of EAB disturbance in an ash-dominated forest near the core area of infestation. 

2.2 Materials and Methods  

2.2.1 Site description 

In 2011, four forest sites, Bohannan Nature Preserve (BHN), Kraus Nature Preserve (KRS), 

Seymour Woods State Nature Preserve (SYM), and Stratford Ecological Center (STR), were 

selected within Delaware County, Ohio (Figure 2.1 and Table 2.1). These sites are secondary 

successional forests largely dominated by ash (Fraxinus americana L., F. pennsylvanica 

Marshall and F. quadrangulata). Other canopy tree genera include maple (Acer saccharinum, A. 

saccharum, A. rubrum), oak (Quercus palustris, Q. rubra, Q. alba.), beech (Fagus grandifolia), 

shagbark hickory (Carya ovata), cottonwood (Populus deltoids), elm (Ulmus americana, U. 

rubrum), black cherry (Prunus serotina), black walnut (Juglans nigra), and willow (Salix spp.).  

 

Figure 2.1.  Map of study sites within Delaware county, Ohio. 
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Table 2.1.  Summary of site characteristics. 

Forest Soil Type1 
Number of plots  
(Ash / Non-ash) 

Basal area  
(m2/ha) 

Relative BA of 
ash trees (%)  

Bohannan Woods (BHN) Cardington silt loam 3 /2 37.7±2.5 49.3±5.7 

Kraus Woods (KRS) Glynwood silt loam 3 /2 34.7±3.0 63.2±4.4 

Seymour (SYM) Blount silt loam 2 /2 26.0±3.0 46.5±6.0 

Stratford (STR) Glynwood silt loam 3 /3 33.9±5.0 35.5±13.0 

1 Primary soil type ascertained from NRCS web soil survey 
 

In each site, we randomly established two or three “ash” plots (11.28 m radius), which 

contained ash trees as a major component of the canopy (48.8 ± 4.8% (mean ± S.E.) of total 

basal area), and two or three “non-ash” plots, which did not contain ash trees as a major 

component of the understory or canopy (defined as <5% of total basal area; see Table 2.1 and 

Supplementary Table S2.3 for details). Ash and non-ash plots were located between 50–100 m 

away from one another and were selected to represent similar topography, soil type, and moisture 

regimes. Within each plot, trees >10 cm in diameter at breast height were identified and 

measured and the total basal area (BA) per hectare (m2/ha), number of stems per hectare (#/ha), 

and relative tree dominance (%) by BA were calculated (Table 2.1 and Supplementary Table 

S2.3). 

By 2011, EAB had reached forests of central Ohio and ash trees had begun to exhibit visual 

symptoms of infestation at our sites. While this may not be ideal for establishing baseline 

associations with healthy ash trees, we were able to collect samples in the early stages of EAB 

infestation before complete ash mortality occurred, which is rapidly becoming more difficult to 

find in high-density ash tree forests. To quantify the health of trees within the plots, we used ash 
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tree canopy condition (AC), a metric for tracking the health of ash trees exposed to EAB, which 

is correlated to EAB densities and tree physiology (Flower et al. 2013; Smith 2006). This 

assessment is a non-linear five-point categorical scale which assigns healthy trees a value of 1 

and standing dead trees a value of 5. At the plot-level, ash canopy health was calculated as the 

mean AC of all ash trees within a plot. To account for the potential effects associated with ash 

trees in later states of decline, we performed a separate analysis which removed all sites that 

contained any plots with mean AC scores>3, resulting in two sites consisting of six ash 

(AC=2.42 ± 0.30) and four non-ash plots (Supplementary Table S2.1). 

2.2.2 Soil collection and characterization 

To characterize potential associations between ash trees and soil bacterial communities, we 

randomly selected 30 locations in each plot and extracted 0–10 cm soil cores with a 1.9 cm 

diameter soil probe (Oakfield Model L tube sampler soil probe), which was cleaned and 

sterilized with 100% ethanol between plots. Soils were sampled in late July during the peak 

period of NPP. Roots were removed and soil samples from each plot were homogenized on site, 

placed in a cooler with dry ice, and stored at −80 °C until DNA extraction. Soil subsamples were 

analyzed for pH and a variety of solubilized soil minerals (Ca, K, Mg, P, Al, B, Cu, Fe, Mn, Na, 

S, and Zn) by the University of Maine Soils Lab using a modified Morgan nutrient extraction 

procedure and a TJA Model 975 AtomComp ICP-AES. Soil C and nitrogen (N) concentrations 

(%) were measured at the University of Illinois at Chicago (UIC) Stable Isotope lab using a 

Costech (Valencia, CA, USA) elemental analyzer (EA). Prior to analysis, samples were dried 

until no mass lost in a 60 °C oven, pulverized using a ball mill, and ~5mg of sample was placed 

into a tin capsule. 
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2.2.3 DNA extraction, sequencing, quality control and bioinformatics 

DNA was extracted from ~0.25g of each soil sample using MoBio’s PowerSoil®-htp 96 Well 

Soil DNA Isolation Kit as per the manufacturer’s protocol. The V4 region of the 16S SSU rRNA 

gene was amplified using PCR primers 515F/806R following protocols outlined by the Earth 

Microbiome Project (Gilbert, Jansson, and Knight 2014). Final amplicon DNA concentrations 

were quantified using the PicoGreen® dsDNA Assay Kit and amplicons were sequenced using an 

Illumina MiSeq instrument (2 × 150 bp paired-end). All sequences have been deposited in the 

NCBI Sequence Read Archive under SRA study #SRP136455. Initial sequence data quality 

filtering, paired-end assembly, demultiplexing, closed reference operational taxonomic unit 

(OTU) picking, and phylogenetic assignments were performed using the QIIME software 

package version 1.9.1 (http://qiime.org/) (Caporaso, Kuczynski, and Stombaugh 2010). OTU 

abundance data was normalized to account for estimated 16S rRNA gene copy number within 

each OTU assignment using the python script normalize_by_copy_number.py from the PICRUSt 

software package (Langille et al. 2013). OTU picking identified 9387 OTU’s, with an average of 

2283 ± 146 OTU’s per sample. In total, there were 39 phyla identified, the 10 most abundant of 

which encompassed 98% of all bacteria/archaea. Sequences were rarefied at 5900 sequences per 

sample for diversity analysis. More detailed methods can be found in Ricketts et al., 2016 

(Ricketts et al. 2016). 

The genetic functional potential of bacterial/archaeal communities was determined by 

estimating gene abundance using the PICRUSt software package version 1.1.0 

(http://picrust.github.io/picrust/) (Langille et al. 2013). Genetic pathways necessary for 

biogeochemical metabolisms were selected based on the KEGG ortholog hierarchical system, 

which is a knowledge database dedicated to linking genomic information to cellular and 



 
 

15 

metabolic functional pathways (Kanehisa and Goto 2000). This framework allows individual 

gene abundance data to be collated into broader functional groups, providing a more practical 

basis for functional gene analysis. We focused our analysis specifically on the energy 

metabolism and carbohydrate metabolism level 2 KEGG groups. Within these groups, all level 3 

KEGG metabolic pathways, organized at a finer functional scale, were also analyzed. 

2.2.4 Statistical analyses 

Bacterial community differences were explored by examining Hellinger transformed 

abundance data in two ways. First, the bacterial abundance differences of the 10 most abundant 

phyla (98.1% of total bacteria), the 20 most abundant classes (93.8% of total bacteria), and the 

30 most abundant orders (90.9% of total bacteria), were analyzed between ash and non-ash plots 

using Mann–Whitney U tests and between sites using Kruskal-Wallis and posthoc Nemenyi 

tests, both with a significance threshold of p<0.05, using the R statistical program (R Core Team 

2013). Second, overall bacterial community structure differences between ash and non-ash plots 

and between sites, were analyzed by comparing Bray-Curtis dissimilarity matrices of Hellinger 

transformed bacterial abundances using adonis tests (similar to PERMANOVA) in R with 

99,999 permutations. Assumptions of the adonis test were verified using the betadisper function 

in the R package vegan (Oksanen et al. 2017), which tests the multivariate homogeneity of group 

dispersions (variances). A non-metric multidimensional scaling (NMDS) plot (stress=0.080, 

Shepard plot non-metric R2=0.994) was created using the R package phyloseq (McMurdie and 

Holmes 2013) and the same Bray–Curtis dissimilarity matrices to visualize differences in 

bacterial community structure between ash and non-ash plots and sites. 

All other variables, including AC, BA, stem density, relative tree dominance, bacterial and 
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tree alpha-diversities (Shannon diversity index), and soil factors, were analyzed for differences 

between ash and non-ash plots using Mann-Whitney U tests (p<0.05) and for differences 

between sites using Kruskal-Wallis with the posthoc Nemenyi tests (p<0.05). Euclidean distance 

matrices constructed from each variable using the dist function in the R package vegan (Oksanen 

et al. 2017) were compared to the soil bacterial community Bray-Curtis distance matrix 

(described above) using Mantel tests (p<0.05) to determine how strongly each variable correlated 

with (or influenced) bacterial community structure. In addition, the overall soil environment was 

analyzed by combining all soil variables into a single Euclidian dissimilarity matrix, which was 

tested for ash vs. non-ash differences and site differences using adonis tests and effects on 

bacterial community structure using a Mantel test. To better understand the effects of EAB-

induced tree stress on bacterial community structure within ash plots, linear relationships 

between mean AC and the ten most abundant bacterial phyla were analyzed and a Mantel test for 

mean AC (as described above) was performed using only ash plots. 

Ash vs. non-ash differences in PICRUSt estimated functional gene abundances for the 

selected KEGG ortholog groups were tested in STAMP (Parks et al. 2014) using Welch’s two-

tailed t-test. To assess the significance and adjust for potential false discoveries, we utilized the 

Benjamini-Hochberg procedure where original p-values were ranked in order of significance, 

multiplied by the number of comparisons (Lvl 2 n=64, Lvl 3 n=328), and divided by their 

respective rank numbers to obtain a corrected p-value (q-value). The significance threshold used 

was q<0.05. In addition, Pearson’s correlations were used to determine relationships between 

Hellinger transformed bacterial phyla abundance and level 3 KEGG ortholog functional group 

gene abundance. To account for potential false discoveries here, we used the more conservative 

Bonferroni adjustment, where original p-values are simply multiplied by the number of 
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comparisons (n=240) and assigned a threshold of p<0.05. It is important to remember that 

relationships between bacterial abundance and gene abundance are predetermined by algorithms 

used by the PICRUSt software, as all estimated gene abundance information is directly derived 

from bacterial abundance data in combination with genomic databases. However, it does provide 

information on inherent functional relationships within each bacterial phylum and reveals 

potential differences in function as a result of abundance differences in individual bacterial 

taxonomic groups. 

2.3 Results  

2.3.1 Environmental and site differences  

The overall soil environment was similar between ash and non-ash plots (adonis H=0.098, 

p=0.065), but differed across sites (adonis H=0.301, p=0.003). Specifically, only two of the 16 

soil variables, Cu (W=12.5, p=0.006) and Fe (W=18, p=0.016), differed between ash and non-ash 

plots (Table 2.2), where Cu and Fe were both greater in non-ash plots. Between sites, the %C 

(H=11.51, p=0.009), %N (H=12.96, p=0.005), C:N (H=10.15, p=0.017), P (H=12.35, p=0.006), 

Al (H=9.71, p=0.021), and Zn (H=9.79, p=0.020) were different (Table 2.2). Posthoc tests 

revealed both %C and %N to be significantly lower at SYM compared to the other sites, while 

C:N remained constant across sites, with the exception of being significantly lower at BHN. 

Similarly, soil P, Al, and Zn were lower at SYM (Supplementary Table S2.2). 

Analysis of non-soil variables revealed ash tree health (mean AC) to be variable between 

sites (H=9.24, p=0.026; Table 2.2). Total BA (m2/ha) did not differ between ash and non-ash 

plots or between sites, although it was somewhat lower at SYM where the stem density (#/ha) 

was highest (H=8.78, p=0.032) due to a large number of small trees (Supplementary Table S2.2 
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and Supplementary Table S2.3). Of the five most abundant tree genera, only oak species relative 

dominance differed between ash and non-ash plots (p=0.003) and only beech tree relative 

dominance differed between sites (p=0.007; Table 2.2). Oak trees had a higher relative 

dominance in non-ash plots vs. ash plots and beech trees were more dominant in KRS than any 

of the other sites. Tree community alpha-diversity was not different between plots (W=60.5, 

Table 2.2.  Summary of statistical results. Adonis tests were used to analyze differences in 
overall bacterial community structure and overall soil chemical characteristics between 
categorical variables (a). Continuous variables were analyzed individually (b) for differences 
between ash and non-ash plots (Mann-Whitney U test), differences in forest sites (Kruskal-
Wallis), and for correlations between overall bacterial community structure and individual 
variables (Mantel test). Text in bold and italics represents a significant result (p<0.05). 

(a)  Adonis test 

  Bacterial community  Soil environment 

Categorical variables   R2 p-value  R2 p-value 

Ash v. Non-ash  0.334 0.002  0.098 0.066 

Forest site  0.140 0.502  0.301 0.003 
(b)  Mann-Whitney U test  

(Ash v. Non-ash) 

 Kruskal-Wallis test 
(Forest site; df=3) 

 Mantel test 
(Bacterial community)  

Continuous variables  W p-value  H p-value  r-statistic p-value 

Mean AC (ash only)  - -  9.24 0.026  -0.060 0.620 

Mean Stems (#/ha)  75.5 0.051  8.78 0.032  -0.127 0.870 

Mean BA (m2/ha)  69 0.152  5.23 0.156  0.060 0.261 

Soil pH  73 0.080  3.88 0.275  0.289 0.006 

%C  49.5 1.000  11.51 0.009  -0.173 0.981 

%N  58 0.541  12.96 0.005  -0.175 0.986 

C:N  34.5 0.270  10.15 0.017  -0.134 0.911 

Ca  69 0.152  4.53 0.210  0.304 0.007 

K  42 0.603  3.71 0.295  -0.030 0.594 

Mg  67 0.201  4.81 0.186  0.274 0.011 

P  49 1.000  12.35 0.006  -0.088 0.846 

Al  29 0.131  9.71 0.021  0.177 0.045 

B  40 0.494  3.64 0.303  -0.075 0.708 

Cu  12.5 0.006  0.32 0.957  0.047 0.304 

Fe  18 0.016  1.49 0.685  0.273 0.010 
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p=0.425) or sites (H=5.67, p=0.129) and did not correlate with the soil bacterial community 

(mantel r-statistic=−0.048, p=0.631; Table 2.2 and Supplementary Table S2.2). 

2.3.2 Bacterial community differences 

Soil bacterial community structure (i.e. beta-diversity) differed between ash and non-ash plots 

(adonis R2=0.334, p=0.002), but not between sites (adonis R2=0.140, p=0.501; Figure 2.2 and 

Table 2.2). Ash tree relative dominance was the only tree genera to show a significant correlation 

with bacterial community structure (mantel r-statistic=0.264, p=0.007). Although the overall soil 

environment did not show a strong relationship with bacterial community structure (mantel r-

statistic=0.053, p=0.305), certain individual soil variables did, including soil pH (mantel r-

statistic=0.289, p=0.006), Ca (mantel r-statistic=0.304, p=0.007), Mg (mantel r-statistic=0.274, 

p=0.011), and Al (mantel r-statistic=0.177, p=0.045; Table 2.2). It should be noted that Mg, Ca, 

and Al are all highly correlated with soil pH (>0.79, p<0.001). 

 

Mn  48 0.941  2.11 0.550  -0.143 0.921 

Na  56 0.656  6.37 0.095  0.002 0.439 

S  24 0.056  0.88 0.831  -0.143 0.924 

Zn  40 0.503  9.79 0.020  0.083 0.241 



 
 

20 

 

Figure 2.2.  Non-metric multidimensional scaling (NMDS) plot where each point represents the 
bacterial/archaeal community structure of a sample (stress=0.080, Shepard plot non-metric 
R2=0.992). Color indicates ash v. non-ash plots and shape indicates forest site. Ellipses represent 
95% confidence intervals of centroids for ash and non-ash plots. Bacterial/archaeal community 
structures differed significantly between ash and non-ash plots (adonis p=0.002). 

We also found significant differences between ash and non-ash plots in the relative 

abundances of seven out of 10 of the most abundant bacterial phyla (Figure 2.3); however, 

between forest sites, there were no abundance differences in any of the phyla. Likewise, EAB-

induced tree stress (i.e. mean AC) did not affect bacterial abundances (Figure 2.4). All phyla 

were less abundant in non-ash plots, except Acidobacteria and Elusimicrobia, which were more 

abundant in non-ash plots (p=0.004 and p=0.261 respectively). At finer taxonomic levels, these 

differences were not as noticeable, with only two out of 20 of the most abundant classes and two 

out of 30 of the most abundant orders showing significant differences between ash and non-ash 
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plots (Supplementary Figure S2.1 and Supplementary Figure S2.2). Interestingly, all four of 

these differences were in the Actinobacteria phylum, which were more abundant in the ash plots. 

Soil bacterial alpha-diversity did not vary between ash and non-ash plots (W=54, p=0.766) or 

between sites (H=4.07, p=0.254) and showed no relationship with bacterial community structure 

(mantel r-statistic=0.264, p=0.007; Table 2.2 and Supplementary Figure S2.2). 

 

Figure 2.3.  Boxplot comparing the average Hellinger transformed abundances of the 10 most 
abundant bacterial/archael phyla between ash (blue) and non-ash (orange) plots. Mann-Whitney 
U-test significance is denoted by asterisks, where *=p<0.05, **=p<0.01, and ***=p<0.001. 
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Figure 2.4.  Linear relationships between canopy tree health (mean AC) of ash plots only (n=11) 
and Hellinger transformed abundances of the 10 most abundant bacterial phyla. 

2.3.3 Bacterial functional differences  

Bacterial community differences between ash and non-ash plots resulted in estimated 

functional potential differences. At KEGG level 2 (see methods), differences in PICRUSt-

estimated functional gene abundances were found in both energy metabolism (ash>non-ash; 

d=1.13, q=0.047) and carbohydrate metabolism (non-ash>ash; d=−1.68, q=0.015; Figure 2.5). At 

KEGG level 3 within the energy metabolic pathways, three of the nine ortholog groups (carbon 

fixation pathways in prokaryotes, d=1.82, q=0.060; methane metabolism, d=1.80, q=0.048; and 

carbon fixation in photosynthetic organisms, d=1.56, q=0.018) were significantly more abundant 

in ash plots than non-ash. In contrast, four of the nine groups (sulfur metabolism, d=−1.66, 

q=0.018; photosynthesis, d=−1.37, q=0.029; oxidative phosphorylation, d=-1.37, q=0.029; and 

photosynthesis proteins, d=−1.27, q=0.042) were more abundant in non-ash plots (Figure 2.5b). 

Nitrogen metabolism capacity was not different in ash vs. non-ash plots. 

Within the KEGG carbohydrate metabolic pathways, seven out of 15 ortholog groups were 
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significantly more abundant in non-ash plots (Figure 2.5b). These include pentose and 

glucuronate interconversions (d=−1.74, q=0.037), galactose metabolism (d=−1.71, q=0.023), 

ascorbate and aldarate metabolism (d=−1.68, q=0.020), starch and sucrose metabolism (d=−1.70, 

q=0.018), inositol phosphate metabolism (d=−1.67, p=0.018), amino sugar and nucleotide sugar 

metabolism (d=−1.65, q=0.018), and the pentose phosphate pathway (d=−1.36, q=0.023). 

However, four out of the 15 groups were significantly more abundant in ash plots, including the 

tricarboxylic acid (TCA) cycle (a.k.a. Krebs cycle; d=1.74, q=0.027), pyruvate metabolism 

(d=1.66, q=0.018), butanoate metabolism (d=1.61, q=0.018), and glycolysis/gluconeogenesis 

(d=1.38, q=0.025). 
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Figure 2.5.  Functional gene abundance comparisons between ash and non-ash plots at KEGG 
levels 2 (a) and 3 (b). Extended bar graphs show differences in the mean proportions of 
functional genes required for biogeochemical cycling ordered by decreasing effect size. Error 
bars represent 95% Welch’s inverted confidence intervals. Welch’s two-tailed t-test was used 
with Benjamini-Hochberg FDR procedure to obtain corrected q-values. All statistics and 
graphics were produced using STAMP software. 

  

a) KEGG Level 2

b) KEGG Level 3
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Figure 2.6.  Pearson’s correlation matrix comparing the ten most abundant bacterial phyla to 
level 3 KEGG functional categories, ordered as in Figure 2.4. Circle color indicates either a 
positive (blue) or negative (red) correlation, and circle size and shading are proportional to 
correlation coefficients regardless of statistical significance. Bonferroni adjusted significance 
(p<0.05) is indicated by white asterisks. 

General patterns in the correlation relationships between bacterial phyla and functional roles 

reveal that Acidobacteria specializes in unique functional roles compared to other phyla (Figure 

2.6). Acidobacteria, the most abundant phylum and with large differences between ash and non-

ash plots, was positively correlated with many of the KEGG level 3 functional groups, including 

those that were significantly higher in non-ash plots (Figure 2.5). Specifically, Acidobacteria 

relative abundance correlated with starch and sucrose metabolism (r=0.810, p=0.004), amino 
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sugar and nucleotide sugar metabolism (r=0.821, p=0.002), galactose metabolism (r=0.799, 

p=0.006), inositol phosphate metabolism (r=0.817, p=0.003), and sulfur (S) metabolism 

(r=0.755, p=0.029). Although Bacteroidetes was not one of the seven phyla which differed 

between ash and non-ash plots, it did have the most corollary relationships with the KEGG 

functional groups we analyzed (13 out of 24 with r>0.750 and p<0.05). 

2.4 Discussion 

Here, we present evidence that plots containing ash trees at varying stages of EAB-induced 

decline have different belowground bacterial and functional characteristics than non-ash plots, in 

spite of having similar soil environmental factors (Table 2.1 and Table 2.2). These soil bacterial 

community differences between ash and non-ash plots (Figure 2.2), which were largely driven by 

Acidobacteria relative abundance (Figure 2.3), suggest that in temperate forest ecosystems, ash 

trees may exhibit a genera specific relationship with soil microorganisms and contribute to 

shaping soil bacterial community assemblages, which may influence specific functional 

capacities. The estimated functional data suggest that soil communities in ash plots may have 

different functional capabilities from those in non-ash plots with respect to C and P metabolism, 

but not with N metabolism (Figure 2.5). Based on these results and because of the inherent 

linkage between above- and belowground communities, the loss of ash trees to EAB infestation 

will likely drive changes in soil microbial communities that lead to altered C and nutrient cycling 

in this forest ecosystem beyond the expected increase in litter inputs. These fundamental 

biogeochemical and successional shifts may make this ecosystem susceptible to invasive plant 

species or pathogenic microorganisms (Hobbs and Huenneke 1992). 

Although the direct effects of tree decline on the belowground community were not explicitly 
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evaluated in this study, the degree of EAB disturbance severity, as indicated by AC, did not 

affect the overall soil bacterial community structure (Mantel test—Table 2.2) or the individual 

abundances of major bacterial phyla within the ash stands (Figure 2.4). Likewise, the removal of 

sites with severely affected ash trees from the analysis (AC>3) did not alter the results 

(Supplementary Table S2.1). This indicates that ash associated bacterial communities may 

persist throughout EAB infestation and the eventual ash tree mortality. Changes in the microbial 

community may be expected some years after ash mortality is completed, depending on the 

species that occupy the newly available niche. The ash legacy ecosystem effects on soil 

properties deserve further investigation. 

Other studies have reported that dominant tree genera may contribute to shaping soil 

microbial communities (Kaiser et al. 2010; Urbanová, Šnajdr, and Baldrian 2015; Lejon et al. 

2005), but to our knowledge, few studies have investigated soil microbial community 

associations with ash trees specifically. The mechanisms by which trees exert influence on soil 

communities are generally attributed to direct and persistent inputs to the soil environment, likely 

from the chemical nature of litter deposition and root exudates. However, while there were 

obvious differences in bacterial community structure between ash and non-ash plots in our study 

(Figure 2.2 and Figure 2.3), determining causation can be challenging. A variety of biotic and 

abiotic factors may contribute to shaping the soil microbiome at a given site. For example, the 

presence/absence of other non-ash tree species within the plots may confound the interpretation 

of results. Oak tree relative dominance was low in the plots with ash trees and was higher in 

plots without ash trees (Table 2.2 and Supplementary Table S2.3). These results may indicate 

that the bacterial community differences we see between ash and non-ash plots could also be due 

to oak tree influence. However, results from the Mantel test analysis suggest that oak tree 
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dominance did not have an effect on bacterial community structure (p=0.338), while ash tree 

dominance did (p=0.007), providing a stronger case for soil bacterial association with ash trees 

specifically. Likewise, bacterial community structure has been shown to be highly influenced by 

soil pH (Fierer and Jackson 2006; Lauber et al. 2009; Cho, Kim, and Lee 2016), which along 

with other correlated soil variables (Mg, Al, and Ca), is supported by our data (Table 2.2). The 

most abundant phylum in these sites was Acidobacteria, which are known to prefer acidic 

environments (Ward et al. 2009). This phylum had a 1.5-fold greater relative abundance in non-

ash plots when compared to ash plots (Figure 2.3) and may very well be driving the overall soil 

bacterial community structure differences at these sites. While soil pH was only marginally 

statistically different between ash and non-ash plots (W=73, p=0.080), it was more acidic in non-

ash plots where Acidobacteria were more abundant. So, while ash trees are tolerant of a wide 

range of soil pH values, including very acidic ones (Burns and Honkala 1990), it is possible that 

soil pH may be contributing to both bacterial and tree community structure. 

Besides being the most abundant phyla in these soils and a major driver of bacterial 

community structure, Acidobacteria exhibit a number of interesting patterns. Overall, our data 

reveal opposite trends in Acidobacteria relative abundance (ash vs. non-ash) and functional 

correlations when compared to eight of the nine remaining most abundant bacterial phyla (Figure 

2.3 and Figure 2.6). Acidobacteria were found to be more abundant in non-ash plots, while the 

other eight phyla were more abundant in ash plots (Figure 2.3). This pattern also holds true for 

correlations made with functional gene abundances, where a positive correlation with 

Acidobacteria often occurred alongside a negative correlation with the other phyla and vice versa 

(Figure 2.6). Our data suggests that Acidobacteria correlate positively with the breakdown of 

complex sugars leading to glycolysis (i.e. starch, sucrose, galactose and amino sugar 
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metabolisms), while other phyla, such as Proteobacteria, Verrucomicrobia, and Bacteroidetes, 

correlate positively with enzymes tied more closely to the TCA cycle (i.e. 

glycolysis/gluconeogenesis and pyruvate, glycoxylate, dicarboxylate, and butanoate 

metabolisms). Even though the relative abundances of some major phyla (e.g. Verrucomicrobia 

and Bacteroidetes) did not differ greatly between ash and non-ash plots (Figure 2.3) and were 

highly correlated with the above-mentioned functions (Figure 2.6), the ash vs. non-ash 

differences in these same functional groups were still significant (Figure 2.5). This suggests that 

the combined directional relationships of non-Acidobacteria phyla with these functions may also 

contribute to ash vs. non-ash functional differences; however, Acidobacteria remain the most 

likely driver of relative abundance and functional differences. Acidobacteria are typically aerobic 

heterotrophs capable of utilizing a range of C sources from simple sugars to hemicellulose, 

cellulose, and chitin. Although this group is able to reduce nitrate and nitrite (Ward et al. 2009; 

Kielak et al. 2016), it is incapable of N2 fixation or nitrification and overall N metabolism was 

not affected by Acidobacteria abundance differences in this study, indicating some degree of 

functional redundancy within the bacterial community for N cycling. However, inositol 

phosphate and sulfur metabolic capacities, which are indicative of organic phosphorus (P) and 

sulfur cycling capacities, respectively, are both positively correlated with Acidobacteria and are 

greater in non-ash forest plots when compared to ash plots (Figure 2.5). Phosphatases are 

enzymes which extract P from organic sources and their activity varies according to climate 

variables, soil C and N, and organic-P (as opposed to available-P measured in this study) 

(Margalef et al. 2017). As climate, soil C, and soil N did not vary between ash and non-ash plots, 

organic-P appears to be a proportionally larger source of microbial P in non-ash forest stands. 

Because a substantial amount of organic-P is thought to be in microbial biomass (Turner et al. 
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2013), this enhanced capacity to access organic-P in non-ash plots may indicate a relative 

difference in P availability between ash and non-ash plots via solubilisation, mobilization, and/or 

microbial turnover (Richardson and Simpson 2011). Based on our results, if future soil bacterial 

communities in ash forests become more similar to those in non-ash plots in the wake of EAB 

infestation, then these differences in P metabolism may be an indicator of future soil 

transformations. It also highlights the potential role of Acidobacteria in the biogeochemical 

cycling of nutrients in this forest system. Therefore, future abundance shifts in this phylum due 

to ash tree decline as a result of EAB could result in alterations of both soil C and nutrient 

dynamics that will go beyond the addition of dead ash woody litter, which is currently the 

subject of ongoing investigations. 

While our results suggest that ash trees may contribute to shaping soil bacterial community 

structure and the loss of ash due to EAB infestation may lead to belowground alterations, this 

may not hold true for all tree species and/or may not affect the bacterial community over time. 

Ecosystem responses of soil microbes to disturbance remain poorly understood and above- 

belowground associations may vary across the plant kingdom. For example, Ferrenberg et al., 

(2014) found that soil bacterial communities remained stable over a five year chronosequence 

following coniferous tree mortality due to bark beetle in the Rocky Mountains. Ecological 

resilience in the belowground environment, where the slow turnover of the plant-derived soil C 

may have a long legacy of the vegetation history of the site, may retain structural and functional 

attributes long after the removal of trees from the system. Therefore, collecting data on specific 

above- belowground relationships, as done here, is imperative to understanding if and how 

communities may respond to the loss of a given species or genera. 
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Figure 2.7.  Theoretical diagram representing possible successional trajectories of bacterial 
communities over time in forests suffering ash decline as a result of EAB infestation, where in 
Scenario 1 the communities stay the same, in Scenario 2 they become more similar to 
communities in non-ash plots, and in Scenario 3 they develop a community structure different 
than in either ash or non-ash plots. NMDS ordination space represents hypothetical differences in 
bacterial community structure based on Figure 2.2. 

Research is underway to track the successional trajectory of bacterial communities over time 

in the wake of ash decline. If soil bacterial communities are resilient to disturbance, driven by 

edaphic factors that have long-term legacy effects and are not directly influenced by live ash 

trees, then the loss of ash trees in temperate forests may not affect bacterial community structure 

(Figure 2.7; Scenario 1). However, if instead ash trees form unique assemblages with their 

belowground bacterial community and the ecological memory of the soil environment is short-

lived, then the loss of ash trees will likely cause major shifts in microbial community structure 

and, in consequence, ecosystem function. The successional trajectory of these communities could 

either become more similar to those in non-ash plots (Figure 2.7; Scenario 2), or progress into an 
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unknown community structure potentially driven by incoming replacement plant species (Figure 

2.7; Scenario 3). The resilience of belowground communities and the functions they perform 

after disturbance will ultimately govern the future states of overall ecosystem biogeochemical 

cycling and aboveground community structure. 

2.5 Conclusions 

Using archived DNA samples extracted from forest soils which were collected in the early 

stages of EAB infestation, we compared the bacterial community structures of plots containing 

ash trees to those that did not contain ash trees and found that they were different. This indicates 

that either ash trees directly or indirectly associate with, or influence, belowground microbial 

organisms. However, co-occurring factors such as soil pH, correlations with other tree species, or 

the active decline of ash tree health cannot be fully ruled out as contributing driving forces of 

bacterial community structure. Estimated functional gene abundances within the soil community 

were also different between ash and non-ash plots as a result of phylogenetic community 

differences. Specifically, greater relative abundances of Acidobacteria in non-ash plots may 

drive increases in sugar metabolisms which lead to glycolysis, but decrease functional pathways 

more tightly linked to the TCA cycle, likely altering C dynamics. Although N cycling was not 

affected by these bacterial abundance differences, both P and S metabolic potential was elevated 

in non-ash plots. While we are unable to determine how the loss of ash trees due to EAB will 

affect belowground community structure and function over time, we provide a foundational 

framework to predict future successional trajectories and establish a context within which to 

generate new hypotheses. 
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3 CARBON MINERALIZATION SUSCEPTIBILITY IN ARCTIC TUNDRA SOILS:  
HOW ORGANIC MATTER CHEMISTRY AND TEMPERATURE RELATE TO 

BACTERIAL COMMUNITY STRUCTURE AND SOIL RESPIRATION  

3.1 Introduction 

Climate is linked to a complex set of physical, chemical and biological components that drive 

global biogeochemical cycles and are being impacted by rapidly changing environments 

worldwide. The carbon (C) cycle in particular has received much attention because two major 

greenhouse gases (GHG), CO2 and CH4, are integral parts of the radiative force of Earth’s 

atmosphere. Trace gas abundance in the atmosphere is a function of biological and 

anthropogenic emissions and uptake by ecosystems in the biosphere, and so in turn is directly 

affected by biogeochemical cycling. In particular, changes occurring in Arctic ecosystems have 

relatively greater potential to alter global C-cycling dynamics, primarily through two feedback 

mechanisms: 1) ice-albedo feedbacks, which change surface reflectance and thus energy 

absorption, are predicted to amplify warming in the polar regions causing Arctic temperatures to 

increase 1.5 to 4.5 times that of the global mean (Holland and Bitz 2003, Anisimov et al. 2007); 

2) soil respiration feedbacks, which produce CO2 and CH4, are expected to increase in response 

to warming soil temperatures, further contributing to GHG buildup in the atmosphere (Davidson 

and Janssens 2006, Schuur et al. 2015). The soil respiration feedback is also augmented by 

accelerating permafrost thaw as microbial decomposers gain access to large stores of soil organic 

carbon (SOC) that have been frozen for millennia (Ping et al. 2008, Schuur et al. 2013). The soil 

respiration feedback is important because Arctic permafrost contains 1,330–1,580 Pg of C (1 

Pg=1 billion tons), approximately 50% of the global SOC pool (Hugelius et al. 2014, Schuur et 

al. 2015, Strauss et al. 2017). The mineralization of even a small fraction of this old, frozen C 

could cause cascading climate feedbacks, as mentioned above. However, the amount of C that 
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could potentially be mineralized from a soil over a given time period (i.e. C-mineralization 

potential=CMP) varies depending on a number of environmental parameters and soil 

characteristics, including SOC accessibility, its chemical composition, and the O2 availability 

modified by soil moisture (Dungait et al. 2012, Ping et al. 2015).  

Microbial accessibility to SOC is determined by a variety of different mechanisms. For 

example, SOC accessibility may be limited by 1) soil aggregation properties, where the binding 

of soil particles to each other serve to physically protect SOC within the aggregates from 

microbial decomposition; and/or by 2) the adsorption of SOM with organomineral complexes, 

providing physical protection of SOC from extracellular enzyme activity (Six et al. 2002). Arctic 

soils are unique in that they typically have very little to no aggregation, partially due to constant 

and repetitive mixing via the freeze-thaw cycles of cryoturbation (Ping et al. 1998). Instead, SOC 

in Arctic soils is protected via a third mechanism, temperature, where subzero temperatures 

inhibit microbial access to (and mineralization of) SOC stored in permafrost. Predicted soil 

warming in the Arctic can alleviate the temperature limitation of microbial decomposition of 

existing SOC. As such, it is paramount to elucidate the temperature sensitivity associated with 

soil respiration (Q10) to characterize the CMP of Arctic soils (Mikan et al. 2002, Wallenstein et 

al. 2009). It is well established that increased temperatures yield increased soil respiration 

(Hopkins et al. 2013), however accurate estimates of Q10 for Arctic soils is elusive due to the 

inherent difficulty of collecting samples from deep layers and the degree of variation in C 

substrate availability and quality due to soil mixing via cryoturbation.  

With increasing soil temperatures, the CMP of thawed Arctic soils may be determined by a 

combination of microbial community functional capacity and soil chemical composition. Soil 
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microorganisms mediate the process of C-mineralization via a variety of metabolic pathways that 

are dependent not only on local environmental conditions, but also community composition 

(Ricketts et al. 2016). While Arctic soil microbes in general are adapted to surviving in cold 

environments, active communities in permafrost layers consist of organisms specialized at 

thriving in sub-zero temperatures known as pyschrophiles (Morita 1975, Tribelli and López 

2018). These microbes likely subsist on dissolved nutrient and carbon sources which seep into 

permafrost layers through cracks (Michaelson 2003). In contrast, non-psychrophilic (but cold 

tolerant) microorganisms lying dormant in permafrost which are able to maximize production 

once temperature limitations to SOC accessibility are alleviated (see above), will rapidly 

outcompete psychrophilic organisms. Therefore, microbial community composition in Arctic 

soils is likely to shift as old SOC becomes available for decomposition (Monteux et al. 2018). 

However, the degree to which these communities may utilize these new resources depends on 

degradation state, or chemical availability, of the substrate. Fourier-transformed infrared (FTIR) 

spectroscopy is a well-established method which can describe in detail the chemical composition 

of SOM, and has been established as a reliable predictor of SOM decomposability/stability and 

CMP in a number of studies (Artz et al. 2008, Calderón et al. 2011, 2013, Matamala et al. 2019) 

Individual spectral peaks are associated with a wide variety of soil chemical characteristics, and 

the ratios between certain peaks have been shown to represent the decomposition state of OM 

(Haberhauer et al. 1998, Artz et al. 2006). These studies highlight the importance of soil 

chemistry in determining SOM quality, and demonstrate the utility of FTIR spectroscopy in the 

study of soil C dynamics. 

This research explores how Arctic soil microbial communities respond to increasing 

temperatures and thawing permafrost predicted under future climate change scenarios. The 
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objectives of this study were to 1) identify specific soil bacterial taxa whose abundances are 

affected by increased temperatures in active and permafrost soil layers, 2) determine how 

differing soil chemistries between sites and soil layers affect overall bacterial community 

structure, and 3) examine how bacterial taxa abundance relates to soil chemistry and carbon 

mineralization potential. Soil samples were collected from across the northern slope of Alaska, 

and soil DNA was extracted from samples after a 60-day period at five different incubation 

temperatures, as well as from the initial un-incubated samples. 16S rRNA amplicon sequencing 

was performed to determine bacterial community composition, and soil chemistry of each 

sample was determined by FTIR spectral analysis. Due to increased metabolic rates and nutrient 

rich substrate availability in warmed/incubated soils (particularly in permafrost) compared to un-

incubated soils, we hypothesize that the relative abundance of non-psychrophilic, generalist 

bacterial taxa will increase in both active layer and permafrost samples in response to increased 

temperatures, while the relative abundances of psychrophilic, specialist bacteria will decrease. 

We also hypothesize that soil chemical attributes representative of organic matter quality will 

have the greatest influence in shaping overall bacterial community structure, and correlate 

positively with taxa that increased in response to the incubation experiment.  Likewise, the taxa 

which showed the largest positive abundance responses to increased temperatures should also 

correlate positively with CMP. 

3.2 Materials and methods 

3.2.1 Study sites  

For this study, soil was collected from four tundra sites across Northern Alaska. One site was 

located in the Arctic coastal plain near Prudhoe Bay (CL), while the other three were in the 
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Arctic foothills region; two from Sagwon Hills (SU and SL) and one from Happy Valley (HU). 

The sites were described in detail in Matamala et al. (2019). Briefly, the foothills sites (SU, SL, 

and HU) were located on moist acidic tundra while the coastal plain site (CL) was on wet non-

acidic tundra. Two sites (CL and SL) represent lowland areas where the soils are poorly drained 

and had developed from alluvium parent material, while the other two sites (HU and SU) were 

located in upland areas in soils developed from loess and loess/moraine parent materials with 

normal tundra drainage (Table 3.1). Soils were sampled horizontally from a 1m3  pit. At each 

site, blocks of soil samples were collected from the active organic layers, active mineral layers, 

and upper permafrost layers. Samples were frozen on site for transportation and kept frozen until 

processing for incubations, chemical analysis, and DNA extractions. 

Table 3.1.  Average ± standard error of soil carbon characteristics (n=30), carbon mineralization 
potential (CMP) calculated from the incubation experiment (n=5), and calculated temperature 
sensitivity (Q10) over 60-day incubations (n=5). *=samples removed as outliers. 

Site Land cover type† Soil type‡ 
Coastal Plain lowland 

(CL) 
Wet non-acidic tundra Ruptic-Histic Aquiturbel 

 
TOC  

(mg C/gsoil) 
C:N 

CMP (mg CO2-C/g soil-C) at individual incubation 
temperatures Q10 

-1°C 1°C 4°C 8°C 16°C 

Organic 60.0±1.8 17.1±0.3 3.3±0.4 7.8±1.4 7.7±0.9 9.4±0.9 20.7±2.2 2.15 

Mineral 12.2±0.6 17.3±0.2 4.6±0.3 9.0±1.6 8.9±0.8 9.7±0.9 13.9±1.7 1.56 

Permafrost 100.9±4.5 14.4±0.1 2.5±0.3 4.5±0.6 4.2±0.1 5.3±0.5 7.6±0.3 1.64 

         

Sagwon Hills lowland 
(SL)  

Moist acidic tundra Glacic Histoturbel 

Organic 484.0±2.3 16.9±0.2 0.8±0.1 1.9±0.1 3.0±0.3 5.4±0.9 8.0±0.6* 2.41 

Mineral 37.7±0.6 20.9±0.3 1.3±0.1 1.5±0.1 1.8±0.1 2.3±0.2 3.7±0.5 1.86 

Permafrost 198.2±11.9 19.4±0.2 1.9±0.2 4.8±0.5 4.7±0.6 6.7±1.4 10.3±0.7 1.97 
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Sagwon Hills upland 
(SU) 

Moist acidic tundra Ruptic-Histic Aquiturbel 

Organic 242.5±20.9 38.8±1.3 5.1±0.5 10.7±0.9 9.7±0.7 13.2±1.4 14.6±0.4* 2.69 

Mineral 47.6±1.4 16.4±0.2 1.3±0.2 2.0±0.2 2.2±0.1 3.3±0.5 4.4±0.7 1.78 

Permafrost 88.5±6.3 17.8±0.3 1.0±0.3 2.8±0.9 2.5±0.9 4.8±0.7 6.9±0.6 2.13 

         

Happy Valley upland 
(HU)  

Moist acidic tundra Ruptic  Histoturbel 

Organic 416.4±7.8 19.6±0.2 1.4±0.1 4.2±0.3 4.5±0.7 7.1±0.8 11.0±1.6 2.18 

Mineral 36.3±1.2 19.3±0.2 1.6±0.1 2.8±0.3 2.4±0.1 4.7±0.6 6.0±0.9 1.89 

Permafrost 93.0±9.1 15.7±0.2 4.0±0.6 7.7±0.6 8.4±1.2 9.5±1.6 18.6±1.6 2.06 

† (Walker et al. 2004), ‡(Michaelson et al. 2013). 

 

3.2.2 Soil incubations and temperature sensitivity 

Frozen soil subsamples, obtained by chipping away chunks from the frozen blocks, were 

used to determine chemical composition (Table 3.1), and for aerobic soil incubation as described 

in Matamala et al. (2019). Briefly, approximately 3-4 cm3 of soil from each soil layer of each site 

were incubated in plastic cylinders in closed 250 ml glass jars. The jar lids were equipped with 

quick connect fittings that allowed for air sampling of the jar. Soils were incubated at five 

temperatures, -1, 1, 4, 8, and 16ºC, in an ethylene glycol bath that maintained the temperature at 

±0.2 ºC from target. Soil incubations at -1ºC were newly added for this study. We incubated a 

total of 300 soil samples (5 temperatures × 4 sites × 3 horizons × 5 samples). Soils were 

incubated for 60 days and CO2 production was measured about four times a day using an 

automated soil respirometer equipped with a CO2 non-dispersive infrared detector (Micro-

Oxymax, Columbus Instruments). Total C mineralized per sample was estimated by fitting the 

CO2 production data obtained during the 60-day incubation period to a two pool model using 

SigmaPlot 13.0 Curve Fit Wizard. The CO2 produced during the first 10-24 hours of incubation 
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were removed before curve fitting to remove thawing effects.  

For this study, we calculated Q10 for all soil layers and sites by the “same time method” using 

all incubation temperatures, including -1, 1, 4, 8, and 16ºC. To calculate Q10, we fitted the 

accumulated amount of CO2 released during the 60-day incubation to an exponential function: 

  Ccum=a e β T         (1) 

Where “Ccum” is the cumulative amount of CO2-C released during the 60-day incubation on a 

per dry soil C basis, “a” is the scaling parameter, “β” is the soil temperature sensitivity 

parameter, and “T” is temperature. Q10 was then calculated using the following equation: 

  Q10=e 10 β         (2) 

3.2.3 Soil analysis 

A C:N elemental analyzer (Elementar VarioMax Cube) was used to determine total nitrogen 

(TN) and total carbon (TC) by combustion at 900ºC, and total organic carbon (TOC) at 650ºC, 

for both incubated and un-incubated soil samples. A FTIR spectrometer (PerkinElmer Spectrum 

100 Series) was used to determine the chemical composition of SOM from the MIR (mid 

infrared) spectra of un-incubated and incubated soil subsamples. The FTIR spectra of incubated 

soils at 1, 4, 8 and 16ºC for site and layer, and replicated 5 times (240 soils), was used in 

Matamala et al. (2019) to investigate the predictive capabilities of the FTIR spectra for 

determining the short-term carbon mineralization potential of tundra soils. In this study we used 

those 240 soil samples and added 120 more samples to the dataset (total n=360). Of those 120 

samples, 60 were incubated at -1ºC (4 sites × 3 layers × 5 replicates) and 60 were un-incubated 

soils (4 sites × 3 layers × 5 replicates). Five subsamples per soil were scanned against a KBr 
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background and an average spectrum was obtained. Each spectrum was collected at 1 cm-1 

resolution over the range of 4000-450 cm-1. Baseline correction was done to all samples before 

averages were taken using a two-point band correction at 4000 and 2400 cm-1. Absorbance 

values from spectral bands were selected for analysis based on associations with soil chemical or 

mineralogical characteristics (Supplementary Figure S3.1), as previously determined by 

Matamala et al. (2019) and listed in Supplementary Table S3.1. Ratios of spectral band 

absorbance values were selected based on evidence suggesting associations with OM 

decomposition state referenced in Matamala et al. (2017). 

3.2.4 DNA extraction and high-throughput 16S rRNA sequencing 

Frozen non-incubated and freeze-dried incubated soil subsamples from each temperature 

were used for determining the microbial community structure. For each site, triplicate 

subsamples were taken from seven replicate samples of non-incubated organic layer soil (n=84) , 

three replicate samples of non-incubated mineral and permafrost layer soils (n=72), and five 

replicate samples of  incubated soils from all temperatures and layers (n=60 for each temperature 

and layer), for an ideal total of 1,056 subsamples. However, due to low DNA extraction yields, 

24 subsamples were removed prior to sequencing. DNA was extracted using the PowerSoil® -htp 

96 Well Soil DNA Isolation Kit (4 × 96 well plate option, MO BIO Laboratories Inc., Carlsbad, 

CA, USA) following the manufacturer's instructions and eluted in a final volume of 100µL per 

sample. Approximately 0.1-0.25 g of freeze-dried soil were loaded into each well of the 

extraction plate. The protocol detailed by MoBio was then followed resulting in 100 µL of eluted 

DNA. The concentration of extracted DNA was quantified using the Quant-iT PicoGreen 

dsDNA assay (Invitrogen, Inc., Carlsbad, CA, USA), and ranged from 15 to 40 ng/µL. Targeted 

amplicon sequencing of the 16S rRNA encoding genes from each sample was conducted as 



 
 

47 

described previously in Flynn et al. (2017).  

Polymerase chain reaction (PCR) amplification was carried out using a 5 PRIME MasterMix 

(Gaithersburg, MD, USA). We used primer set 515F-806R targeting the V4 variable region of 

the 16S rRNA genes of bacteria and archaea (Bates et al. 2011, Caporaso et al. 2011). Samples 

were barcoded for downstream multiplexing (Caporaso et al. 2012) and pooled products from the 

samples were quantified using the PicoGreen assay. DNA concentrations were standardized by 

dilution to 2 ng μL–1 and primer dimers were eliminated using the UltraClean PCR Clean-Up Kit 

(MoBio Laboratories, Inc., USA). Paired-end amplicon sequencing (2×151 bp) was performed 

on an Illumina MiSeq Sequencer (Illumina, San Diego, CA, USA) running v3 chemistry at the 

Environmental Sample Preparation and Sequencing Facility at Argonne National Laboratory 

following protocols detailed in Caporaso et al. (2012). Forward and reverse reads were merged 

by using the PEAR (pair-end read merger) software (Zhang et al. 2014). Another 42 subsamples 

were filtered out due low quality sequences using the default settings in QIIME (v1.9.1; 

split_libraries_fastq.py; Phred<3, consecutive low quality base calls<3, % consecutive high 

quality base calls per read>75%, barcode errors<1.5; Caporaso et al. 2010), resulting in a total of 

990 remaining samples. De novo clustering of operational taxonomic units (OTU) at the 97% 

similarity level was performed using QIIME’s pick_de_novo_otus.py command, singletons were 

discarded, and subsequent tables and summaries were generated. Alignment was performed 

using PyNAST and the Greengenes 13_8 reference database to assign taxonomy to 

representative sequences from each OTU cluster (Caporaso et al. 2010, McDonald et al. 2012). 

The resulting OTU’s were used to determine: 1) what organisms were present in a given sample, 

and 2) how abundant that organism was within the overall community. Taxa not present more 

than once in at least 20% of the samples were filtered to remove OTUs with potentially small 
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means and misrepresented large coefficients of variance. 

3.2.5 Statistical analysis 

All statistical analyses were performed using R software. Differential expression analysis 

using the edgeR package (Robinson et al. 2009, McCarthy et al. 2012) was performed to 

examine changes in bacterial abundance over the 60-day incubation period. Samples were 

grouped by site, soil layer, and incubation temperature. OTU’s were merged at the class 

taxonomic level and filtered to include only the 25 most abundant classes, which constitute 95% 

of all OTU’s. Pairwise comparisons were made between abundances of bacteria from the un-

incubated samples and abundances of bacteria after 60 days at each of the 5 temperatures. The 

edgeR package uses negative binomial model-based normalization of the read counts to adjust 

for differences in library size (i.e. total # of reads per sample), and account for technical 

variation. The Cox-Reid profile-adjusted likelihood (CR) method was used to estimate 

dispersions and fit generalized linear models (GLM).  Quasi-likelihood F-tests were used to 

determine differential abundances of bacterial classes. Results were filtered to only include 

differences with p-values and false discovery rates (FDR)<1e-5, and log2 fold change>1 or <-1. 

To determine relationships between FTIR spectra and bacterial community structure, we 

performed distance-based redundancy analyses (dbRDA) with Hellinger transformed bacterial 

community matrices as the response variables, and either a combination of non-FTIR factors 

(including categorical descriptors), individual absorbance peaks (representing specific soil 

chemical characteristics), or ratios of absorbance peaks (representing soil decomposition state) as 

explanatory variables (Non-FTIR model, FTIR peaks model, FTIR ratios model, respectively). 

Samples from the organic and mineral horizons were reclassified as “active layer” to focus on 
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major differences observed in the permafrost layer. Models were analyzed for multicollinearity 

using variance inflation factors (VIF) and optimized by selectively removing variables until all 

VIF values were less than 25. Individual factors were also analyzed separately using dbRDA and 

Mantel tests to determine their degree of explanatory power (% variance explained) and 

correlation with bacterial community structure (Mantel r-statistic correlation coefficient=rM). 

The top seven soil chemical factors which best explained bacterial community structure were 

selected based on dbRDA and Mantel tests (>6.5% variation explained and rM>0.1). Pearson’s 

correlation coefficients (rP) with Bonferroni adjusted p-values (pB; # of comparisons=184) were 

calculated between these seven factors, as well as CMP, and all bacterial classes which showed 

significant abundance responses to the incubations.  

3.3 Results  

3.3.1 Incubation effects on soil bacterial abundance and CMP 

Bacterial abundance differences between un-incubated and 60-day incubated soil samples were 

seen in 23 of the 25 most abundant bacterial classes (p < 1e-5 and FDR < 1e-5). The majority of 

significant differences occurred at positive incubation temperatures and were most pronounced 

in permafrost samples (Figure 3.1). The largest differences were seen in Alphaproteobacteria, 

Betaproteobacteria, Gammaproteobacteria, and Bacteroidetes (Sphingobacteriia), which 

consistently showed log2 fold changes>5 over 60 days at all positive incubation temperatures. 

Negative responses tended to be more diverse with fairly consistent responses in 

Verrucomicrobia (Pedosphaerae), Deltaproteobacteria, Chloroflexi (Anaerolineae and 

Ellin6529), Caldiserica (WCHB1-03), Bacteriodetes (Bacteroidia), and Actinobacteria 

(Thermoleophilia) which showed log2 fold<-2 over 60 days at most positive incubation 
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temperatures. Only 4 of the top 25 classes showed significant abundance shifts at -1°C. 

Bacterial relative abundance patterns at the class level varied by site, however certain general 

patterns were observed between soil layers and incubation temperatures (Figure 3.2). With the 

exception of the SU site, Verrucomicrobia and Acidobacteria were more prevalent in the active 

layer (organic and mineral) than in permafrost samples, while Actinobacteria were more 

prevalent in the permafrost than in the active layer. Proteobacteria were abundant in every 

sample, but showed the greatest abundances in incubated permafrost samples, particularly from 

the SL and HU sites. Caldiserica [WCHB1-03] was found to be extraordinarily abundant in the 

un-incubated initial permafrost samples from site SL but decreased in abundance in response to 

incubations (Figure 3.2). 

The carbon mineralization potential (CMP; mg CO2-C g-1 soil over 60-days) significantly 

varied both by site (Kruskal-Wallis H=41.24, p<0.001) and soil layer (Kruskal-Wallis H=24.15, 

p<0.001). The highest CMP was observed in the organic layers of the CP and SH sites, and in 

the permafrost layers of the HV site. Site CP also exhibited the highest CMP of all sites in the 

mineral soil layer (Table 3.1). 
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Figure 3.1.  Log2-fold change (log2 FC) response of bacterial class abundances to incubations where positive values indicate increased 
abundance over 60 days, and negative values indicate decreased abundance over 60 days. All results shown are significant (p<1e-5) 
with false discovery rates (FDR)<1e-5 and log2FC values>1 or <-1. Bacterial phyla are ordered from top to bottom with the most 
abundant phyla at the top. Panels are separated by incubation temperature, color indicates the soil layer, and the shape indicates the 
site.  

 

−1C 1C 4C 8C 16C

−5 0 5 10−5 0 5 10−5 0 5 10−5 0 5 10−5 0 5 10
Planctomycetia

Clostridia
WCHB1−03
Ellin6529

Anaerolineae
Gemmatimonadetes

Thermoleophilia
Actinobacteria
Acidimicrobiia

Sphingobacteriia
Saprospirae
Bacteroidia

Spartobacteria
Pedosphaerae

iii1−8
DA052

Chloracidobacteria
Acidobacteria−6
Acidobacteriia

Gammaproteobacteria
Deltaproteobacteria
Betaproteobacteria
Alphaproteobacteria

Site
CL

HU

SL

SU

Layer
Org

Min

Perm

Effect size (log2 FC)

Proteobacteria

Verrucomicrobia

Planctomycetes

Gemmatimonadetes

Firmicutes

Chloroflexi

Caldiserica

Bacteroidetes

Actinobacteria

Acidobacteria



 
 

52 

 

Figure 3.2.  Relative abundances of bacterial classes which showed significant differential abundances between initial un-incubated 
samples and incubated samples (see Figure 1). Results are separated by site, soil layer, and incubation temperature. Bacterial classes 
are grouped by phylum where base colors indicate the phylum and classes are separated by tint.

Verrucomicrobia
Pedosphaerae
Spartobacteria
Proteobacteria
Betaproteobacteria
Gammaproteobacteria
Deltaproteobacteria
Alphaproteobacteria

Planctomycetes

Gemmatimonadetes
Planctomycetia

Gemmatimonadetes

Firmicutes

Chloroflexi

Caldiserica

Bacteroidetes

Actinobacteria

Acidobacteria

Clostridia

Ellin6529
Anaerolineae

WCHB1-03

Saprospirae
Sphingobacteriia
Bacteroidia

Actinobacteria
Acidomicrobiia
Thermoleophilia

DA052
iii1-8
Acidobacteria-6
Chloroacidobacteria
Acidobacteriia

Organic Mineral Permafrost

Ini
tia

l
−1

C 1C 4C 8C 16
C

Ini
tia

l
−1

C 1C 4C 8C 16
C

Ini
tia

l
−1

C 1C 4C 8C 16
C

0.00

0.25

0.50

0.75

1.00

R
el

at
iv

e 
Ab

un
da

nc
e 

(%
)

Site SU

Organic Mineral Permafrost

Ini
tia

l
−1

C 1C 4C 8C 16
C

Ini
tia

l
−1

C 1C 4C 8C 16
C

Ini
tia

l
−1

C 1C 4C 8C 16
C

0.00

0.25

0.50

0.75

1.00

R
el

at
iv

e 
Ab

un
da

nc
e 

(%
)

Site SL

Organic Mineral Permafrost

Ini
tia

l
−1

C 1C 4C 8C 16
C

Ini
tia

l
−1

C 1C 4C 8C 16
C

Ini
tia

l
−1

C 1C 4C 8C 16
C

0.00

0.25

0.50

0.75

1.00

R
el

at
iv

e 
Ab

un
da

nc
e 

(%
)

Site HU

Organic Mineral Permafrost

Ini
tia

l
−1

C 1C 4C 8C 16
C

Ini
tia

l
−1

C 1C 4C 8C 16
C

Ini
tia

l
−1

C 1C 4C 8C 16
C

0.00

0.25

0.50

0.75

1.00

R
el

at
iv

e 
Ab

un
da

nc
e 

(%
)

Site CL



 
 

53 

3.3.2 Predictive RDA analyses of bacterial community structure 

Site and soil layer were the simplest and most powerful predictors of bacterial community 

structure, explaining 31% and 20% of variation respectively, followed by acidic vs. non-acidic 

tundra type, which explained 13% of variation (Figure 3.3 and Table 3.2). The incubation 

temperature explained only 3% of variation and was the least reliable predictor of bacterial 

community structure (Table 3.2). While the additive model using these categorical variables 

performed the best (64% variation explained), the models using FTIR spectral data also 

performed well at predicting bacterial community structure, with the FTIR peaks model 

explaining 46% of variation and the FTIR ratios model explaining 30% of the variation (Table 

3.2, Figure 3.3, and Figure 3.4). The degree of variation explained overlapped between models, 

especially between the categorical model and the FTIR peaks model (31%; Figure 3.4). The most 

important individual variables from the FTIR data include the amides/aliphatics (1656/2924) 

peaks ratio (rM=0.193, RDA=11.03%), the silicates peak (rM=0.129, RDA=10.97%), the 

aliphatics/carbohydrates (2924/1060) peaks ratio (rM=0.180, RDA=6.59%),  and the lignin/ 

carbohydrates (1521/1060) peaks ratio (rM=0.131, RDA=7.70%). Forward selection of variables 

based on Akaike information criterion did not result in more parsimonious models.  
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Table 3.2.  Statistical results of Mantel tests and distance-based redundancy analyses (dbRDA) 
evaluating the effects of soil chemical and site properties on bacterial community structure. All 
results are statistically significant (p<0.05). Asterisks (*) indicate p-values less than 0.001. 

Explanatory models Mantel r-statistic dbRDA % variation 
explained 

Descriptive model -  65.08 * 
Individual variables 
     Site  -  31.82 * 
     Soil layer  -  20.40 * 
     Acidic vs Non Acidic  -  13.53 * 
     Incubation Temperature  -  3.24 * 
     C:N  0.248 *  10.81 * 
     TOC  0.122 *  7.78 * 

FTIR peaks model  -  46.70 * 

Individual peaks (cm-1) 
     Clays (3694)  0.043  5.15 * 
     Phenolic OH (3394)  0.060  5.56 * 
     Aliphatics (2924)  0.104 *  6.81 * 
     Inorganic C (2516)  0.037  5.33 * 
     Silicates (1788)  0.129 *  11.11 * 
     Amides (1656)  0.033  2.88 * 
     Carboxylics (1423)  0.112 *  5.23 * 
     Carbohydrates (1060)  0.094 *  7.54 * 

FTIR ratios model -  30.12 * 
Individual ratios 
     Amides/Aliphatics (1656 / 2924)  0.193 *  11.17 * 
     Amides/Carboxylics (1656 / 1423)  0.052  3.40 * 
     Aliphatics/Carbohydrates (2924 / 
1060)  0.180 *  6.67 * 

     Lignins/Carbohydrates (1521 / 
1060)  0.131 *  7.80 * 
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Figure 3.3.  Distance-based redundancy analysis ordinations of bacterial community structure 
separated by site (colors) and soil layer (shapes), and constrained by descriptive variables (A), 
FTIR spectral peak absorbance values assigned to soil chemical properties (B), and ratios of 
FTIR peaks absorbance values (C). Arrows indicate strength of correlations between bacterial 
community structure and explanatory variables.  
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Figure 3.4.  Venn diagram illustrating variance partitioning from the three different redundancy 
analysis models explaining bacterial community structure.  

3.3.3 Correlation analysis 

Nearly all bacterial phyla (except Alphaproteobacteria, Acidobacteria [DA052], and 

Bacteroidetes [Bacteroidia]) showed abundance correlations (rP>0.30 and pB<0.05) with at least 

two soil chemical characteristics in the active soil layer samples, however there were almost no 

significant correlations in the permafrost layer samples (Figure 3.5). The number and strength of 

correlations varied by site with the strongest and highest number of correlations occurring in the 

active layers of the SU, SL, and CL sites. The active layer of the SU site contained 24 strong 

correlations (rP<-0.70 or >0.70 and p<1e-10) where Gemmatimonadetes, Acidobacteria [iii1-8 

and Acidobacteria-6], Chloroflexi [Anaerolineae], and Firmicutes [Clostridia] were all correlated 

negatively with both C:N and the aliphatics peak, while positively correlated with the 

amides/aliphatics ratio and the lignin/carbohydrates ratio. Additionally, the amides/aliphatics 

ratio was positively correlated with Verrucomicrobia [Spartobacteria] and Chloroacidobacteria, 

Residuals = 30%

FTIR peaks

FTIR ratios

Non−FTIR

3

14
4

17

8

4

21



 
 

57 

and C:N was correlated negatively with Chloroacidobacteria. The active layer of the SL site 

contained 11 strong correlations (rP<-0.70 or >0.70 and p<1e-10) where TOC correlated 

negatively with Chloroflexi [Anaerolineae], and the aliphatics peak correlated negatively with 

Gemmatimonadetes, Acidobacteria-6, and Chloroflexi [Anaerolineae] while the 

lignins/carbohydrates ratio correlated positively with these same three bacterial classes as well as 

Bacteroidetes [Saprospirae]. Plancomycetia correlated negatively with the lignins/carbohydrates 

ratio and the silicates peak, while Chloroflexi [Anaerolineae] correlated positively with the 

amides/aliphatics ratio. The active layer of the CL site contained 6 strong correlations (rP<-0.70 

or>0.70 and p<1e-10) where TOC correlated negatively with Acidobacteria [Acidobacteriia and 

iii1-8], Chloroflexi [Ellin6529], Actinobacteria [Thermoleophilia], and Gemmatimonadetes, and 

the aliphatics peak correlated negatively with Chloroflexi [Ellin6529]. 

Other general patterns were observed but were not consistent across sites or soil layers. For 

instance, the aliphatics/carbohydrates peak ratio showed very little correlation with bacterial 

phyla except in the active layer of site CL where it was negatively correlated with many phyla. 

Also, Acidobacteriia and Gammaproteobacteria appear to have opposite relationships with most 

soil chemical characteristics compared to the other bacterial classes, but only in the active layers 

of the HU, SL, and SU sites (Figure 3.5). 

CMP correlated negatively with most bacterial classes, except for Alphaproteobacteria, 

which in permafrost samples correlated positively with CMP in all sites and had a maximum 

correlation of rP=0.81 (pB<0.001) in the SL site. Gammaproteobacteria (primarily in active layer 

samples), Bacteroidetes [Sphingobacteriia], and Planctomycetia also occasionally correlated 

positively with CMP, but varied by site and soil layer (Figure 3.5).
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Figure 3.5.  Correlation matrices of bacterial classes (ordered from left to right by decreasing abundance) selected from differential 
analysis (Fig. 1) with most important soil chemical variables identified from redundancy analysis and Mantel tests, and carbon 
mineralization potential (CMP). Colors indicate strength and direction of correlation (rP), where red=positive correlations and 
blue=negative correlations. Squares containing “×” indicate a significant correlation (pB<0.05).  
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3.4 Discussion 

This study identified soil bacterial taxa which respond to warming soil temperatures and 

thawing permafrost in soils from Northern Alaska, and examined how soil chemistry relates to 

bacterial abundance while evaluating the efficacy of using FTIR spectral data to predict soil 

bacterial community structure. We compared the abundances of bacterial taxa from un-incubated 

soil samples to those that had been incubated for 60 days at five different temperatures and found 

the largest abundance differences occurred in permafrost layer samples incubated at temperatures 

above freezing, with four classes of bacteria becoming differentially more abundant in incubated 

samples (Figure 3.1 and Figure 3.2). Comparison of dbRDA models revealed that site and soil 

layer most effectively explain the variation in bacterial community structure (Figure 3.3 and 

Table 3.2), and also encompass much of the variation explained by FTIR spectral data (Figure 

3.4). However, within the soil chemical variables we measured, the amides/aliphatics FTIR ratio, 

the silicates FTIR peak, and C:N most effectively explained bacterial community variance, 

suggesting that these soil characteristics, or the soil attributes they represent (i.e. OM quality, 

mineral content, decomposability), may be good predictors of bacterial community structure. 

Further correlation analysis between bacterial abundance and these soil chemical variables 

revealed many strong relationships in active layer samples, but relatively few in permafrost 

samples, and identified how individual bacterial classes respond to influential soil chemical 

characteristics (Figure 3.5). Overall, this research reveals which bacteria opportunistically take 

advantage of thawing SOM, elucidates the relationships between soil bacteria and the soil 

chemical environment, and provides a basis for understanding bacterial community dynamics in 

a changing ecosystem. 
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3.4.1 Bacterial abundance responses to warming  

Soil bacterial communities are governed by their environment. While soil chemistry is 

primarily determined by site specific factors (e.g. parent material, climate, topography, plant 

community), inherent microscale variations within the soil matrix dictate resource availability 

and redox potential for a bacterial community and are relatively stable over short time periods. 

Broader environmental factors such as moisture/O2-availablity and temperature, however, can 

change rapidly and are in constant flux, particularly in the active soil layer (organic + mineral 

layers). In comparison, permafrost soils innately remain frozen, limiting microbial access to 

water and organic matter. Microbial communities that are active in permafrost must survive on 

limited dissolved organic carbon (DOC) and nutrients seeping in through water films 

(Michaelson 2003), are adapted to thrive in very low temperatures, and generally have lower 

metabolic rates than microorganisms in the active layer (Rivkina et al. 2000, Price and Sowers 

2004, Mackelprang et al. 2017). Our results indicate that while the abundances of certain bacteria 

in the active soil layer do change in response to temperature manipulations, the most pronounced 

abundance differences between un-incubated and incubated samples occurred in permafrost 

samples (Figure 3.1), demonstrating the transformation of an psychrophilic community adapted 

to subzero temperatures, to a more generalist, copiotrophic community able to take advantage of 

newly available thawed organic matter and water. This fundamental difference can be seen by 

comparing the bacterial community structures of permafrost samples to active layer samples, and 

is also shown to be a primary explanatory variable and driver of bacterial community structure 

(Figure 3.3A and Table 3.2). Additionally, specific examples can be seen in the most responsive 

bacteria to positive incubations temperatures, including Alphaproteobacteria, Betaproteobacteria, 

Gammaproteobacteria, and Bacteroidetes [Sphingobacteriia] (Figure 3.1), which have been 
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classified as copiotrophic organisms before. Both Betaproteobacteria and Bacteroidetes 

abundances in particular have been associated with higher levels of available soil C (Fierer et al. 

2007). Additionally, Bacteroidetes has been associated with decomposition-related genes 

encoding enzymes such as mannase and chitinase (Yergeau et al. 2009), and has been found in 

upper permafrost layers exhibiting increased ß-glucosidase and phosphatase activity (Coolen et 

al. 2011), both of which indicate an environment rich in organic-C sources. In contrast, the 

abundances of Verrucomicrobia and Acidobacteria from our samples generally decreased in 

response to warming and were relatively less abundant in the active layer vs. the permafrost 

samples (Figure 3.1 and Figure 3.2). This opposing patterns between these bacterial phyla are 

commonly observed in copiotrophic vs oligotrophic environments (e.g. rhizosphere vs. bulk 

soil), suggesting in our study the transformation of a psychrophilic, C and nutrient limited 

bacterial community to a more generalized, competitive, copiotrophic community. 

Bacterial community phylogeny has been characterized before in permafrost soils before 

(Yergeau et al. 2010, Hultman et al. 2015, Müller et al. 2018), however bacterial community 

response to thaw is relatively understudied (Mackelprang et al. 2011, Monteux et al. 2018). 

Actinobacteria, specifically of the suborder Micrococcineae (which contains the family 

Intrasporangiaceae and the genus Arthrobacter, mentioned in Müller et al. 2018 and Johnson et 

al. 2007 respectively), has commonly been found in permafrost samples (Hansen et al. 2007, 

Johnson et al. 2007, Yergeau et al. 2010, Müller et al. 2018) and has responded positively to 

warming in previous experiments (Mackelprang et al. 2011). Our results showed increased 

abundance in the classes Actinobacteria and Acidomicrobia at higher incubation temperatures, 

but not in Actinobacteria [Thermoleophilia], a thermophilic class of bacteria which decreased in 

samples incubated in temperatures above freezing relative to un-incubated samples in the SL and 
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HU sites (Figure 3.1). A similar pattern was also seen in another thermophile, the Caldiserica 

(Figure 3.1 and Figure 3.2), also observed by Monteux et al. (2018), leading us to wonder how 

thermophilic organisms typically found in very hot environments ended up in permafrost soils. 

We speculate they are relics from geothermal or volcanic activity of the distant past at sites SL 

and HU (Boyd and Boyd 1971, Mironov et al. 2013), and once exposed after thaw, quickly get 

outcompeted.  

3.4.2 Drivers/predictors of bacterial community structure 

As bacterial communities respond to thawing soils in the Arctic, it is important to consider 

the effects of soil chemistry on influencing community structure. Soil chemistry is notoriously 

heterogeneous, and highly variable between soil layers and location. Additionally, many soil 

chemical factors, such as pH, and C and N concentrations, have been shown to be influential 

drivers of community structure (Lauber et al. 2009, Kaiser et al. 2016). Here we used a variety of 

samples from different soil layers and from four sites across the Alaskan tundra to explore the 

relationships between soil bacterial abundance and a variety of soil chemical indicators, 

including FTIR spectral peaks associated with specific soil chemical characteristics, FTIR band 

ratios associated with SOM decomposability/stability, and a suite of categorical descriptors and 

commonly used indicators. Our analysis shows that certain individual FTIR spectra are more 

important predictors of bacterial community structure than others, specifically the 

amides/aliphatics peak ratio and the silicates peak (Table 3.2). As a measure of SOM 

decomposability, the amides/aliphatics peak ratio likely differentiates community structure based 

on the abundance of specialist pyschrophilic vs. generalist copiotrophic bacteria. While silicates 

have not specifically been linked to influencing bacterial community structure to our knowledge, 

the idea of soil mineralogical influence on soil bacteria is not new (Uroz et al. 2009, 2015), and 



 

 63 

could explain the degree of explanatory power associated with silicates in our samples. However, 

neither of these FTIR soil chemical variables perform better than more common categorical 

descriptors or field measurements (e.g. soil pH, C:N, moisture, texture). Most of the bacterial 

community variation explained by FTIR measurements could be explained more easily by site 

location and soil layer, in effect capturing the differences between soil chemistry at different 

sites and between different soil layers (Figure 3.3).  

Although the additive models from our study using FTIR spectral data were generally not 

useful in predicting soil bacterial community structure, the potential for soil spectral analysis in 

bacterial community profiling remains promising. There is already much research linking 

infrared spectral data to a variety of soil properties from different size fractions, soil layers, and 

regions (Reeves 2010, Calderón et al. 2011, 2013, Peltre et al. 2014, Matamala et al. 2017), 

many of which are either regulated by, or influence microbial community structure. Additionally, 

FTIR spectral analysis has been shown to reliably predict the degradation state and/or stability of 

the OM in the Arctic soils used in our data set (Matamala et al. 2019). However, to our 

knowledge, few studies have explored the use of FTIR spectra in predicting soil bacterial 

community structure, but in those that have, FTIR spectra drastically improved the explanatory 

power of the models (Yang et al. 2019). In our study, while the use of dbRDA provides a 

powerful tool for determining the driving factors behind bacterial community structure, it does 

not allow for the collinearity of factors, forcing selection of individual, unrelated peaks as 

explanatory variables (Micheal H. Graham 2003). If instead, the complete spectral band could be 

utilized to “fingerprint” the soil chemical profile, this would provide a much more powerful 

predictive tool. With analytical tools constantly improving and a developing interest in the use of 

machine learning models, we aim to focus future research on selection, validation, and 
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verification of appropriate analysis techniques, such as partial least squared regression analysis, 

for the extrapolation of microbial community and functional data from IR spectral analyses of 

soils. 

3.4.3 Relationships between soil chemistry, CMP, and bacterial abundance 

As with predictive analysis, research using correlations to directly link bacterial abundance 

of specific taxa to FTIR spectral peak absorbance is limited. One study (Davinic et al. 2012) 

established distinguishable associations of bacterial phyla to FTIR spectral bands among 

different soil aggregate size-fractions, and found correlation patterns to be driven more by SOM 

chemistry than C content, lower abundance bacteria to have stronger relationships to soil 

chemistry than the dominant bacteria, and opposing correlation patterns between bacterial phyla 

to change depending on the size-fraction. The data from our study shows similar opposing 

correlation patterns between different bacteria and soil chemical characteristics, but was not 

consistent between site and soil layer (Figure 3.5). Although soil aggregate size-fractions are not 

applicable to our study due to the nature of Arctic soils, the soil chemical differences associated 

with site and soil layer may be enough to drive changes in correlation patterns. The most 

noticeable pattern emerging from our correlation analysis was the larger number and greater 

strength of bacterial correlations to soil chemistry in the active layers compared to the permafrost 

layers (Figure 3.5). This may indicate fundamentally tighter associations in the active layer 

where microbial communities that excel at mining OM are already established, versus those in 

permafrost layers that may still be adjusting to newly available substrates. 

While the link between FTIR derived soil chemistry and CMP of the soils from this study 

have been well established and described in Matamala et al. (2019), the bacterial abundance 
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relationships to CMP analyzed in this study were less clear. Other studies have shown microbial 

community structure (as well as DOC chemistry) in thawed permafrost soils to be a good 

predictor of CO2 production (Ernakovich et al., 2017). Thus, bacterial abundance should 

correlate with CMP. In our study, the majority of bacterial class abundances were negatively 

correlated to CMP, with the notable exception of Alphaproteobacteria (and somewhat 

Bacteroidetes [Sphingobacteriia] and Planctomycetia) from permafrost samples (Figure 5), 

indicating these bacteria to be the major players in the mineralization of C from thawing 

permafrost environments. In addition, the Q10 calculated from CMP were generally lowest in 

mineral layer soils, highest in organic layer samples, and somewhere in-between in permafrost 

samples (Table 3.1). This is reflective of the C-availability in the various soil layers upon thaw, 

where the organic layers have the most recently deposited C substrate from plants, followed by a 

substantial amount of older C substrates which have been frozen in permafrost.  

3.5 Conclusions 

We incubated 360 soil samples, representing both the permafrost and active layers and 

collected from across the Alaskan Northern Slope, to determine how soil bacterial communities 

respond to increased temperatures within the context of their soil chemical microenvironment, 

and examine corollary patterns and relationships between bacterial abundance, C mineralization 

potential, and soil chemistry by FTIR spectral analysis. We found Alphaproteobacteria, 

Betaproteobacteria, Gammaproteobacteria, and Bacteroidetes [Sphingobacteriia] abundances 

greatly increased after 60-day aerobic incubations at positive temperatures, indicating the 

majority of C mineralized during this period was due the growth of these organisms. FTIR 

spectral peaks associated with silicates and peak ratios associated with OM degradation state (i.e. 
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amides/aliphatics ratio) were the most influential soil chemical factors driving bacterial 

community structure. Correlations between bacterial class abundances and important soil 

chemical factors, including C mineralization, were generally stronger in active layer samples 

when compared to permafrost samples, likely due to greater community stability in the active 

layer. Carbon mineralization potential in permafrost was most strongly correlated with 

Alphaproteobacteria (and somewhat with Bacteroidetes [Sphingobacteriia]) abundance, further 

supporting the importance of these organisms in mineralization of organic C from recently 

thawed permafrost. Overall, these results support and further characterize soil bacterial 

community shifts that may occur as a frozen environment with limited access to C sources, such 

as is found in undisturbed permafrost, transitions to a more copiotrophic, C-rich environment, 

such as is predicted in thawing permafrost due to climate change. 
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4 SOIL BACTERIAL COMMUNITY AND FUNCTIONAL SHIFTS IN RESPONSE 
TO ALTERED SNOW PACK IN MOIST ACIDIC TUNDRA OF NORTHERN 

ALASKA 

This chapter is a reprint (with minimal reformatting) of an original article published by 
Copernicus Publications in the journal SOIL. It has been licensed under an open access Creative 
Commons Attribution 3.0 License, where the authors retain the copyright. There is no need for 
reproduction permissions from the publishers. 

Ricketts, M. P., R. S. Poretsky, J. M. Welker, and M. Gonzalez-Meler. 2016. Soil bacterial 
community and functional shifts in response to altered snowpack in moist acidic tundra of 
Northern Alaska. Soil 2:459–474. 

4.1 Introduction 

Broad and rapid environmental changes are driving both above- and belowground 

community shifts in the Arctic (Elmendorf et al., 2012a, 2012b; Tape et al., 2006, 2012; 

Wallenstein et al., 2007). It is well established that soil microbial communities may alter their 

composition in response to changing environmental factors such as nutrient availability, 

moisture, pH, temperature, and aboveground vegetation shifts (Lauber et al., 2009; Morgado et 

al., 2015; Semenova et al., 2015), and ecological and climate induced changes to Arctic soil 

microbial community structure and function have important effects on ecosystem carbon (C) 

cycling and nutrient availability for plant growth (Deslippe et al., 2012; Graham et al., 2012; 

Waldrop et al., 2010; Zak and Kling, 2006). Because many of these environmental features are 

rapidly changing in Arctic tussock tundra ecosystems (Anisimov et al., 2007; Liston and 

Hiemstra, 2011), and because of the large amounts of C stored in Arctic soils (Hugelius et al., 

2013; Ping et al., 2008; Schuur et al., 2009; Tarnocai et al., 2009), it is imperative to examine 

microbial responses in this system.  

Soil microorganisms play a key role in the decomposition of soil organic matter (SOM) on a 
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global scale, releasing nutrients into the soil and stored C into the atmosphere in the forms of 

CO2 and CH4, two major greenhouse gases that contribute to global warming (Anisimov et al., 

2007). Decomposition of SOM by soil microorganisms amounts to at least half of the 80-90 Gt C 

released each year by soil respiration, the second largest terrestrial flux after gross primary 

productivity (GPP; Davidson and Janssens, 2006; Hopkins et al., 2013; Raich et al., 2002). 

Because global soils contain about 2,000 Gt of C, ~1,500 Gt of which is in the form of SOM 

(Batjes, 1996; IPCC, 2000), large scale changes in the rate of microbial decomposition will have 

an impact on the rate at which CO2 accumulates in the atmosphere (Schimel and Schaeffer, 

2012). 

The decomposition rate of SOM, resulting in heterotrophic respiration from soils (Rh), has 

been shown to be sensitive to temperature and moisture (Davidson and Janssens, 2006; Frey et 

al., 2013; Hopkins et al., 2012, 2013; Xia et al., 2014). As the Arctic climate warms, increasing 

Rh may be capable of producing a positive feedback on the climate system as C stored in soils 

over millennia is released back to the atmosphere (Czimczik and Welker, 2010; Jonasson et al., 

1999; Lupascu et al., 2014b; Mack et al., 2004; Nowinski et al., 2010; Shaver and Chapin, 1980, 

1986).  

Northern latitude permafrost soils may house over 50% of the world’s soil organic C (SOC; 

the C component of SOM), approximately twice the amount of C present in the atmosphere 

(Hugelius et al., 2013; Ping et al., 2008; Schuur et al., 2009; Tarnocai et al., 2009). In addition, 

Arctic ecosystems are more susceptible to the effects of climate change, warming at 

approximately twice the rate as temperate zones and exhibiting increased winter precipitation 

patterns (Anisimov et al., 2007; Liston and Hiemstra, 2011). Deeper snow has a suite of 
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cascading consequences in tundra ecosystems as snow acts to insulate soil from extreme winter 

air temperatures resulting in soil temperatures under deeper snow pack up to 10°C warmer than 

soils under ambient snow depths (Schimel et al., 2004). Altered soil conditions under deeper 

snow may thus lead to increased SOM decomposition, causing changes in SOC stocks while also 

releasing nutrients for plant and microbial growth (Anisimov et al., 2007; Leffler and Welker, 

2013; Rogers et al., 2011; Welker et al., 2005). The predicted increase in soil temperature as a 

result of deeper winter snow accumulation should enhance the rate of SOM decomposition by: 1) 

a direct temperature effect on enzyme kinetics, and 2) by increasing substrate availability to 

decomposers as the active layer deepens and permafrost thaws (Lützow and Kögel-Knabner, 

2009; Nowinski et al., 2010; Schuur et al., 2008). Therefore, warming and deeper snow in the 

Arctic are likely to expose C stored over millennia to decomposers, resulting in a major source of 

C to the atmosphere. 

However, ecosystem C loss may be offset by increased soil moisture, causing hypoxic 

conditions and limiting Rh (Blanc-Betes et al. 2016). Also, microbial mineralization of plant 

nutrients, such as nitrogen (N) and phosphorus (P), from SOM decomposition are likely to 

contribute to increased net primary productivity (NPP; Hinzman et al., 2005; Natali et al., 2012; 

Pattison and Welker, 2014) and cause shifts in vegetation from herbaceous species (Cottongrass 

tussock- Eriophorum vaginatum) towards woody species (Arctic shrubs – Betula nana and Salix 

pulchra) that may produce a larger amount of plant litter compounds that are more resistant to 

decomposition (Bret-Harte et al., 2001; Pearson et al., 2013; Sturm et al., 2005; Wahren, 2005). 

The balance between these processes will determine the extent to which Arctic tundra 

ecosystems feedback on the global climate, making the fate of this stored C unclear (Sistla et al., 

2013). 
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This study examined changes in soil bacterial community composition due to increased 

winter snow accumulation and subsequent altered biotic and abiotic factors using a long-term 

snow fence manipulation experiment that mimics changes in winter precipitation by creating a 

gradient of snow depths from much deeper than ambient to shallower than ambient levels (Jones 

et al., 1998; Pattison and Welker, 2014; Welker et al., 2000). We postulated that increased soil 

thermal insulation from deeper winter snow accumulation would elicit bacterial community 

response via: 1) altered soil physical characteristics such as soil temperature, moisture, or O2 

availability, and 2) altered soil chemistry produced by increased microbial mineralization of 

SOM resulting in increased nutrient availability and changes in plant species composition and 

litter. Here we evaluated phylum level shifts in bacterial community phylogeny using 16S rRNA 

gene analysis and predicted bacterial functions using the program PICRUSt (Langille et al., 

2013) to test whether increased snow accumulation and associated changes in soil conditions 

(warmer temperatures, altered plant inputs, and increased hypoxia) would cause shifts in 

bacterial community structure and functional potential that reflect increased SOM decomposition 

and nutrient mineralization. 

4.2 Methods 

4.2.1 Site description and sample collection 

The study utilized a long-term snow depth manipulation experiment site (Jones et al., 1998; 

Walker et al., 1999) established in 1994 in a moist acidic tundra ecosystem located near Toolik 

Lake Field Station, Alaska (68º37’N, 149º32’W). It consists of a strategically placed snow fence 

designed to simulate the increased precipitation patterns and continuous snow-cover episodes 

predicted under global warming scenarios, resulting in a gradient of increasing snow 
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accumulation (and thus increasing soil thermal insulation, soil temperatures, and active layer 

thaw depth/permafrost thaw) with proximity to the fence. While snowfall varied from year to 

 

Figure 4.1.  Modified from Walker et al., 1999. Schematic of snow accumulation depth at moist 
acidic tundra site from snow fence manipulation. Three soil cores were obtained from each 
treatment zone (labeled Deep, Intermediate, and Low) and a Control zone located >30 m outside 
the effect of the snowfence. 

year, the wind drift from the fence provided consistent relative snow accumulation at similar 

distances from the fence every winter (Fahnestock et al., 2000; Welker et al., 2005). The soil is 

classified as Typic Aquiturbel, exhibiting characteristics of cryoturbation and poor drainage 

(Ping et al., 1998; Soil Survey, 2015). Four experimental zones were identified according to their 

snow accumulation regime: Control (“Control”, taken >30 m outside the effects of the 

snowfence), deep snow (“Deep” ~100% increase in snow pack relative to the control), 

intermediate snow (“Int.”, ~50% increase in snow pack relative to the control), and low snow 

(“Low”, ~25% decrease in snow pack relative to the control; Figure 4.1). The Deep snow zone is 

unique in that it is waterlogged during thaw periods, and dominated not by Cottongrass tussock 

or woody shrub species (e.g. Eriophorum vaginatum, Betula nana, or Salix pulchra), but by a 

sedge species, Carex bigelowii. However, the vegetative history of this plot includes a transition 

from tussock cottongrass to woody shrub species, and finally to wet sedge species (Arft et al., 

1999; Walker and Wahren, 2006). 
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Three replicate soil cores were taken approximately 15-20 m apart from each experimental 

snow zone (totalling 12 soil cores) in August of 2012 and analyzed separately. All soil coring 

equipment was cleaned and sterilized in the field between each sample using water and 100% 

ethanol. The top 10-16 cm representing the organic layers was taken first using a sharpened steel 

pipe (5.5 cm diameter X 20 cm length) and serrated knife to cut through surface vegetation and 

to minimize soil compaction. A slide hammer with 5.1 cm x 30.5 cm split soil core sampler 

(AMS Inc., ID, USA) was used to obtain the remainder of the active layer down to permafrost 

(~35–65 cm soil depth), including mineral soil layers. The soil cores were stored in sterile Whirl-

pak® bags, immediately frozen on site, and shipped to the Stable Isotope Laboratory at the 

University of Illinois at Chicago where they were sectioned horizontally into 2 cm depth 

segments using a sterilized ice-core cutter, providing a 2 cm resolution soil depth profile for each 

core. A portion of each segment was ground into a fine powder using a Spexmill mixer/mill 8000 

(SPEX SamplePrep, NJ, USA) and analyzed for C and N concentration and stable isotopes using 

a Costech (Valencia, CA, USA) elemental analyzer (EA) in line with a Finnigan Deltaplus XL 

IRMS (isotope ratio mass spectrometer; Bremen, Germany). Soil pH was measured from 

portions of the same segments by creating a soil slurry mixture (2 ml H2O : 1 g soil) and using an 

Accumet Basic AB15 pH meter with a calomel reference pH electrode (Thermo Fisher Scientific 

Inc., MA, USA). In addition, at the time of collection, soil temperature, soil moisture, and active 

layer thaw depth were measured and recorded at four points around each soil core hole (n=12 per 

treatment) to characterize the soil environment. Soil temperatures (°C) were measured using a 12 

cm Taylor TruTemp Digital Instant Read Probe Thermometer (Taylor Precision Products, Inc., 

NM, USA), surface (top 12 cm) volumetric water content (%) was measured using a HydroSense 

Soil Water Content Measurement System (Campbell Scientific Inc., UT, USA), and active layer 
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thaw depths (cm) were measured by inserting a meter stick attached to a metal rod into the 

ground until it hit ice. 

4.2.2 DNA extraction, sequencing, and analysis 

Samples from organic and mineral layers of each soil core, as well as the transition between 

the two, were selected for DNA extraction initially based on visual examination of each 

individual core section and further classified by %C in saturated soils as per the Soil Survey 

Division Staff, (1993; Organic≥12% SOC, Mineral:<12% SOC). Organic samples were collected 

just below where plant tissue transitioned into dark brown/black soil (mean soil depth ± standard 

error [S.E.]=5.6±1.3 cm; Control n=4, Deep n=4, Int. n=3, Low n=4), transitional samples were 

taken from the visual border between organic and mineral layers based on change in soil colour 

(mean soil depth ± S.E.=14.8±1.8 cm; Control n=3, Deep n=3, Int. n=4, Low n=3), and mineral 

samples were collected 10 cm below this transition (mean soil depth ± S.E.=25.1±1.7 cm; 

Control n=3, Deep n=4, Int. n=3, Low n=3), totaling 41 samples. To maintain consistency, only 

these samples were used to analyze %C, %N, and pH relationships. Samples were sent to 

Argonne National Laboratory for DNA extraction, amplification, and sequencing as per 

standards used by the Earth Microbiome Project (Gilbert et al., 2014). DNA extractions were 

performed using MoBio’s PowerSoil®-htp 96 Well Soil DNA Isolation Kit as per protocol, the 

V4 region of the 16S rRNA gene was amplified using PCR primers 515F/806R (Caporaso et al., 

2012), DNA quantification was performed using PicoGreen, and 2 × 150 bp paired-end 

sequencing was performed using an Illumina MiSeq instrument. 

Samples were barcoded prior to sequencing for downstream sample identification and paired-

end assembly, demultiplexing, quality filtering, operational taxonomic unit (OTU) picking, and 
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preliminary diversity analyses were performed using the QIIME software package version 1.8.0 

(Caporaso et al. 2010). Forward and reverse reads were assembled using fastq-join (Aronesty, 

2011) with 15bp overlap at 15% maximum difference. Quality filtering included removal of 

reads that didn’t have at least 75% consecutive high quality (phred>q20) base calls and 

truncation of reads with more than three consecutive low quality (phred<q20) base calls. This 

resulted in an assembled-read median sequence length of 253 bp.  

To reveal phylogenetic abundance and relationships, sequence reads were assigned 

taxonomic identities using closed reference OTU picking that clusters and matches each read to a 

reference database. Any read that did not match a sequence in the reference database was 

discarded. All default QIIME parameters were used (reference database=Greengenes (13_8), 

OTU picking method=uclust, and sequence similarity threshold=97%). Because many organisms 

are known to possess multiple copies of the 16S rRNA gene in their genome, the abundance 

assignments were corrected based on known copy numbers using PICRUSt’s 

normalize_by_copy_number.py script. The relative abundances of the six most abundant phyla, 

comprising 82% - 96% of total detected phyla per sample, were analyzed for treatment effects, 

and alpha and beta diversities were examined using the Shannon diversity index to estimate 

within sample diversity, and Bray-Curtis dissimilarity matrices to determine community 

structure differences. 

The genetic functional potential of bacterial communities was determined using the software 

package PICRUSt version 1.0.0 (Langille et al., 2013) which predicts functional gene copy 

numbers in a community based on 16S rRNA sequencing results. Recent advances in sequencing 

technologies and bioinformatics has greatly enhanced our current knowledge of the genetic 
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potential of soil microorganisms, allowing us to determine what genes a group of organisms is 

likely to possess based on ancestral state reconstruction of metagenome assemblies from current 

genomic databases (Langille et al., 2013; Martiny et al., 2013). PICRUSt utilizes this knowledge, 

revealing functional potential, in the form of gene abundance, associated with phylogenetic 

community structure. For this study, we targeted Kyoto Encyclopedia of Gene and Genomes 

(KEGG) ortholog assignments for enzymatic genes commonly associated with SOM 

decomposition, nutrient (nitrogen and phosphate) mobilization, and environmental stress 

responses (Sinsabaugh et al., 2008; Waldrop et al., 2010; full list in Supplementary Table S4.1). 

These genes were then grouped according to functional role, resulting in the following nine gene 

groups: 1) lignin degradation, 2) chitin degradation, 3) cellulose degradation, 4) pectin 

degradation, 5) xylan degradation, 6) arabinoside degradation, 7) nitrogen mobilization, 8) 

phosphate mobilization, and 9) superoxide dismutation. 

4.2.3 Statistical analyses 

Differences between soil layers (Organic, Transition, Mineral) and snow accumulation 

treatments (Control, Deep, Int., Low), including abiotic measurements and relative abundance of 

bacterial 16S rRNA and functional genes, were determined using the Kruskal-Wallis test in the R 

statistical software package with a significance threshold of p<0.05. Due to significant 

differences between soil layers (Supplementary Table ), each layer was analyzed separately. 

Only organic and mineral layers are reported. All abiotic factors, phyla relative abundances and 

relative abundances of functional genes were analyzed individually to elucidate the treatment 

effects for each group, and pairwise comparisons were made to determine significant differences 

between treatments using the Nemenyi post hoc test. In addition, linear regressions were 

performed to determine relationships between soil chemical properties (%C, %N, C:N, and pH) 
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and bacterial abundance at the phylum level, as well as the gene abundances of SOM degrading 

enzymes (Supplementary Figure S4.1-S4.15). To ensure accurate comparisons, soil chemical 

properties were measured from the same samples that DNA was extracted from. Only R2 

values>0.30 are discussed. 

Bacterial diversity statistics were calculated using QIIME (Caporaso et al. 2010), specifically 

the compare_alpha_diversity.py, compare_categories.py, and compare_distance_matrices.py 

scripts. Pairwise comparisons of the Shannon alpha diversity metrics from soil layer and each 

treatment group were made using non-parametric two-sample t-tests with 999 Monte Carlo 

permutations. Beta diversity was analyzed by comparing Bray-Curtis dissimilarity matrices of 

bacterial abundance data from each sample to soil chemical properties, and between soil layers 

and snow accumulation treatments using adonis tests with 999 permutations. Organic and 

mineral layers were also analyzed separately when comparing snow accumulation treatments and 

soil chemical properties. Analyses of soil chemical properties were further substantiated by 

Mantel tests, again using 999 permutations. This data was visualized by creating a non-metric 

multidimensional scaling (NMDS) plot (Stress=0.090, Shepard plot non-metric R2=0.992) in the 

R package phyloseq (McMurdie and Holmes, 2013) using the same Bray-Curtis dissimilarity 

matrices (Figure 4.2). 

4.3 Results 

4.3.1 Environmental changes 

Significant differences in soil temperature (n=12, H=33.29, df=3, p<0.001), active layer thaw 

depth (n=12, H=21.35, df=3, p<0.001), and organic layers %C (n=4, H =9.74, df=3, p=0.021) 

were associated with the four different snow zones. Post hoc tests revealed higher temperatures 
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in the Deep snow zone relative to the Control (p=0.009), the Int. (p=0.001), and the Low snow 

zone (p<0.001; Table 4.1). Active layer depth data revealed similar results, increasing in the 

Deep snow accumulation zone and decreasing as snow pack was experimentally reduced. Only 

in the Deep zone was the active layer thaw depth significantly (p=0.020) deeper than the Control 

zone. However, along the snow accumulation gradient, thaw depth significantly increased from 

Low to Deep plots (Low/Int. - p=0.021, Low/Deep - p<0.001; Table 4.1). Soil moisture was not 

 

Figure 4.2.  Non-metric multidimensional scaling (NMDS) plot using Bray-Curtis dissimilarity 
matrices (Stress=0.090, Shepard plot non-metric R2=0.992). Each point represents the bacterial 
community structure within one of the 41 total samples used for DNA extraction from all soil 
depths (Organic, Transition, and Mineral). Colours indicate %C ranging from 1.4% (light blue) 
to 48.6% (dark blue), bubble size indicates %N ranging from 0.09% (small) to 1.95% (large), 
and shapes indicate snow accumulation treatments (Control, Deep, Int., Low). Ellipse centroids 
represent treatment group means while the shape is defined by the covariance within each group. 

●

●

●

●

●

●

●

●

●

●Cont

Deep

Int

Low

Cont

Deep

Int

Low

Cont

Deep

Int

Low

Cont

Deep

Int

Low

Cont

Deep

Int

Low

Cont

Deep

Int

Low

Cont

Deep

Int

Low

Cont

Deep

Int

Low

Cont

Deep

Int

Low

Cont

Deep

Int

Low

Cont

Deep

Int

Low

Cont

Deep

Int

Low

Cont

Deep

Int

Low

Cont

Deep

Int

Low

Cont

Deep

Int

Low

Cont

Deep

Int

Low

Cont

Deep

Int

Low

Cont

Deep

Int

Low

Cont

Deep

Int

Low

Cont

Deep

Int

Low

Cont

Deep

Int

Low

Cont

Deep

Int

Low

Cont

Deep

Int

Low

Cont

Deep

Int

Low

Cont

Deep

Int

Low

Cont

Deep

Int

Low

Cont

Deep

Int

Low

Cont

Deep

Int

Low

Cont

Deep

Int

Low

Cont

Deep

Int

Low

Cont

Deep

Int

Low

Cont

Deep

Int

Low

Cont

Deep

Int

Low

Cont

Deep

Int

Low

Cont

Deep

Int

Low

Cont

Deep

Int

Low

Cont

Deep

Int

Low

Cont

Deep

Int

Low

Cont

Deep

Int

Low

Cont

Deep

Int

Low

Cont

Deep

Int

Low

Cont

Deep

Int

Low

Cont

Deep

Int

Low

Cont

Deep

Int

Low

Cont

Deep

Int

Low

Cont

Deep

Int

Low

Cont

Deep

Int

Low

Cont

Deep

Int

Low

Cont

Deep

Int

Low

Cont

Deep

Int

Low

Cont

Deep

Int

Low

Cont

Deep

Int

Low

Cont

Deep

Int

Low

Cont

Deep

Int

Low

Cont

Deep

Int

Low

Cont

Deep

Int

Low

Cont

Deep

Int

Low

Cont

Deep

Int

Low

Cont

Deep

Int

Low

Cont

Deep

Int

Low

Cont

Deep

Int

Low

Cont

Deep

Int

Low

Cont

Deep

Int

Low

Cont

Deep

Int

Low

Cont

Deep

Int

Low

Cont

Deep

Int

Low

Cont

Deep

Int

Low

Cont

Deep

Int

Low

Cont

Deep

Int

Low

Cont

Deep

Int

Low

Cont

Deep

Int

Low

Cont

Deep

Int

Low

Cont

Deep

Int

Low

Cont

Deep

Int

Low

Cont

Deep

Int

Low

Cont

Deep

Int

Low

Cont

Deep

Int

Low

Cont

Deep

Int

Low

Cont

Deep

Int

Low

Cont

Deep

Int

Low

Cont

Deep

Int

Low

Cont

Deep

Int

Low

Cont

Deep

Int

Low

Cont

Deep

Int

Low

Cont

Deep

Int

Low

Cont

Deep

Int

Low

Cont

Deep

Int

Low

Cont

Deep

Int

Low

Cont

Deep

Int

Low

Cont

Deep

Int

Low

Cont

Deep

Int

Low

Cont

Deep

Int

Low

Cont

Deep

Int

Low

Cont

Deep

Int

Low

Cont

Deep

Int

Low

Cont

Deep

Int

Low

Cont

Deep

Int

Low

Cont

Deep

Int

Low

Cont

Deep

Int

Low

Cont

Deep

Int

Low

Cont

Deep

Int

Low

−1.0

−0.5

0.0

0.5

−1 0 1 2
NMDS1

N
M
D
S2

Treatment
● Cont

Deep

Int

Low

%N
0.5

1.0

1.5

10

20

30

40

%C



 

 84 

correlated with snow accumulation, possibly the result of surface hydrology at the site, which 

was largely saturated throughout the growing season. In the organic soil layers, the %C 

concentration of soil declined with increased snow accumulation (Low/Deep - p=0.03), while the 

%N concentration only slightly increased (Low/Deep - p=0.32). This resulted in a decreasing 

trend in C:N ratios across snow accumulation treatment zones and relative to the control 

(Control/Deep - p=0.14; Table 4.1). Soil pH tended to increase (became more neutral) with 

increased snow accumulation (Low/Deep - p=0.06). The changes in the mineral soil layers were 

less pronounced than in the organic layers. C:N ratios again showed a decreasing trend as snow 

accumulation increased, while soil pH increased in the Deep zone but did not show a trend along 

the treatment gradient (Table 4.1). 



Table 4.1.  Abiotic characteristics of soil from snow accumulation treatments (Low=~25% less snow pack than the Control, 
Int.=~50% more snow pack than the Control, Deep=~100% more snow pack than the Control). Values are means ± standard errors. 
Soil chemical properties were obtained from samples used for DNA extraction, while temperature and thaw depth were measured in 
situ (n=12). Organic and mineral samples were analyzed separately using the Nemenyi post hoc test. Results are indicated by a,b,c only 
where p<0.05. 

 

Treatment Soil Layers Sample Depths 
(cm) %C %N C:N pH Temp @ 12 cm 

(°C) 
Thaw Depth 

(cm) 

Control Organic (n=4) 6.75±3.12 45.21±1.09 ab 1.01±0.20 50.04±9.44 4.59±0.09 4.32±0.27 b 59.17±1.23 bc 
Mineral (n=3) 26.00±5.51 2.57±0.39 0.15±0.03 17.67±1.34 5.15±0.05 ab 

         

Low Organic (n=4) 5.50±1.89 46.63±0.73 a 1.06±0.07 44.59±2.54 4.44±0.08 2.92±0.24 b 50.92±3.20 c 
Mineral (n=3) 27.00±1.15 4.18±1.92 0.22±0.11 19.42±0.65 5.16±0.20 ab 

         

Int. Organic (n=3) 3.67±0.67 40.59±2.43 ab 1.17±0.25 38.38±8.85 4.69±0.41 4.08±0.25 b 61.88±1.19 ab 
Mineral (n=3) 23.67±2.03 2.58±0.49 0.14±0.02 18.58±1.45 5.01±0.04 a 

         

Deep 
Organic (n=4) 6.00±3.70 36.51±4.27 b 1.40±0.07 26.27±3.41 5.61±0.21 

6.49±0.20 a 65.42±1.49 a 
Mineral (n=4) 24.00±4.42 1.65±0.19 0.10±0.01 16.41±0.56 5.83±0.17 b 
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4.3.2 Bacterial community shifts 

Some bacteria exhibited shifting trends in response to snow depth, both across treatments and 

relative to the control, while other community shifts were either not significant or did not appear 

to be the result of the snow depth treatments (Figure 4.3 and Supplementary Figure S4.16-

S4.20). Noticeable trends at the phylum level included a 1.6-fold increased abundance in 

Verrucomicrobia (p=0.068), a 2.1-fold increase in Actinobacteria (p=0.083), and a 329.0-fold 

increase in Chloroflexi (p=0.010) in the organic layers from the Low to Deep snow zones. 

Acidobacteria showed decreased abundance in all treatments relative to the Control, with the 

Deep zone exhibiting the largest difference with a 1.98-fold decrease (p=0.055; Figure 4.3). In 

the mineral layers, significant increases in the phylum Chloroflexi (7.18-fold increase; p=0.011) 

occurred from the Control to Deep zones, while significant decreases (2.84-fold decrease; 

p=0.019) were observed from Control to Deep zones in the phylum Verrucomicrobia (Figure 

4.3). 

Bacterial abundance in each phylum correlated with at least one of the soil chemical 

properties we measured (%C, %N, C:N, or pH). The best overall predictor was %C, correlating 

with four out of the six phyla. It showed negative relationships with Actinobacteria (R2=0.38, 

p<0.001; Supplementary Figure S4.4) and Chloroflexi (R2=0.34, p<0.001; Supplementary Figure 

S4.6), and positive relationships with Bacteroidetes (R2=0.33, p<0.001; Supplementary Figure 

S4.5) and Proteobacteria (R2=0.32, p<0.001; Supplementary Figure S4.2). Actinobacteria was 

also negatively correlated with %N (R2=0.34, p<0.001; Supplementary Figure S4.4), and 

Chloroflexi, positively with soil pH (R2=0.34, p<0.001;Supplementary Figure S4.6). The best 

and only predictor for Acidobacteria abundance was soil pH, which correlated negatively 
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(R2=0.46, p<0.001; Supplementary Figure S4.1). Verrucomicrobia abundance correlated 

positively with %N (R2=0.36, p<0.001; Supplementary Figure S4.3). 

 

Figure 4.3.  Averaged relative abundance of the six most abundant bacterial phylum relative 
to the control, separated by snow accumulation treatment, and in order of greatest abundance 
(top to bottom). Error bars represent standard error (standard error of controls ranged from 
12.929 in Chloroflexi to 0.026 in Verrucomicrobia). Significance determined by Kruskal-Wallis 
tests is indicated by asterisks (*=p<0.1, **=p<0.05), while post-hoc Nemenyi test results are 
indicated by “a, b, ab”, except where significant differences were to the control. 

Acidobacteria

Proteobacteria

Verrucomicrobia

Actinobacteria

Bacteroidetes

Chloroflexi

−0.4

−0.2

0.0

0.2

0.4

0.0

0.2

0.4

0.6

−0.6

−0.4

−0.2

0.0

0.0

0.5

1.0

1.5

2.0

2.5

−0.5

0.0

0.5

1.0

0

2

4

6

8

Treatment
Deep

Int

Low

Mineral
Acidobacteria

Proteobacteria

Verrucomicrobia

Actinobacteria

Bacteroidetes

Chloroflexi

−0.6

−0.4

−0.2

0.0

0.0

0.1

0.2

0.3

0.4

0.0

0.2

0.4

−0.25

0.00

0.25

0.50

0.75

0.00

0.25

0.50

0.75

1.00

0

20

40

R
e
la

ti
v
e
 A

b
u
n
d
a
n
c
e
 C

h
a
n
g
e
 /
 C

o
n
tr

o
l

Organic
Bacteria

**

*

*

**

*

**

ab

b

a

a

ab

b

a

ab

b



 

 

 
 

88 

Soil depth significantly affected bacterial relative abundance in all phyla except for 

Acidobacteria (Supplementary Table S4.2). The organic layers were more abundant in 

Proteobacteria (1.59-fold difference; p<0.001), Verrucomicrobia (1.48-fold difference; p<0.001), 

and Bacteroidetes (2.27-fold difference; p=0.001). Phyla that were more abundant in the mineral 

layers were Actinobacteria (4.48-fold difference; p<0.001) and Chloroflexi (14.21-fold 

difference; p<0.001). 

Alpha diversity, measured using the Shannon index, was found to differ between soil layers 

(organic / mineral – p=0.003), but not between snow accumulation treatments (Supplementary 

Table S4.3). However, beta diversity of bacterial communities visualized by a NMDS plot of 

Bray-Curtis dissimilarity indices constructed from community matrices (Stress=0.090, Shepard 

plot non-metric R2=0.992; Figure 4.2) revealed significant differences in community structure 

between all samples (organic, transition, and mineral) associated with winter snow pack (adonis 

R2=0.13, p=0.017), %C (adonis R2=0.24, p<0.001; Mantel r statistic=0.63, p<0.001), %N (adonis 

R2=0.14, p<0.001; Mantel r statistic=0.34, p<0.001), C:N (adonis R2=0.19, p<0.001; Mantel r 

statistic=0.42, p<0.001), and pH (adonis R2=0.15, p<0.001; Mantel r statistic=0.49, p<0.001). In 

addition, analysis of each soil layer separately showed that soil chemical properties and snow 

accumulation treatment affected bacterial community structure more in the organic layers than in 

the mineral layers, and that in the organic layer, the snow pack treatment (p<0.001), %C 

(p=0.004), and pH (p<0.001) are the main drivers of community shifts (Table 4.2).  
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Table 4.2.  Statistical analysis of beta diversity using adonis and Mantel tests. Bray Curtis 
distance matrices of bacterial communities for each sample were compared between soil layers 
(Organic, Transition, Mineral) and snow accumulation treatments (Control, Deep, Int., Low), and 
to soil chemical properties. Sample sizes were n=15 for “Organic”, n=13 for “Mineral”, and 
n=41 for “All layers”. Significance is indicated by asterisks (*=p<0.05, **=p<0.01, 
***=p<0.001). 

  Adonis  Mantel test 
 Samples R2 df p-value  r statistic p-value 

Soil layers All 0.320 2 <0.001 ***  n/a n/a 

Snow pack 

All 0.126 3 0.017*  n/a n/a 

Organic only 0.421 3 <0.001***  n/a n/a 

Mineral only 0.485 3 0.003**  n/a n/a 

%C 

All 0.239 1 <0.001***  0.633 <0.001*** 

Organic only 0.212 1 0.004**  0.490 0.008** 

Mineral only 0.055 1 0.720  0.047 0.791 

%N 

All 0.141 1 <0.001***  0.341 <0.001*** 

Organic only 0.111 1 0.131  -0.0245 0.883 

Mineral only 0.051 1 0.788  0.032 0.844 

C:N 

All  0.191 1 <0.001***  0.415 <0.001*** 

Organic only 0.165 1 0.022*  0.180 0.269 

Mineral only 0.108 1 0.195  -0.063 0.629 

pH 

All 0.147 1 <0.001***  0.490 <0.001*** 

Organic only 0.368 1 <0.001***  0.709 <0.001*** 

Mineral only 0.297 1 0.004**  0.526 <0.001*** 

4.3.3 PICRUSt functional analysis 

Of the functional gene groups examined, the most significant treatment effects occurred in 

the organic soil layers. A 1.27-fold decrease in the abundance of genes involved in cellulose 

degradation (p=0.018) and a 1.56-fold decrease in the abundance of genes involved in chitin 

degradation (p=0.029) was observed in the Deep zone relative to the Control (Figure 4.4).  
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Figure 4.4.  Averaged relative abundance of genes for enzyme functional groups relative to 
the control and separated by snow accumulation treatment. Functional groups involved in soil 
organic matter decomposition are ordered from recalcitrant to labile substrates (top to bottom). 
Error bars represent standard error (standard error of controls ranged from 1.220 in the lignin 
group to 0.008 in the superoxides group). Significance determined by Kruskal-Wallis tests is 
indicated by asterisks (*=p<0.1, **=p<0.05), while post-hoc Nemenyi test results are indicated 
by “a, b, ab”, except where significant differences were to the control. 
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Also, across treatments from Low to Deep, lignin degrading gene abundance decreased 

12.29-fold (p=0.023), pectin degrading gene abundance decreased 1.41-fold (p=0.018), and 

xylan degrading gene abundance decreased 1.63-fold (p=0.014; Figure 4.4). A similar trend was 

observed in enzymes responsible for the regulation of oxygen radicals with a 1.05-fold decrease 

in the Deep zone compared to the Low (p=0.083). Shifts along the snow accumulation gradient 

were also observed in gene groups involved in nutrient mobilization with a 1.18-fold increase in 

genes necessary for N mobilization (p=0.14), and a 1.12-fold decrease in genes necessary for 

phosphate mobilization (p=0.39) in the Deep zone relative to the Control. 

Trends in the mineral layers were less clear. Significant shifts included a 2.18-fold increase 

in genes encoding for enzymes involved in arabinoside degradation (p=0.049) and a 1.23-fold 

decrease in enzymes involved in N mobilization (p=0.019) in the Deep zone relative to the 

Control (Figure 4.4). Genes for lignin-degrading enzymes again showed decreasing abundance 

along the treatment gradient from Low to Deep (16.23-fold decrease; p=0.051). However, 

relative to the Control, lignin-degrading genes in both Int. and Low zones exhibited much greater 

abundances than they did in the organic layers (Figure 4.4). 

All soil chemical properties were found to be poor predictors of gene abundance, with the 

exception of genes associated with lignin degradation. Both %C and C:N showed positive 

relationships (R2=0.32, p<0.001 and R2=0.54, p<0.001, respectively; Supplementary Figure 

S4.10), and soil pH showed a negative relationship (R2=0.41, p<0.001; Supplementary Figure 

S4.10).  

While the analysis did reveal significant changes in enzyme gene abundance across the snow 
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zones, many of the KEGG ortholog groups of enzymes targeted in this study were either not 

found in any of the samples or were found in very low quantities, including phenol oxidases, 

peroxidases, and laccases (Supplementary Table S4.1).  

4.4 Discussion 

This study documents changes in soil bacterial community structure in the active layer of 

moist acidic tundra in response to long-term (18 year) experimental changes in winter 

precipitation. We examined how changes in bacterial community functional potential as a result 

of climate forcing factors might affect SOM degradation and alter the C balance of this Arctic 

tundra ecosystem. Low temperatures in Arctic ecosystems limit soil C availability and 

decomposability (Conant et al., 2011; Davidson and Janssens, 2006). However, global warming-

induced permafrost thaw may partially alleviate this temperature limitation, potentially releasing 

large amounts of C into the atmosphere via SOM decomposition and further increasing the rate 

of global warming (Lupascu et al., 2013, 2014a; Lützow and Kögel-Knabner, 2009; Schuur et 

al., 2008).  

After 18 years of experimental winter snow addition, bacterial community structure and 

functional potential in Arctic moist acidic tundra changed under deeper winter snow 

accumulation. Our results indicate that increased snow pack reduced the abundance of genes 

associated with SOM decomposition in the organic soil layers, suggesting a reduced SOM 

decomposition potential. Possible explanations for this functional shift may include: 1) altered 

bacterial C substrate preferences towards more labile sources under lowered O2 availability that 

would result in a decreased abundance of genes associated with SOM decomposition, and 2) a 
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reduced amount of enzymatic machinery (and fewer gene copies; Rocca et al., 2014) necessary 

to accomplish similar metabolic results, as increased soil temperatures under  snow accumulation 

may alleviate kinetic limitations of enzyme functioning (German et al., 2012; Sinsabaugh et al., 

2008). 

4.4.1 Bacterial community shifts 

Our results indicate that altered snow accumulation has a significant effect on soil bacterial 

community structure in Arctic moist acidic tussock tundra ecosystems. While large differences in 

relative abundances were found between soil layers (Supplementary Table S4.2), the most 

notable effects of snow accumulation occurred in the organic layers. For instance, we observed 

shifts in the relative abundance in many of the most abundant phyla including Verrucomicrobia, 

Acidobacteria, and Actinobacteria, particularly in the Deep snow zone (Figure 4.3). Shifts in 

Verrucomicrobia were primarily driven by increases in the order Chthoniobacterales in the Deep 

snow zones relative to the Low snow zones. This order contains facultative aerobic heterotrophs 

able to utilize saccharide components of plant biomass, but unable to use amino acids or organic 

acids other than pyruvate (Sangwan et al., 2004). Shifts in Actinobacteria were dominated by the 

order Actinomycetales, gram-positive facultative bacteria that have been linked to the 

stimulation of ectomycorrhizal growth which degrade recalcitrant C (Goodfellow and Williams, 

1983; Maier et al., 2004; Pridham and Gottlieb, 1948). While not as abundant, the phylum 

Chloroflexi also responded to snow pack treatments, increasing in abundance from Low to Deep 

snow zones (Figure 4.3). Shifts in Chloroflexi were the result of increasing abundance of the 

class Anaerolineae in the Deep zone. Anaerolineae include green non-sulfur bacteria able to 

thrive in anaerobic environments and have previously been found in similar cold, water-saturated 
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soils (Costello and Schmidt, 2006). These results appear consistent with the increased soil 

moisture and decreased partial pressure of O2 documented under increased snow pack at the 

study site (Blanc-Betes et al., 2016). 

These shifts in bacterial phyla indicate that even at the coarsest level of phylogeny and a high 

degree of variance between samples, deeper snow in winter and associated changes in soil 

conditions may be driving changes in the belowground community. Bacterial community shifts 

may be resulting in potentially altered substrate use preference by decomposers, and different 

genetic functional activity. This is supported by other studies from Arctic soil and permafrost 

ecosystems that provide evidence of altered microbial community composition and rapid 

functional response to temperature manipulations, thawing soils, or fertilization treatments 

(Deslippe et al., 2012; Koyama et al., 2014; Mackelprang et al., 2011). For example, 

Actinobacteria abundance was found to increase in response to both increased temperature 

(Deslippe et al., 2012) and in freshly thawed permafrost soils (Mackelprang et al., 2011), similar 

to the response we observed in the Deep zone (Figure 4.3). Mackelprang et al. (2011) also 

reported varying shifts in a wide array of functional genes in response to permafrost thaw. In 

addition, Koyama et al. (2014) documented a decrease in the oligotrophic Acidobacteria phylum 

in response to fertilizer soil inputs which they attributed to be a direct result of competition with 

copiotrophic a-, b-, and g- Proteobacteria which increased in abundance with fertilizer treatment. 

While oligotrophic organisms such as Acidobacteria are adapted to survive in low nutrient 

environments, they are often outcompeted in more fertile soils by generalist copiotrophs (such as 

Proteobacteria) who are better equipped to harvest available nutrients. Our results did not show a 

clear pattern for Proteobacteria, but they do show that Acidobacteria abundance shifts associate 
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negatively with Proteobacteria shifts in the Deep zone where C:N soil values are lowest (most 

fertile; Table 4.1 and Figure 4.3).  

Correlations between soil chemical characteristics (%C, %N, C:N, and pH) and bacterial 

phylum abundance partially support findings reported in Fierer et al. (2007). They identified C 

mineralization rates (a proxy for C availability) to be the best predictor of bacterial abundance in 

the dominant phyla, including positive relationships with Bacteroidetes and b-Proteobacteria, 

and a negative relationship with Acidobacteria (Fierer et al., 2007). We acknowledge that C 

mineralization and availability differ from %C in that regardless of carbon concentration, 

physical and chemical factors in the Arctic such as temperature limitations, and high tannin 

concentrations may limit C mineralization (Davidson and Janssens, 2006; Schimel et al., 1996). 

Physical protection of SOM by soil aggregates and associations with organo-minerals, also 

known to limit C mineralization, does not play as large of a role in Arctic soils compared to other 

soil types (Höfle et al., 2013; Ping et al., 2015). Regardless of these difference in C 

measurement, our study did find weak positive relationships between %C and Proteobacteria 

(Supplementary Figure S4.2) as well as Bacteroidetes (Supplementary Figure S4.5), similar to 

Fierer et al., 2007. Interestingly, although N can be a limiting factor for microbial growth, %N 

only correlated to two phyla: positively with Verrucomicrobia (Supplementary Figure S4.3) and 

negatively with Actinobacteria (Supplementary Figure S4.4). While identifying individual 

abiotic factors that may predict bacterial abundance at the phylum level is informative, it is 

important to recognize that often a variety of interacting factors determine microbial community 

composition, and effects at the phylum scale may be too coarse for adequate interpretation. Our 

results suggest that while C:N (a proxy for SOM quality) is a poor indicator of individual 
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bacterial phylum abundance, %C and %N (and in some cases soil pH) alone may be more 

relevant in these acidic tundra soils. More detailed studies that address the relationships between 

soil chemical/abiotic characteristics and microbial community composition at finer phylogenetic 

scales are needed to adequately identify dependable predictors. 

While the alpha diversity of soil bacterial communities via the Shannon index did differ 

between soil layer, it did not differ between snow pack treatment zones. Also, it does not 

elucidate community structural or functional differences between samples, and it fails to 

distinguish shifts in genetic potential among treatments. In contrast, beta diversity analyses better 

revealed soil bacterial community responses to snow accumulation. Bacterial community 

structure significantly shifted between snow pack treatment zones at all soil depths / layers 

(Table 4.2). The NMDS plot (Figure 4.2) shows bacterial community structures to be associated 

with the snow accumulation treatment as soil chemical properties changed (%C, %N, C:N, and 

pH), indicating that bacterial b-diversity may respond to indirect changes in soil chemistry in 

response to winter snow accumulation. The initial effects of increased snow pack result in altered 

physical factors (greater active layer thaw depth and increased soil temperatures and moisture; 

Blanc-Betes et al., 2016) which may lead to increased SOM availability and faster enzyme 

activities with the potential to enhance SOM decomposition. Higher SOM mineralization may 

promote the documented shifts in aboveground plant communities and increased NPP (Natali et 

al., 2012; Sturm et al., 2005, Anderson-Smith 2013), and vegetation shifts to more shrubby 

species may alter the chemistry and quality of new litter inputs, ultimately affecting decomposer 

communities. Moreover,  soil moisture and compaction can reduce O2 diffusion into the soil, 

inhibiting aerobic SOM decomposition (Blanc-Betes et al., 2016; O’Brien et al., 2010), and 
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altering bacterial community composition by selecting for microorganisms that utilize simple C 

substrates, leaving behind complex organic compounds and plant polymers. In addition, tannins 

produced by expanding woody shrubs may act to inhibit microbial activity (Schimel et al., 1996), 

further slowing decomposition. This is supported by the lower relative abundance of genes 

required for SOM decomposition in the Deep snow accumulation zone where we observed the 

most significant shifts in bacterial community composition (Figure 4.3 and Figure 4.4). The 

balance between these two competing processes, and the functional shifts associated with them, 

will ultimately influence the C balance of the system. 

4.4.2 Functional shifts 

To examine the influence of shifting bacterial abundances on soil community functioning and 

the C balance of Arctic ecosystems, we focused on the genetic potential of the bacterial 

community to produce enzymes required for the degradation of various forms of SOM. We did 

this by using PICRUSt software to estimate functional gene abundance via ancestral state 

reconstruction (Langille et al., 2013). While this method does not provide direct measurements 

of gene abundance (e.g. does not account for horizontal gene transfer or unknown functional / 

taxonomic linkages that may exist in the sampled tundra soils), it does offer valuable insights 

into the functional capacities of bacterial communities using 16S rRNA data (Langille et al., 

2013). Furthermore, gene abundance in itself is not a direct measurement of gene expression or 

enzyme activity (Wood et al., 2015). However it does provide a measure of genetic potential and 

may be positively correlated to enzyme activity and gene expression (Morris et al., 2014; 

Neufeld et al., 2001; Rocca et al., 2014). To accurately measure enzymatic functional potential 

or gene expression would require a targeted metagenomic and metatranscriptomic approach. 
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Many bacterial genes encoding for enzymes associated with the degradation of lignin and 

other complex plant compounds (such as peroxides, phenol oxidases, and laccases) were not 

detected in this study. This suggests that bacterial communities preferentially degrade microbial 

biomass and polysaccharide polymers, and that the decomposition of more recalcitrant forms of 

C in Arctic soils is performed by other microorganisms such as fungi. Fungi typically play a key 

role in the degradation of recalcitrant organic matter by specializing in the production of 

oxidative enzymes (Deslippe et al., 2012; Morgado et al., 2015). The absence of bacterial genes 

that encode for peroxides, phenol oxidases, and laccases, could also be due to the presence of 

tannins in the soil, which are common in the Alaskan floodplain and are produced by 

encroaching shrub species (DeMarco et al., 2014; Schimel et al., 1996). Tannic compounds have 

been shown to inhibit microbial activity and decrease decomposition by binding to vital enzymes 

(Schimel et al., 1996). If production of phenol oxidases and peroxides yield little to no benefit 

for bacteria in this ecosystem due to competition with fungi and interference from tannins and 

other phenolic compounds, genes encoding for these enzymes may be reduced (Rocca et al., 

2014).  

The PICRUSt predicted copies of genes for enzymes responsible for SOM decomposition, 

while generally more abundant in the organic layers (Supplementary Table S4.2), were less 

abundant in the organic layers of the Deep snow zone than in the Control and Low snow 

accumulation zones (Figure 4.4). The genes most affected encode enzymes required for the 

breakdown of plant derived litter, such as cellulose, xylan, or pectin, all major constituents of 

plant cell walls. Xylans in particular are common in woody plant tissues (Timell, 1967). The 

observed decrease of these genes in Deep snow pack suggests bacterial preference of readily 
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available substrates, such as microbial biomass or root exudates (Sullivan and Welker, 2005; 

Sullivan et al., 2007, 2008). Production of these substrates may have been stimulated by 

increased soil temperatures and NPP predicted under a climate change scenario, and require less 

energetic investment in exo-enzyme production (Schimel, 2003). The production of enzymes for 

the degradation of complex polysaccharides is energetically demanding. Therefore, in an energy 

and nutrient limited ecosystem such as the Arctic tundra (Hobbie et al., 2002; Jonasson et al., 

1999; Mack et al., 2004; Shaver and Chapin, 1980, 1986; Sistla et al., 2012), more labile 

substrates are likely preferable, which may lead to accumulation of SOM, and thus SOC 

(Lupascu et al., 2013, 2014a).  

Our results indicating reduced decomposition potential under deeper snow pack is consistent 

with other long-term warming and snowfence studies from Arctic tundra ecosystems that report 

zero net C loss (or even C gain) during the growing season (Natali et al., 2012, 2014; Sistla et al., 

2013). We speculate that initial soil conditions likely favour decomposer activity and 

decomposition rates increase in response to increased temperatures, resulting in C loss. Over 

time changing soil conditions (e.g. increased moisture, decreased O2 availability, changes in 

chemistry of litter inputs) may select for microorganisms that use anaerobic metabolic pathways 

such as methanogenesis (Blanc-Betes et al. 2016). These hypoxic soil conditions would limit 

aerobic decomposition. As bacterial communities increase the abundance of genes encoding for 

enzymes involved in N mobilization, newly available N would enhance microbial biomass 

production, plant NPP, leaf litter N content, and induce plant community shifts (Pattison and 

Welker, 2014; Schimel, 2003; Welker et al., 2005). A decrease in SOM decomposition is 

possibly supported by data from this study, which shows a decreased abundance of genes 
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involved in SOM decomposition in conjunction with trends suggesting increased abundance of N 

mobilization genes in the organic layers as snow pack increases (Figure 4.4).  

Increased temperature may provide an alternate explanation to the decreased PICRUSt 

predicted abundance of genes associated with SOM decomposition in the organic layers of the 

Deep snow accumulation zone (Figure 4.4). Enzyme activity is partially regulated by the rate of 

gene expression as well as by post-transcriptional regulating factors, which include 

environmental factors (Gross et al., 1989). Michaelis-Menten enzyme kinetics are sensitive to 

temperature (German et al., 2012), increasing the maximum rate of enzyme activity (Vmax) by 

increasing the catalytic constant of the reaction (Razavi et al., 2015). Increased Vmax may 

represent an excess potential enzyme activity for the given substrate or growth conditions, 

resulting in a down regulation of genes required for the enzyme (e.g. Gonzalez-Meler et al., 

1999, 2001), because fewer enzymes are needed to achieve similar Vmax at higher temperatures. 

Therefore, increases in soil temperature under deeper snow may partially explain the decrease in 

PICRUSt predicted abundance of genes required for SOM decomposition (Table 4.1 and Figure 

4.4).  

4.4.3 Ecosystem response to snow accumulation 

Whether bacterial communities are responding to changing plant inputs and corresponding 

altered SOM quality (decreased C:N; Table 4.1) or whether they are directly altering SOM 

chemistry through selective decomposition remains unclear. From the results of our study, it is 

clear that increased snow accumulation may lead to changes in both bacterial community 

composition and SOM chemistry in the organic soil layers (Table 4.1 and Figure 4.3). Unlike 

other ecosystems where plants are the first responders to abiotic climate change factors, in the 
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Arctic, microbes are likely the first responders to changes in temperature by initially increasing 

nutrient mineralization. These released nutrients facilitate plant community shifts and increase 

ecosystem NPP (Chapin III et al., 1995). Over time, the combination of increased snow 

accumulation and soil compaction may lead to hypoxic/anaerobic soil conditions (e.g. Blanc-

Betes et al., 2016) and further vegetative shifts to wet-sedge (Carex) species, limiting SOM 

decomposition. This in combination with a recent history of more recalcitrant plant litter inputs 

could result in re-accrual of SOC (e.g. Sistla et al., 2012), ultimately mitigating the positive 

feedback loop hypothesized in current literature (Davidson and Janssens, 2006; Natali et al., 

2014; Schuur et al., 2009; Sturm et al., 2005). 

4.5 Conclusions 

The results presented here support the hypothesis that bacterial community structure and 

function shift as a result of consistently deepened snowpack. Increases in soil hypoxia under 

deepened snow may have resulted in an increased abundance of anaerobic or facultative bacteria, 

slowing decomposition. Decreases in PICRUSt predicted gene copies suggest that SOM 

decomposition may be slowed under accumulated snow, and bacterial community substrate 

preference may shift to more labile compounds. Concentrations of C and N, as opposed to C:N, 

better explained bacterial community responses to snow pack treatments. Together these results 

strongly suggest that soil decomposers of moist acidic tundra are key in determining the direction 

and magnitude of permafrost C feedbacks on the climate system.  
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4.6 Additional Information 

4.6.1 Data and code availability 

All data used in this report are publically accessible through two separate data repositories. 

The 16S rRNA gene sequences derived from Illumina Mi-Seq sequencing have been deposited in 

the NCBI Sequence Read Archive (SRA) under accession number SRP068302. All computer 

script text files used in QIIME and R packages, as well as BIOM and Excel files, are available 

via the NSF Arctic Data Center, doi:10.18739/A2DP96. 

4.6.2 Author contributions 

M. P. Ricketts, J. M. Welker, and M. A. Gonzalez-Meler designed the experiment. R. S. 

Poretsky provided expertise and insight into the bioinformatics and data analyses. M. P. Ricketts 

performed all sample collections, lab work, and data analyses. M. P. Ricketts prepared the 

manuscript with contributions from all co-authors.  
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5 SHOTGUN METAGENOMIC ANALYSIS OF MICROBIAL SOIL ORGANIC 
MATTER DECOMPOSITION AND NUTRIENT CYCLING IN AN ARCTIC 

SNOWFENCE EXPERIMENT 

5.1 Introduction 

Soil microorganisms play an important role in influencing environmental conditions at both 

micro- and global scales but are also affected by a range of biotic and abiotic environmental 

factors. Biotic factors such as vegetation can directly influence soil microbial communities 

through root/rhizosphere interactions, providing readily available carbon (C) sources and 

potentially actively recruiting and maintaining specific microbial consortia though the exchange 

of specific molecules and signaling compounds (Paterson et al. 2007, Berendsen et al. 2012, 

Ricketts et al. 2018). Indirectly, plants may influence the soil microbial community through litter 

deposits, leading to altered soil organic matter (SOM) chemistry. Likewise, abiotic factors such 

as soil chemistry, temperature, O2 availability, and C accessibility play a large role determining 

soil microbial community structure and function (Castro et al. 2010, Blanc-Betes et al. 2016, 

Ricketts et al. 2016). Untangling the relationships, interactions, and feedbacks between soil 

microbial communities and their environment is crucial to gain a holistic understanding of the 

dynamics in any ecosystem, but particularly in the Arctic where rapid and complex ecological 

changes are occurring.  

Emerging sequencing technologies can advance our understanding of microbial diversity and 

function, and their impacts in regulating ecosystem processes in a changing Arctic. The Arctic is 

unique in that it houses large amounts of C stored frozen in the form of SOM. Sub-zero soil 

temperature limits soil microbial activity for much of the year in the active layer, and in the 

permafrost layers where soils have been frozen for more than two consecutive years (Ping et al. 
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2015). Permafrost soils alone contain approximately 50% of the world’s soil organic carbon 

(SOC). There is growing concern that increasing global temperatures may lead to thawing soils 

and increase the microbial mineralization of these ancient C stores. Increased activity of 

decomposers can further accelerate global warming through the release of this SOC in the form 

of CO2 and CH4 into the atmosphere. Therefore, the response of soil microorganisms to forcing 

factors can have global effects. Additionally, increased nutrient availability, due to the thawing 

SOM and increased microbial mineralization, can increase the productivity and species 

composition of the Arctic plant communities, transitioning from tussock cottongrass species 

(Eriophorum vaginatum) to shrub species (Betula nana and/or Salix pulchra) or potentially sedge 

species (Carex spp.), depending on resulting soil moisture conditions. Therefore, soil 

microorganisms both as responders to forcing factors and regulators of SOM decomposition, 

play a large role in determining the future state of Arctic ecosystems and the global 

concentration of greenhouse gases. 

Soil organic matter is comprised of a variety of organic compounds including 

oligosaccharides and complex carbohydrates (e.g. hexoses, disaccharides, cellulose, 

hemicellulose, pectin, starch), lignins, tannins, oils, fats, proteins, amides, organic acids, phenols, 

or alcohols, to name a few (Kögel-Knabner 2002). These compounds primarily come from the 

decaying necromass of plants and soil organisms (Paul 2016) and form the substrates of bacterial 

decomposers in the soil. Plant cell walls primarily contain a combination of cellulose, 

hemicellulose, and pectin polysaccharides, while fungal cell walls are known to uniquely contain 

a combination of chitin and glucan polymers (Bowman and Free 2006), and bacterial cell walls 

uniquely contain peptidoglycan polymers (up to 90% of the cell wall). To metabolize such a 

wide variety of chemical structures requires an equally wide variety of biochemical pathways 
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and specific enzyme families.  

There are a number of databases and classification systems currently used to organize and 

link enzymes according to their genetic orthology (amino acid sequences), functional roles, or 

the chemical reactions they catalyse. These include the Enzyme Commission (EC) number 

classification system (NC-IUBMB and Webb 1992), the Kyoto Encyclopedia of Genes and 

Genomes (KEGG; Kanehisa and Goto 2000) orthology (KO) database , the SEED Subsystems 

database (Overbeek et al. 2005, 2014), and the Carbohydrate-Active Enzymes (CAZy) database 

(Lombard et al. 2014). The EC number classification system, first published in 1961, is 

organized based on the chemical reactions that are catalysed. While extremely useful, this system 

has its shortcoming, as many different enzymes may catalyse the same reaction. More recently, 

enzymes have classified by identifying the genes which encode them, organizing them according 

to homologous sequence similarity, and grouping them into tiered functional groups (e.g. KO 

and SEED Subsystems databases). The CAZy database focuses on enzymes specifically involved 

in the metabolism of carbohydrates. Specifically, its mission is to maintain an extensive and 

thorough catalogue which links sequence data to detailed information on the biochemical role of 

each gene, focusing on enzymes that “assemble, modify and breakdown oligo- and 

polysaccharides” (Lombard et al. 2014; http://www.cazy.org). In CAZy, enzymes are classified 

into sequenced-based families separated by biochemical function, including catabolic processes 

(glycoside hydrolases [GH], which catalyse the cleavage of the glycosidic bonds holding these 

polymers together), and anabolic processes (glycosyltransferases [GT], which catalyse glycoside 

synthesis). It should be noted that certain groups of polymers, such as hemicellulose and pectin, 

may use the same GTs, or complexes of GTs, for biosynthesis (Mohnen 2008, Harholt et al. 

2010), and groups of polymers such as peptidoglycan and chitin may be broken down using the 
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same GHs, making functional classification of these group of enzymes very difficult.   

Enzyme activities in soils are also affected by conditions determined by the soil physical, 

chemical, and biological environment such as the those affecting Arctic tundra soils (Gerday et 

al. 2000, German et al. 2012). Soil temperature and pH have direct effects on enzyme kinetics, 

where each enzyme has an optimum set of conditions. Likewise, the concentration of a given 

enzymes are determined by the rate at which they are produced by soil microbes, which is 

dependent on the composition and genetic capacity of the microbial community. In the Arctic, 

little is known about the genetic capacity of soil microorganisms to decompose SOM and 

catalyse nutrient transformations, and how changing environmental factors affect both enzyme 

kinetics and microbial community structure and function. Metagenomic shotgun sequencing 

within an in situ experimental context offers a holistic, community level snapshot of the genetic 

enzymatic potential of the soil microbial community, yielding both phylogenetic and functional 

information that can shed light on how soil microorganisms respond to the changing Arctic. 

Here, we used shotgun metagenomic sequencing to evaluate changes in soil microbial 

community structure and genetic functional potential in response to a long-term snow depth 

manipulation experiment in Northern Alaska. The predicted changes in snow accumulation for 

Arctic tundra can alter soil physical factors (active layer depth, soil moisture, oxygen content), 

vegetation shifts (graminoids versus shrubs), and SOM chemistry over time. We focused on 

genes involved in SOM decomposition and nutrient cycling to determine how these processes 

might be affected by changes in winter precipitation climate conditions predicted for the tundra 

region. Based on previous findings that show altered soil chemistry, and shifts in soil bacterial 

community and associated estimates of gene abundance under deep snowpack (Ricketts et al. 
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2016), we hypothesize that genes required for OM decomposition will be less abundant in soils 

under deeper snowpack, but genes required for N metabolism will be more abundant. 

5.2 Methods 

5.2.1 Site description and sample collection 

In early August of 2012, soil cores were collected from a long-term snow fence experiment 

site established in 1994 near Toolik Field Station, Alaska (Jones et al. 1998, Walker et al. 1999). 

The environment is classified as moist acidic tundra which is primarily dominated by cottongrass 

tussocks (Eriophorum vaginatum). Sphagnum mosses (Sphagnum spp.) covers inter-tussuck 

areas along with a variety of other short-statured plant species, including Dwarf Birch (Betula 

nana), Diamond-leaf Willow (Salix pulcha), and wet sedge (Carex spp.). This experiment was 

designed to mimic the predicted increases in snow cover in the Arctic by producing a gradient of 

snow accumulation that decreases with increasing distance from the fence (Figure 4.1). Three 

treatment zones were established according to snow depth relative to a control zone (located 

>30m away from the effects of the snow fence); Deep (~100% increase), Intermediate (~50% 

increase), and Low (~25% decrease). Three soil cores were extracted from inter-tussock areas of 

each zone and subsamples were selected from each core for DNA extraction and sequencing.  

Detailed methods can be found in Ricketts et al. (2016), where 16S rRNA analysis of these 

samples can be found. For this study, DNA from 12 samples representing the organic horizon 

(mean soil depth ± standard error [SE] = 5.6 ± 1.3 cm) of each treatment zone (n=3) were 

selected for further shotgun sequencing and analysis based on the community differences 

between treatments in the organic layer, observed in Ricketts et al. (2016).   
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5.2.2 Shotgun sequencing and analysis 

All library preparation and sequencing was performed by the Genome Research Division of 

the Research Resources Center at the University of Illinois at Chicago. Each soil DNA sample 

(described above) was individually fragmented using a Covaris S2 acoustic shearing device 

(Covaris, Inc., Woburn, Massachusetts, USA), libraries were prepared using a Swift 2S library 

preparation kit (Swift Biosciences, Inc., Ann Arbor, MI, USA) resulting in average peak sizes 

~500bp (range 454-536bp), final DNA fragment concentrations were quantified using an 

Invitrogen Qubit® 3.0 Fluorometer (Life Technologies, Inc., Carlsbad, CA, USA) and equally 

loaded across 4 lanes of an Illumina NextSeq instrument (Illumina, Inc., San Diego, CA, USA), 

and 2×151 paired-end sequencing was performed. Forward and reverse reads were not merged 

prior to analysis due to inadequate overlap between reads. All resulting files were concatenated 

by sample and uploaded to MG-RAST (Meyer et al. 2008) for analysis. Metagenomes were 

analyzed in MG-RAST for taxonomic gene abundance using the SILVA SSU database, and 

functional gene abundance using the SEED Subsystems and KEGG Ortholog databases. The 

annotation parameters used were e-value=5, %-identity=60, minimum alignment length=15 bp, 

and minimum abundance=1, using the representative hit method. To remove very low 

abundance, and potentially artificial or misclassified taxa, we filtered out OTU’s that did not 

occur at least once in 20% of the samples. All OTU and gene counts were transformed into 

relative abundance (%) values. 

5.2.3 Functional gene analysis 

We performed two separate functional gene analyses; 1) using the pre-established functional 

classifications assigned by SEED Subsystems (Overbeek et al. 2005, 2014), and 2) using a 
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manually curated list of genes from KEGG ortholog assignments (Supplementary Table S5.1), 

selected and grouped according to the role they play in the microbial metabolism of 

carbohydrates, methane/CO2, nitrogen (N), and phosphorus (P) . For carbohydrate metabolism, 

we compared enzyme commission (EC) numbers, gene symbols, and gene names (given at the 

finest KEGG function level) within our dataset to the complete list of genes within the 

Carbohydrate-Active Enzymes (CAZy) database. The genes from our dataset that contained a 

match within CAZy were then grouped by the type of polymers their activity associates with (i.e. 

cellulose, hemicellulose, pectin, chitin, peptidoglycan, and starch), and whether they are 

involved in anabolic/biosynthetic (GTs) or catabolic/degrative processes (GHs). In two cases, 

multiple polymer groups were found to utilize the same enzymes and were thus grouped together 

(i.e. hemicellulose/pectin biosynthesis and peptidoglycan/chitin degradation). Genes that we 

were unable to definitively categorize, that did not have greater than 10 gene hits in at least one 

sample, or that were associated with eukaryotic organisms, were deleted. For the methane, N, 

and P metabolisms, we separated genes (again from the finest KEGG function level) according 

to their specific activity within their respective cycles, where methane metabolism (KEGG level 

2) was split into methanogensis and methanotrophy, N metabolism (KEGG level 2) was split into 

N-fixation, nitrification, nitrate reduction, denitrification, nitroalkane oxidase, and carbonic 

anhydrase, and P metabolism was split into inositol phosphate (a KEGG level 3 category), 

phosphomonoesters, phosphodiesters, triphosphoric monoesters, and inorganic phosphate. 

5.2.4 Statistical analyses 

Kruskal-Wallis tests followed by Nemenyi posthoc tests were used to determine the effects 

of our treatment on soil properties (i.e. temperature, permafrost thaw depth, pH, %C, %N, C:N) 
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and the relative abundances of bacteria and fungi at the kingdom phylogenetic level (as well as 

the bacterial to fungal ratio), the eight most abundant bacterial phyla, the six most abundant 

fungal phyla, and functional gene groups at varying levels of the SEED Subsystems 

classification system as well as our manually curated list. Due to the limited number of 

replicates, and subsequent lack of statistical power in this experiment, we assigned a marginal 

significance threshold of p<0.1 for all microbial abundance data tested using Kruskal-Wallis and 

Nemenyi tests. 

To examine differences in overall soil microbial community structure (bacteria + fungi) 

between the snow fence treatment zones, we used non-metric multidimensional scaling (NMDS) 

plots in combination with adonis tests (similar to PERMANOVA) using the SILVA SSU 

assigned taxonomic relative abundance matrix at the OTU level. In addition, both and bacterial 

and fungal communities were analyzed separately. We also used adonis tests to determine 

whether or not each measured soil property had an effect on microbial community structure. 

Overall microbial functional capacity was evaluated using constrained (canonical) 

correspondence analysis (CCA). The SEED Subsystem functional gene abundance matrix 

(Hellinger transformed) at the “function” level was used as the response variable, and two 

models were evaluated to determine the degree of influence on microbial function. The 

“microbial taxonomy model” used the relative abundances of the 12 most abundant microbes as 

constraining factors, while the “soil environment model” used measured soil properties as 

constraining factors. Constraints were analyzed for collinearity using variance inflation factors 

(VIF) and removed from the full model if VIF>20. Parsimonious model selection was performed 

using forward selection of factors based on Akaike information criterion (AIC). In addition, all 
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factors, including snow accumulation treatment, were analyzed separately as conditions to the 

models to determine the individual explanatory power of each factor. To further characterize the 

influence of the snow accumulation treatment, microbial taxa, and soil properties on microbial 

functional capacity, adonis and Mantel tests were performed for each explanatory factor. 

5.3 Results 

5.3.1 Treatment effects on soil environment 

Greater snow accumulation in the Deep treatment zone over an 18 year time span resulted in 

increased soil temperatures (n=12, H=33.29, df=3, p<0.001) and greater active layer thaw depth 

(n=12, H=21.35, df=3, p<0.001) relative to the control, and lower soil C concentration (n=3, 

H=7.67, df=3, p=0.053), relative to the control (Table 5.1). Although not significant, soil N 

concentration, C:N, and soil pH did show trends with increasing snow depth, where soil N 

increased, C:N decreased, and soil pH increased (became less acidic).  

Table 5.1.  Abiotic characteristics of soil from snow accumulation treatments. Soil chemical 
properties were obtained from samples used for DNA extraction (n=3), while temperature and 
thaw depth were measured in situ (n=12). Values are means ± standard errors. Nemenyi posthoc 
results are indicated by a,b,c only where p<0.05. 

 

Treatment Sample 
Depths (cm) %C %N C:N pH Temp @ 12 

cm (°C) 
Thaw Depth 

(cm) 
Control 6.75±3.12 45.21±1.09 ab 1.01±0.20 50.04±9.44 4.59±0.09 4.32±0.27 b 59.17±1.23 bc 

        

Low 5.50±1.89 46.63±0.73 a 1.06±0.07 44.59±2.54 4.44±0.08 2.92±0.24 b 50.92±3.20 c 

        

Int. 3.67±0.67 40.59±2.43 ab 1.17±0.25 38.38±8.85 4.69±0.41 4.08±0.25 b 61.88±1.19 ab 

        

Deep 6.00±3.70 36.51±4.27 b 1.40±0.07 26.27±3.41 5.61±0.21 6.49±0.20 a 65.42±1.49 a 
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5.3.2 Microbial taxonomic abundance analysis 

The broadest and most notable phylogenetic treatment affect occurred at the kingdom 

taxonomic level, where the bacterial to fungal ratio increased as a result of snow accumulation 

(H= 6.8974, df = 3, p= 0.075). This is the result of a decrease in fungal abundance, as well as an 

increase in bacterial abundance, associated with snow depth (Figure 5.1A).  

At the phylum taxonomic level, the relative abundance of unclassified bacteria across 

treatments (29.35%±1.36) was greater than any of the identified phyla, with Proteobacteria being 

the most abundant taxonomically classified phylum (14.80%±0.61). The unclassified bacteria 

also showed a treatment effect (n=3, H=6.85, df=3, p=0.077) with relative abundance being 

greater in the Deep zone relative to the Control (p=0.061). Of the taxonomically classified phyla, 

only 2 of the 9 most abundant bacterial phyla analyzed showed a treatment effect (Figure 5.1B), 

Actinobacteria (n=3, H=6.90, df=3, p=0.075) and Chloroflexi (n=3, H=7.51, df=3, p=0.057), 

where both phyla were greater in the Deep zone relative to the Low zone (p=0.046 and p=0.061, 

respectively).  

Of the fungal phyla, Basidiomycota were the most abundant (7.07%±1.53), followed by 

Ascomycota (5.90%±1.20) and then the unclassified fungi (1.17%±0.26). While the effects of 

the snow–fence across treatment zones somewhat reduced the relative abundances of all three of 

these (Basidiomycota n=3, H=6.59, df=3, p=0.086; Ascomycota n=3, H=7.05, df=3, p=0.070; 

unclassified fungi n=3, H=7.82, df=3, p=0.050), the greatest differences occurred between the 

Deep zone and the Control zone (Basidiomycota p=0.081; Ascomycota p=0.110; unclassified 

fungi p=0.046).  
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Figure 5.1.  Relative abundances across treatments of bacteria and fungi at the kingdom (A) and 
phylum levels (B and C). Statistical significance (p<0.1) of relative abundance differences 
between treatment groups as ascertained by Kruskal-Wallis is represented by “*”. Nemenyi 
posthoc testing was performed on bacterial:fungal relative abundance ratios in A), while in B) 
and C)  the relative abundances of individual phyla were used. Significant differences found in 
posthoc tests are represented by “a” and “b”.  
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The overall microbial community structure was affected by the snow accumulation treatment 

(Table 5.2; R2=0.452, p=0.022). Additionally, both bacterial and fungal communities, 

individually, were also affected by the snow accumulation treatment (Figure 5.2A and Table 

5.2B; R2=0.449, p=0.036 and R2=0.503, p=0.011, respectively). However, it should be noted that 

soil pH had a greater influence on microbial community structure (overall, bacterial, and fungal) 

than any other factor, including our treatment (overall: R2=0.352, p=0.002, bacterial: R2=0.379, 

p=0.002, fungal: R2=0.332, p=0.002). Soil temperature followed closely, primarily affecting 

fungal community structure (R2=0.254, p=0.008) over bacteria (R2=0.183, p=0.063).  Soil %C, 

%N, and C:N did not have significant effects on soil microbial community structure (Table 5.2). 

Table 5.2.  Adonis (PERMANOVA) statistics for the effects of snow accumulation treatment, 
and soil chemical and physical properties on bacterial, fungal, and overall microbial (bacterial + 
fungal) community structure. 

Explanatory variable  Overall microbial community  Bacterial community  Fungal community 

  R2 p-value  R2 p-value  R2 p-value 

Snow accumulation 
treatment 

 0.452 0.022*  0.449 0.036*  0.503 0.011* 

Soil pH  0.352 0.002**  0.379 0.002**  0.332 0.002** 

Temperature  0.198 0.037*  0.183 0.063  0.254 0.008** 

%C  0.181 0.062  0.179 0.057  0.163 0.055 

%N  0.093 0.342  0.090 0.352  0.117 0.199 

C:N  0.156 0.091  0.152 0.122  0.178 0.063 
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Figure 5.2.  Non-metric multidimensional scaling (NMDS) ordinations showing differences in 
community structure at the OTU level for both bacteria (A; stress=0.041) and fungi (B; 
stress=0.039). R2 and p-values are the results of adonis (PERMANOVA) tests evaluating the 
effects of the treatment on community structure. 

5.3.3 Drivers of microbial functional capacity 

Examination of factors which may contribute to shaping the overall genetic functional 

capacity of the soil microbial community showed a significant effect of the snow accumulation 

treatment and revealed a number of particularly influential microbial taxa and soil parameters 

(Figure 5.3). The snow accumulation treatment alone explained 40.1% of variation in genetic 

functional capacity (Figure 5.3 and Table 5.4; CCA Adj. R2=0.178, p=0.014, adonis R2=0.508, 

p=0.011). Of the two CCA models, the microbial taxonomy model performed better, explaining 

87.8% of variation in genetic functional capacity (Figure 5.3A and Table 5.3; Adj. R2=0.324, 

p=0.013), while the soil environment model predicted 51.2% of variation (Figure 5.3B and Table 

5.4; Adj. R2=0.232, p=0.003). The microbial taxonomy model originally consisted of 12 taxa, all 

but two (Firmicutes and Proteobacteria) of which showed significant effects on genetic 
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functional capacity when analyzed individually, with Ascomycota, Chloroflexi, and unclassified 

fungi showing the strongest effects (Table 5.3). After removal of collinear variables, the full 

microbial taxonomy model consisted of nine microbial taxa, and parsimonious model selection 

identified Ascomycota and Acidobacteria to be the best combination of predictors for genetic 

functional capacity (% variance explained=40.9%, Adj. R2=0.279, p<0.001). The soil 

environment model originally consisted of five measured soil variables, which when analyzed 

individually revealed soil pH to be the most influential driver of genetic functional capacity, 

followed by %C (Table 5.4). Soil temperature and %N did not have an effect. After the removal 

of C:N due to collinearity, parsimonious model selection of the four remaining variables 

identified soil pH and %C to be the best combination of predictors for genetic functional 

capacity (Figure 5.3B; % variance explained=38.9%, Adj. R2=0.253, p<0.001). 

Table 5.3.  Statistics from constrained correspondence analysis (CCA), adonis (PERMANOVA), 
and Mantel tests examining the effects of microbial taxonomic relative abundances on overall 
microbial community functional capacity. †=variables removed from the full model due to 
collinearity determined by variance inflation factors (VIF). 

Microbial taxonomy  Constrained Correspondence Analysis (CCA) 

  
% variance explained Adj R2 p-value 

Full model (n=9)  87.8 0.324 0.013* 

Parsimonious model (Ascomycota 
+ Acidobacteria) 

 
40.9 0.279 <0.001*** 

 Adonis  Mantel  CCA 

Individual Variables R2 p-value 

 

r-statistic p-value 

 
% variance 
explained Adj R2 p-value 

Acidobacteria 0.294 0.008**  0.467 0.005**  18.8 0.108 0.018* 

Firmicutes 0.134 0.165  0.233 0.081  10.3 0.013 0.252 
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Actinobacteria 0.377 9e-4***  0.631 <0.001***  25.0 0.176 <0.001*** 

Planctomycetes † 0.226 0.032*  0.400 0.006**  18.6 0.106 0.018* 

Chloroflexi 0.427 1e-4***  0.710 <0.001***  28.8 0.217 <0.001*** 

Bacteroidetes † 0.379 3e-4***  0.538 <0.001***  24.1 0.165 0.002** 

Verrucomicrobia 0.247 0.015*  0.306 0.038*  17.7 0.093 0.036* 

Proteobacteria 0.089 0.393  0.032 0.366  9.1 0.002 0.388 

Unclassified bacteria 0.324 0.003**  0.414 0.007**  23.4 0.158 0.004** 

Basidiomycota 0.219 0.038*  0.396 0.008**  17.0 0.086 0.036* 

Ascomycota 0.457 1e-4***  0.740 <0.001***  30.6 0.237 <0.001*** 

Unclassified fungi † 0.422 1e-4***  0.706 <0.001***  27.9 0.207 <0.001*** 

 
 
 
 

 

Figure 5.3.  Constrained ordinations from canonical correspondence analysis (CCA) of overall 
microbial community genetic functional capacity Each point represents the functional gene 
matrix from a single sample as assigned by SEED subsystems at the “function” level. Distances 
between sample points indicate differences in the overall functional capacity of the communities. 
Ordinations are constrained by microbial taxonomy (A) and soil environmental characteristics 
(B). Arrow length and direction indicate corollary power and influence on functional gene matrix 
structure. 
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Table 5.4.  Statistics from constrained correspondence analysis (CCA), adonis (PERMANOVA), 
and Mantel tests examining the effects of the soil environment on overall microbial community 
functional capacity. Blank cells indicate that test assumptions did not pass. †=variables not 
included in the full model due to collinearity determined by variance inflation factors (VIF). 

Soil Environment  Constrained Correspondence Analysis (CCA) 

  
% variance explained Adj R2 p-value 

Full model (n=4)  51.2 0.232 0.003** 

Parsimonious model (pH+%C)  38.9 0.253 <0.001*** 

 Adonis  Mantel  CCA 

Individual Variables R2 p-value 

 

r-statistic p-value 

 
% variance 
explained Adj R2 p-value 

Temperature - -  -0.014 0.456  14.9 0.065 0.07 

pH 0.408 2e-4***  0.606 <0.001***  26.5 0.192 <0.001*** 

%C 0.223 0.032*  0.184 0.146  19.5 0.115 0.013* 

%N - -  0.013 0.413  0.112 0.027 0.182 

C:N † 0.197 0.053  0.144 0.159  16.8 0.085 0.028* 

Snow accumulation 
treatment † 0.508 0.011*  - -  40.1 0.178 0.014* 

 

5.3.4 Microbial functional gene abundance analysis 

Our analysis of functional genes manually curated into relevant functional groups revealed a 

number of snow accumulation treatment effects (Figure 5.4). Within carbohydrate catabolic 

processes, there were decreased relative abundances of genes associated with hemicellulose 

(H=6.28, p=0.099, posthoc p=0.140) and starch degradation (H=6.38, p=0.094, posthoc p=0.140) 

in the Deep zone relative to the Control zone. Similar results were found for peptidoglycan/chitin 

degradation (H=6.44, p=0.092, posthoc p=0.061) in the Deep zone relative to the Low zone. 

Likewise, within carbohydrate anabolic processes, there were decreased relative abundances of 
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genes associated with cellulose biosynthesis (H=7.62, p=0.055, posthoc p=0.033) and starch 

biosynthesis (H=7.31, p=0.063, posthoc p=0.081) in the Deep zone relative to the Low zone. 

Similarly, hemicellulose/pectin biosynthesis genes were more abundant in the Deep zone relative 

to the Control zone (H=7.82, p=0.050, posthoc p=0.033). Although not significant, the relative 

abundances of genes associated with methane metabolism did follow trends along the snow 

depth gradient where genes linked to methanogenesis increased with deeper snow (H=5.87, 

p=0.118) while genes linked to methanotrophy decreased as snow pack increased (H=5.62, 

p=0.132).  

The relative abundances of genes involved in N and P cycling were also affected by the snow 

accumulation treatment (Figure 5.4). Specifically, the relative abundances of genes encoding 

enzymes for N-fixation and nitrate reduction were increased in the Deep zone relative to the Low 

zone (H=6.28, p=0.099, posthoc p=0.140 and H=6.85, p=0.077, posthoc p=0.110, respectively), 

while genes encoding carbonic anhydrases were increased in the Deep zone relative to the 

Control zone (H=8.08, p=0.044, posthoc p=0.033). Many P cycling genes showed an opposite 

response where the relative abundances of genes associated with inositol phosphate and 

triphosphoric monoester metabolisms were decreased in the Deep zone relative to the Low zone 

(H=7.51, p=0.057, posthoc p=0.061 and H=8.13, p=0.043, posthoc p=0.061, respectively). Genes 

associated with phosphodiester metabolism showed a similar pattern, although statistical power 

was not sufficient to show a difference (H=5.97, p=0.113). The relative abundances of genes 

involved in phosphomonoester metabolism, on the other hand, were greater in the Deep zone 

relative to the Control zone (H=7.62, p=0.055, posthoc p=0.033). 
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Figure 5.4.  Heatmap and Kruskal-Wallis analysis of gene groups organized by association with 
various carbohydrate polymers found in organic matter, catabolic vs. anabolic processes, and 
methane/CO2, N, and P metabolism. Columns in heatmap represent the four snow depth 
treatment zones. Black boxes indicate the maximum average relative abundance while white 
boxes indicate minimum average relative abundance (n=3). Maximum and minimum average 
values are shown in columns left of the heatmap. Asterisks (“*”) indicate Nemenyi posthoc 
differences with p<0.01. 
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Functional gene groups Kruskal-Wallis tests Relative abundance (%)

Carbohydrate catabolic processes H p-value Min Max

Starch degradation 6.38 0.094 * 6.92e-3 7.76e-3

Cellulose degradation 2.08 0.557 3.82e-3 4.00e-3

Hemicellulose degradation 6.28 0.099 * 6.08e-3 7.09e-3

Pectin degradation 1.67 0.644 1.69e-3 1.90e-3

Peptidoglycan 6.44 0.092 * 2.01e-3 2.36e-3

Carbohydrate anabolic processes

Starch biosynthesis 7.31 0.063 * 1.30e-3 1.54e-3

Cellulose biosynthesis 7.62 0.055 * 1.74e-4 4.37e-4

Hemicellulose/Pectin biosynthesis 7.82 0.050 * 1.56e-3 1.78e-3

Peptidoglycan biosynthesis 5.36 0.147 3.34e-3 3.52e-3

Chitin biosynthesis 5.97 0.112 3.40e-5 1.46e-4

Methane / CO2 metabolism

Methanogenesis 5.87 0.118 4.27e-3 5.38e-3

Methanotrophy 5.62 0.132 5.20e-4 7.60e-4

Carbonic anhydrase 8.08 0.044 ** 7.50e-4 8.58e-4

N cycling

N-fixation 6.28 0.099 * 1.72e-5 1.89e-4

Nitrification 4.91 0.178 4.68e-7 3.71e-6

Nitrate reduction 6.85 0.077 * 1.48e-3 2.61e-3

Denitrification 5.67 0.129 6.50e-5 2.23e-4

Nitroalkane oxidase 5.36 0.147 6.54e-4 8.62e-4

P cycling

Inositol phosphate (KEGG lvl 3) 7.51 0.057 * 1.86e-3 2.56e-3

Phosphomonoesters 7.62 0.055 * 4.27e-3 5.18e-3

Phosphodiesters 5.97 0.113 1.63e-3 2.25e-3

Triphosphoric monoesters 8.13 0.043 ** 6.42e-4 8.06e-4

Inorganic phosphate 2.18 0.536 6.31e-3 6.53e-3

Max

Min
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Analysis of gene relative abundances organized by the SEED Subsystems functional gene 

classification system (Supplementary Table S5.2) revealed results similar to the analysis of our 

manually curated gene groups. Overall carbohydrate metabolism analyzed at level 1 was only 

marginally affected by the snow fence treatments (H=6.08, p=0.108), however posthoc tests 

showed decreased relative abundances of genes in the Deep zone relative to the Control zone 

(posthoc p=0.081). At finer resolution (level 2), central carbohydrate metabolism, di- and 

oligosaccharides, and fermentation functional gene groups all had decreased relative abundances 

in the Deep zone relative to the Control zone (H=8.74, p=0.033, posthoc p=0.017, H=6.44, 

p=0.092, posthoc p=0.110, and H=8.23, p=0.041, posthoc p=0.033, respectively), while the 

organic acids functional group had decreased relative abundances in the Deep zone relative to the 

Low zone (H=7.51, p=0.057, posthoc p=0.046). 

The SEED Subsystems functional groups related to N metabolisms all had consistently 

higher relative abundances in the DEEP zone, including in overall N metabolism analyzed at 

level 1 relative to the Low zone (H=6.90, p=0.075, posthoc p=0.081), as well as in the level 2 

functional groups ammonia assimilation, denitrification, and N-fixation (H=6.69, p=0.082, 

posthoc p=0.081, H=6.28, p=0.099, posthoc p=0.081, and H=7.82, p=0.050, posthoc p=0.033, 

respectively) relative to the Low zone. Likewise, relative gene abundances in dissimilatory nitrite 

reductase and nitrate and nitrite ammonification functional groups were higher in the Deep zone 

relative to the Low zone (H=8.54, p=0.036, posthoc p=0.081, and H=7.82, p=0.050, posthoc 

p=0.046, respectively). Analysis of the P metabolism SEED Subsystem level 1 functional group 

showed higher relative abundances of genes in the Deep zone relative to the Control zone 

(H=6.38, p=0.094, posthoc p=0.081), contradicting some of the results from the analysis of our 

manually curated classification. While only marginally significant, the relative gene abundances 
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related to potassium metabolism increased along the snow accumulation gradient with highest 

values in the Deep zone (H=6.18, p=0.103). The genes associated with sulfur metabolism (level 

1) were lowest in the Intermediate zone compared to both Deep and Low zones (H=6.90, 

p=0.075). When separated into inorganic versus organic sulfur assimilation (SEED Subsystem 

level 2), relative abundances were higher in the Deep zone relative to the Intermediate zone for 

inorganic sulfur assimilation (H=6.28, p=0.099, posthoc p=0.140), but higher in the Low zone 

relative to the Intermediate zone for organic sulfur assimilation (H=6.49, p=0.090, posthoc 

p=0.061). 

5.4 Discussion 

This research provides an in-depth genetic analysis of how soil microorganisms in Arctic 

tundra soils respond to increases and decreases in snow accumulation and associated 

environmental effects, such as altered plant community and tissue chemistry, increased soil 

temperature and moisture, and decreased soil C concentration and soil acidity (Blanc-Betes et al. 

2016, Ricketts et al. 2016). As snow accumulation increased as a result of our snow fence 

treatment, the bacterial to fungal ratios also increased, driven by the marked decreased in the 

relative abundance of fungal taxa in the Deep zone (Figure 5.1). These taxonomic responses 

contributed to overall microbial community structure differences, as well as bacterial and fungal 

community differences, but only past a snow-depth threshold in the Deep zone (Figure 5.2). Soil 

pH affected both bacterial and fungal communities equally, whereas soil temperature seemed to 

have more of an effect on the fungal community structure than that of bacteria (Table 5.2). 

Functionally, overall microbial genetic functional capacity was also found to be affected by the 

snow accumulation treatment, and driven by the Ascomycota and Chloroflexi phyla, as well as 
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soil pH and %C. (Figure 5.3, Table 5.3, and Table 5.4). The relative abundance of genes 

associated with carbohydrate metabolism (specifically related to starch metabolism, 

hemicellulose metabolism, and chitin degradation) decreased in the Deep zone relative to the 

Control and Low zones (Figure 5.4). Mineralization of N and P shifted from complex organic 

insoluble substrates at low snow to anaerobic N metabolism and to inorganic P and soluble 

organic P in the Deep zone (Figure 5.4). Results from this study further our understanding of soil 

microbial dynamics in response to predicted climate induced environmental changes in the 

Arctic and extrapolate biogeochemical functional effects of microbial community shifts likely to 

occur in a rapidly changing ecosystem. 

5.4.1 Microbial taxonomic responses 

In Arctic ecosystems, cryoturbation and long seasonal periods of sub-zero temperatures has 

resulted in largely unaggregated soils with very high particulate SOM and %C content (Table 

5.1; Ping et al. 1998, 2015) and microbial C-substrate availability and decomposition are 

primarily limited by temperature. As both increased air temperatures and winter thermal 

insulation due to snowpack (i.e. changes in snow accumulation) warm Arctic tundra soils, C-

substrate availability for microbial consumption also increases. Additionally, soil enzyme 

kinetics will be increased due to warmer temperatures (German et al. 2012). Overtime, this may 

result in increased SOM decomposition rates, releasing nutrients that facilitate the growth of 

plants and certain microbes that may have previously been limited by nutrient availability, thus 

inducing shifts in the soil microbial and plant communities (Epstein et al. 2004, Elmendorf et al. 

2012, Pearson et al. 2013, Ricketts et al. 2016). Our long-term snow-fence experiment has 

reproduced these predicted community dynamics, and the soil microbial communities associated 
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with it. Besides the obvious overall community structural differences in both bacterial and fungal 

communities in the Deep zone (Figure 5.2), many microbial taxa from our study showed relative 

abundance differences between snow accumulation treatment zones that trended along with snow 

depth. For instance, we found increasing relative abundances of Actinobacteria and Chloroflexi 

associated with increasing snow depth along the snow accumulation gradient (Figure 5.1B), 

which support the results of our previous 16S rRNA analysis from these same samples (Ricketts 

et al. 2016). Interestingly, these patterns hold true even at the kingdom taxonomic level (Figure 

5.1A), which can be observed using a shotgun metagenomic approach.  

One of the advantages of using shotgun metagenomic sequencing in this study, is that it has 

allowed us to examine fungal community dynamics in relation to bacterial abundances. Our 

results showed decreasing relative abundance of fungi and increasing relative abundance of 

bacteria associated with snow depth, resulting in increasing bacterial to fungal ratios in soils 

covered by deeper snow. These results support previous research at this site where the 

abundances of ectomycorrhizal, lichenized, plant pathogenic, saprotrophic, and bryophyte-

associated fungal functional groups were decreased as a result of increased snow depth 

(Semenova et al. 2016), and were also reflected at the phylum taxonomic level in our data, where 

nearly all fungal phyla, with the exception of low-abundance Chytridiomycota and 

Glomeromycota, showed decreasing relative abundances associated with increasing snow depth 

(Figure 5.1C). The decreased abundance of fungi in soils affected by deep snowpack may have 

functional ramifications, where the decomposition of lignified and recalcitrant compounds may 

be reduced as a result of fewer microorganisms that specialize in decomposition.  

The snow accumulation treatment, which affects a number of environmental factors, was 

found to be a significant driving force in determining microbial community structure in both 
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bacterial and fungal communities (Table 5.2). The analyses of abiotic factors affected by snow 

treatments revealed soil pH, temperature, and to a lesser extent %C, to be the primary drivers of 

differences in soil microbial community structure in this ecosystem. Soil pH has been well 

documented as one of the main soil chemical variables affecting microbial community structure 

across many different ecosystems and environments (Lauber et al. 2009, Cho et al. 2016) and 

had was also found to affect bacterial and fungal communities in this study (Table 5.2). Soil 

temperature, however, affected fungal communities more than bacterial communities (Table 5.2), 

suggesting greater temperature sensitivity of fungi under snow treatment conditions. Other 

studies have shown temperature effects on species-specific fungal groups to primarily occur in 

moist acidic tundra as opposed to dry heath tundra ecosystems (Geml et al. 2015, 2016, 

Semenova et al. 2015). Therefore, it is important to further characterize taxonomic and 

functional fungal responses to changes in the environment at finer phylogenetic levels, and 

appropriately distinguish effects between ecosystem types to fully understand fungal dynamics in 

Arctic tundra ecosystems. 

5.4.2 Microbial genetic functional responses 

Logic might suggest that compositional differences in community structure equate to 

differences in the genetic functional capabilities of the community (Langille et al. 2013). While 

this assumption likely holds true at course taxonomic levels and within broad functional guilds, 

certain characteristics of microorganisms, such as functional redundancy, horizontal gene 

transfer, and variation in gene copy numbers per genome may complicate this interpretation. The 

proper differentiation of genetic functions among microbial communities requires the direct 

evaluation of genetic material using, for instance, shotgun metagenomic sequencing.  
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Our shotgun metagenome results indicate that increased winter precipitation in the Arctic 

tundra may reach a threshold thereby affecting the overall genetic functional capacity of the soil 

microbial community. Increased in snow accumulation decreased the potential for carbohydrate 

metabolism, increased the potential for anaerobic N metabolism and altered the sources of 

mineralizable P (Figure 5.4). Differences in functional capacity were tightly linked to the relative 

abundances of microbial taxa (Figure 5.3A and Table 5.3). In particular, Ascomycota, 

Chloroflexi, and unclassified fungi had the greatest influence over genetic functional metabolic 

capacity of the community, even though they were not among the most abundant phyla. These 

results suggest that these phyla may play a disproportionate quantitative role in microbial 

decomposition. At course taxonomic scales, it is difficult to attribute specific functions to these 

phyla (especially the unclassified fungi) but considering the degree of phylogenetic diversity 

within both Ascomycota and Chloroflexi, they likely perform a wide range of functions. 

Although these phyla are commonly found in tundra ecosystems, we found little research 

exploring their genetic functional capacities at finer taxonomic resolutions in tundra or other 

natural environments. We therefore suggest targeting these phyla for future research into 

microbial functional capacities in the Arctic. 

Environmental factors also shape the composition of microbial communities, and constrain 

growth limitations and the biochemical efficiency of enzymes. Stark et al. (2014) showed that 

soil pH and nutrient availability in tundra soils have opposing effects on extracellular enzyme 

activity related to SOM decomposition. They found that while increasing nutrient availability 

resulted in increased extracellular enzyme activity, increasing soil pH decreased it. In a 

temperature and nutrient limited ecosystem such as the Arctic tundra, nutrient additions via 

fertilization will likely alleviate microbial limitations to produce expensive extracellular 
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enzymes. However, increased pH may result in greater solubility and degradability of certain 

forms of SOM in the soil matrix (Andersson et al. 2000, Kleber 2010). Additionally, warmer 

temperatures directly increase enzyme kinetics, and thus their metabolic efficiency (German et 

al. 2012, Ricketts et al. 2016). Thus, the combination of increasing soil temperatures and pH may 

result in decreasing microbial investment into enzyme production for SOM decomposition, as 

enzyme catalytic efficiency increases, and alternate C sources become more available. In this 

study, soil pH and %C were the main driving factors influencing microbial community genetic 

functional capacity (Figure 5.3B and Table 5.4). Our results show an inverse relationship 

between soil pH (Table 5.1) and relative abundance of genes associated with carbohydrate 

metabolism in the Deep zone (Figure 5.4 and Supplementary Table S5.2), supporting the idea of 

a reduced requirement for enzyme production in warmer soils with higher pH. This in 

combination with the decreased soil C:N in the Deep zone (Table 5.1) and the increased relative 

abundance of genes associated with N metabolism (Figure 5.4 and Supplementary Table S5.2) 

may suggest a C-substrate preference shift towards more readily soluble and simple organic C 

sources, which may be caused by alterations in the plant community.  

At finer functional levels of carbohydrate metabolism, the gene relative abundances 

associated with starch, peptidoglycan/chitin, and hemicellulose catabolic processes, as well as 

those associated with starch, hemicellulose/pectin, and cellulose anabolic processes, were 

reduced in the Deep zone relative to the Control zone (Figure 5.4). Overall, this suggests either a 

decreased turnover of both starch and hemicellulose polymers under deeper snowpack or an 

increased efficiency of enzymes that catalyze these reactions, or a combination of the two. 

Likewise, the decreased relative abundance of chitin/peptidoglycan degrading enzymes could be 

reflective of the decreased relative abundance of fungi in the Deep zone, or the increased 
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efficiency of enzymes required for the turnover of bacterial biomass.  

The results from the SEED subsystem classification system generally agreed with those of 

our manually curated classification. While the relative gene abundance of genes for beta-

glucoside metabolism were not affected by snow depth treatments, the relative abundance of 

genes for di- and oligosaccharide metabolism were reduced in the Deep zone relative to the 

Control zone (Supplementary Table S5.2), perhaps due to increased metabolic efficiency with 

higher temperatures under deeper snowpack. The only functional genes within carbohydrate 

metabolism that had greater relative abundances in the Deep zone were those associated with the 

characteristically anaerobic functions of methanogenesis and cellulosome production 

(Supplementary Table S5.2). Cellulosomes are multi-enzyme complexes produced by anaerobic 

bacteria to facilitate the extracellular hydrolysis of cellulose (Schwarz 2001), while 

methanogenesis is a process primarily mediated by anaerobic Archaea, which were only found in 

very low abundance in our study (data not shown). However, Blanc-Betes et al. (2016) found 

substantial evidence of elevated CH4 production and enhanced rates of methanogenesis in the 

Deep snow treatment zone, substantiating the functional genetic evidence from this study and 

suggesting that methanogens are likely present. Blanc-Betes et al. (2016) also documented 

increasing soil water content with snow accumulation and showed an associated reduction in 

%O2 levels which contributed to CH4 production. These results, along with indications of 

anaerobic N metabolisms, may indicate a shift toward more anaerobic conditions in the Deep 

zone. We did find that the genes involved in fermentation pathways were reduced under deeper 

snowpack, which is counterintuitive to an anaerobic environment, however this can be explained 

by an increase in catalytic efficiency as soil temperature and pH increase with added snow cover.   
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Both classification systems indicate increased relative abundances of genes associated with 

anaerobic N-fixation and N-reduction and ammonification with increased snow depth (Figure 5.4 

and Supplementary Table S5.2). These results suggest an increased capacity to transform N 

compounds into biologically available forms such as nitrate and ammonium (Crawford 2002), 

and support previous research at this site using soil incubations which found higher N-

mineralization rates in soils under deeper snow (Schimel et al. 2004). Additionally, plant tissues 

affected by long-term increases in snow depth and temperature were found to contain higher leaf 

N concentrations than those under ambient conditions (Welker et al. 2005, Leffler and Welker 

2013). In a nitrogen-limited ecosystem such as the Arctic tundra, microbial N mineralization 

may be a key first step in initiating both above- and belowground community shifts, producing a 

positive feedback which ultimately establishes tighter ecological links between soil 

microorganisms and plants in areas that receive more snow accumulation. 

Phosphorus is another limiting essential nutrient to microbial and plant growth. We found 

genes related to general P metabolic pathways identified by SEED subsystems classification had 

increased relative abundance in the Deep zone relative to the Control zone (Supplementary Table 

S5.2). However, examination of genes related to specific P compounds using our manually 

curated classification revealed that only genes associated with phosphomonoester metabolism 

were increased in the Deep zone relative to the Control zone, while those associated with inositol 

phosphate and triphosphoric monoester metabolism were decreased in the Deep zone relative to 

the Control and Low zones (Figure 5.4). These results may suggest a switch in microbial P 

substrate preference from insoluble organic P pools to soluble organic P pools (and possibly 

inorganic P pools) in the Deep snow zone compared to the Low and Control zones. This 

indicates that the relative abundances of genes associated with P metabolism may be driven by 
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the solubility of P substrates and soil pH, as opposed to O2 availability which seem to be driving 

gene abundances for carbohydrate and N metabolisms. Inositol phosphates are insoluble organic 

P compounds that tend to accumulate in the environment due to strong sorption to clays and 

minerals in the soil matrix, whereas phosphomonoesters and are soluble organic P compounds 

and are generally less energetically expensive to metabolize (Turner et al. 2005, George et al. 

2018). Furthermore, soil pH is known to differentially affect the amount of specific forms of P in 

soils through variations in stabilization and phosphatase pH optimums (Richardson and Simpson 

2011, Turner and Blackwell 2013). For example, the overall amount of organic P compounds in 

soils is inversely related to soil pH due to decreased phosphatase efficiency at lower pH. 

However, inositol phosphates are more stable in acidic conditions and thus tend to accumulate in 

acidic soils, requiring specific enzymes with lower pH optimums (phytases) relative to other 

phosphatases (Turner and Blackwell 2013). The difference in soil pH between our treatment 

zones (Table 5.1) may thus help to explain our genetic data, where higher soil pH in the Deep 

zone may result in less inositol phosphates, and greater turnover of soluble P compounds such as 

phosphomonoesters (Figure 5.4). Likewise, lower soil pH in the Low zone may facilitate the 

accumulation of inositol phosphates, and simultaneous loss of soluble P compounds, resulting in 

inositol phosphate as the sole source of P, thus requiring the increased production of phytases. 

To fully resolve the P dynamics of this system requires a more detailed analysis that focuses 

specifically on genes related to P cycling, and integrates measurements of the various forms of P 

in soils (Richardson and Simpson 2011). 
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5.5 Conclusions 

The combination of our phylogenetic and functional results suggests that the decreased 

relative abundances of fungi (and perhaps Acidobacteria) under deeper snow pack may be 

driving decreasing genetic capacities for carbohydrate and inositol phosphate metabolism, while 

increasing relative abundances of bacteria (specifically Actinobacteria, Choroflexi, and 

unclassified bacteria) may be driving increases in anaerobic N and phosphomonoester 

metabolism. In addition, our analyses found that altered soil chemical and physical properties in 

the Deep zone (i.e. higher pH, lower %C, warmer temperatures) contribute to shaping the genetic 

functional capacity of soil microbial communities, likely through their direct effects on enzyme 

efficiency and substrate solubility/availability. Our genetic data also suggests a greater 

prevalence of anaerobic processes such as methanogenesis, cellulosome production, and 

anaerobic N pathways in the Deep zone, which could indicate that O2 availability may also be a 

contributing factor in shaping microbial community structure. Overall, these results suggest 

predicted increased snowfall and soil temperatures in the Arctic tundra may 1) increase soil 

nutrient availability, potentially facilitating plant community shifts, and 2) decrease fungal 

abundance leading to reduced SOM decomposition potential and the re-accrual of soil carbon in 

this ecosystem over time. This research sheds new light into growing concerns that Arctic tundra 

ecosystem may become a large source of C emissions into the atmosphere and highlights the 

need for continued long-term in situ experimental research. 
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6 Broader Impacts 

The results presented here contribute to an ever-growing body of research aimed at 

understanding soil microbial communities, how they interact with their environment, and the 

potential impacts microbial responses to change might have on ecosystem dynamics. Exploring 

patterns, commonalities, and differences between multiple ecosystem types (i.e. temperate 

deciduous forest and Arctic tundra) and methods (i.e. 16S rRNA amplicon vs. shotgun 

sequencing and EA vs. FTIR) provides a more holistic view of soil microbial dynamics which 

can then inform and improve predictive models. In addition, the experimental manipulation of 

environmental factors, both in vitro and in situ, that are anticipated to change in future climate 

scenarios allows the prediction of potential successional trajectories of soil microbial 

communities and subsequent functional consequences over time. This research has applications 

in a wide range of industries, including agriculture (plant/microbe interactions and nutrient 

management), energy development (microbial metabolic manipulation), medicine (host 

microbiome research and drug discovery), and waste management (environmental remediation), 

indicating great potential for societal gain. 

Moving forward, there are specific areas of genomic microbial ecology that I envision 

requiring further research including:  

1) Linking microbial metagenomic data to ecosystem scale measurements. While 

challenging, this could be accomplished by the strategic collection of multiple data types from a 

natural ecosystem scale experiment, including the validation of gene abundance data (qPCR vs. 

shotgun sequencing), quantification of enzyme concentration/activity as well as biochemical 

reactants and products, and the collection of gas flux and thorough environmental data collected 

within gradients of spatial and temporal scales. 
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2) Integration of appropriate ecological contexts across multiple trophic levels of soil 

organisms (viruses, protozoa, nematodes, mites, collembola, etc.). There are surprisingly few soil 

metagenomic studies that consider organisms other than bacteria, archaea, or fungi in their 

analyses, despite the fact that ecological interactions such as competition, predation, mutualism, 

and commensalism exist. Integrating the collection of abundance data from a wider range of soil 

organisms, perhaps in concert with isotopic tracer experiments, may help to clarify soil 

community dynamics.  

3) Identify specific factors or measurements that most accurately predict microbial 

community structure and develop predictive models using Bayesian statistics and machine 

learning. Although sequencing technologies continue to improve and become more affordable, 

they still require relatively expensive and labor-intensive methods that are not compatible with 

rapid measurements in the field. To overcome this limitation, much research has been done to 

determine soil factors that are most useful in predicting microbial community structure and 

function, often showing soil chemical factors such as pH, redox potential, and C and N 

concentrations to be the most influential drivers of community structure. Because FTIR 

spectroscopy can reveal detailed information about the chemical nature of a soil, with full 

spectral bands acting as a “fingerprints”, it promises to be a fast, accurate, and portable method 

for estimating microbial community structure and thus functional capacity. Using advanced 

Bayesian and machine learning statistical techniques, development of increasingly accurate FTIR 

predictive models has potential to be a very promising area of research. 
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7 APPENDICES 

7.1 Supplementary materials – Chapter 2 

Supplementary Table S2.1.  Summary statistics of re-analyzed data using only sites that have 
ash canopy condition (AC) values less than or equal to 3, resulting in 2 sites (BHN and KRS), 
consisting of 6 ash plots (meanAC=2.42±0.30) and 4 non-ash plots. Adonis tests were used to 
analyze differences in overall bacterial community structure and overall soil chemical 
characteristics between categorical variables (a). Continuous variables were analyzed 
individually (b) for differences between ash and non-ash plots, and differences between sites 
using Mann-Whitney U tests, and for correlations between overall bacterial community structure 
and individual variables using Mantel tests. Text in bold and italics represents a significant result 
(p<0.05). 

(a)  Adonis test 

  Bacterial community  Soil environment 

Categorical 
variables   R2 p-value  

R2 p-value 

Ash vs. Non-ash  0.457 0.029  0.139 0.222 
Forest site  0.045 0.660  0.232 0.055 

(b)  Mann-Whitney U test  Mantel test 
(Bacterial community)  (Ash vs. Non-ash)  (Forest site; n=2) 

Continuous 
variables 

 
W p-value  

W p-value  
r-statistic p-value 

Mean AC (ash 
only) 

 - -  0 0.064  0.066 0.333 

Mean Stems (#/ha)  19 0.158  5.5 0.167   0.112 0.197 
 Mean BA (m2/ha)  1 0.694  18 0.310  -0.137 0.797 

Ash (%)  - -  10 0.666  0.553 0.007 
Maple (%)  14 0.762  23 0.032  0.271 0.059 
Oak (%)  4 0.088  20 0.119  0.140 0.165 

Beech (%)  12 1.000  2 0.036  0.156 0.182 
Hickory (%)  18 0.149  20 0.072  -0.213 0.957 

α-diversity (tree)  20.5 0.087  19.5 0.173  -0.077 0.644 
α-diversity 
(bacteria)  21 0.067  6 0.222  -0.120 0.744 

Soil pH  20 0.114  7 0.310  0.513 0.010 

%C  17.5 0.285  13.5 0.917   -0.204 0.937 
%N  19 0.163  22.5 0.046   -0.221 0.958 
C:N  11.5 1.000  6.5 0.249   -0.234 0.985 
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Ca  17 0.352  4 0.095  0.502 0.011 

K  15 0.610   6 0.222  0.312 0.044 
Mg  19 0.171  6 0.222  0.461 0.008 

P  14 0.762  2 0.032   -0.009 0.482 
Al  9 0.610  25 0.008   0.387 0.023 

B  11.5 1.000  8.5 0.463  -0.001 0.473 
Cu  4.5 0.134  12.5 1.000  0.306 0.045 

Fe  2 0.038  15 0.691  0.606 0.005 

Mn  14 0.762  13 1.000  -0.125 0.783 
Na  12 1.000  8 0.421  -0.069 0.644 
S  8 0.476  15 0.691  -0.048 0.592 

Zn  7 0.352  2 0.032  0.165 0.149 
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Supplementary Table S2.2.  Means and standard errors of all measured variables separated by 
forest site. Alpha diversity was calculated using the Shannon diversity index (H). Kruskal Wallis 
test significance (p<0.05) is indicated by “*”. Nemenyi post hoc test significant differences 
(p<0.05) are indicated by superscripts “a” and “b”. 

 Forest Site 
Variables BHN (n=5)  KRS (n=5)  SYM (n=4)  STR (n=6) 
AC (ash only) 1.83±0.33 a  3.00±0.00 ab  4.40±0.20 ab  4.83±0.17 b 
Stems (#/ha) * 323.0±24.1 ab  385.0±48.5 ab  600.0±103.6 b  295.8±36.2 a 
BA (m2/ha) 37.72±2.57   34.75±2.99   25.98±2.97   33.93±5.05  
α-diversity (tree) 1.164±0.155  1.065±0.070  1.415±0.124  1.281±0.162 
α-diversity (bacteria) 8.221±0.095  8.432±0.090  8.619±0.072  8.523±0.284 
pH  4.78±0.05   4.99±0.12   4.98±0.09   4.97±0.09  
%C * 3.26±0.48 ab  2.91±0.15 ab  2.18±0.14 b  3.66±0.18 a 

%N * 0.37±0.03 a  0.28±0.02 ab  0.21±0.01 b  0.31±0.01 ab 

C:N * 8.80±0.80 a  10.29±0.33 ab  10.41±0.47 ab  11.78±0.31 b 
Ca  554.0±117.6   1046.8±203.1   601.3±63.4   811.9±119.6  
K 73.22±10.75  90.04±10.08  87.33±13.23  69.67±9.63 
Mg  116.43±18.77   168.46±27.49   102.38±9.84   146.57±21.67  
P * 1.14±0.09 ab  1.52±0.08 a  0.58±0.07 b  0.98±0.15 ab 
Al * 188.64±10.27 a  104.65±22.37 b  124.89±15.31 ab  144.28±21.83 ab 
B  0.11±0.01   0.14±0.02   0.09±0.01   0.13±0.02  
Cu  0.21±0.03  0.20±0.02  0.19±0.03  0.26±0.06 
Fe  23.90±3.60  20.24±6.78  16.87±4.36  21.56±5.21 
Mn  61.25±16.67  54.36±11.36  34.72±5.23  41.16±6.68 
Na 7.18±0.54  7.89±0.57  5.95±0.39  7.51±0.67 
S  10.87±0.67  9.98±0.70  9.48±1.70  9.89±0.47 
Zn * 1.84±0.27 ab  2.97±0.32 a  1.20±0.21 b  2.63±0.70 ab 
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Supplementary Table S2.3.  Plot level characteristics of soil pH, tree community health (AC), total basal area (BA), percent 
dominance of tree genera by BA, and alpha-diversity as calculated by the Shannon diversity index. 

 

Site / Plot 
 Soil 

pH 
 Mean 

AC 
 Total BA 

(m2/ha) 
 Ash 

(%) 
 Maple 

(%) 
 Oak 

(%) 
 Beech 

(%) 
 Hickory 

(%) 
 α-diversity 

(H) 
BHN1-Ash  4.86  2  44.67  44.3  16.3  11.0  24.4  3.9  1.287 
BHN2-Ash  4.80  2.3  40.07  43.0  27.9  -  11.2  5.6  1.264 
BHN3-Ash  4.73  1.2  36.36  60.7  21.5  6.6  0.9  1.0  1.475 

BHN1-NonAsh  4.87  1  29.00  -  16.6  54.3  -  -  1.228 
BHN2-NonAsh  4.63  1  38.53  -  49.0  51.0  -  -  0.566 

KRS1-Ash  5.31  3  33.96  58.5  16.7  -  22.1  -  1.040 
KRS2-Ash  5.14  3  42.96  59.1  5.2  -  35.7  -  1.160 
KRS3-Ash  5.10  3  36.11  72.1  11.8  -  12.4  -  1.228 

KRS1-NonAsh  4.65  1  24.42  -  3.8  -  91.6  -  1.082 
KRS2-NonAsh  4.75  1  36.30  -  5.6  45.9  47.6  -  0.817 

SYM1-Ash  5.23  5  31.29  40.5  11.2  25.2  -  -  1.477 
SYM2-Ash  5.00  4.5  19.81  52.4  38.6  -  -  -  1.075 

SYM1-NonAsh  4.78  5  30.82  3.9  22.6  73.6  -  -  1.437 
SYM2-NonAsh  4.97  1  21.99  1.5  11.7  11.5  -  70.9  1.672 

STR1-Ash  4.96  1  45.10  29.0  34.7  27.5  8.9  -  1.221 
STR2-Ash  4.97  1  12.46  17.0  36.0  -  -  13.9  1.408 
STR3-Ash  5.09  4.6  46.25  60.6  3.5  31.5  -  -  1.622 

STR1-NonAsh  5.03  4.2  31.09  -  60.4  33.2  -  6.4  0.849 
STR2-NonAsh  4.55  1  37.33  -  32.5  50.1  16.4  -  1.386 
STR3-NonAsh  5.23  1  31.36  -  5.4  92.0  -  -  1.265 
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Supplementary Figure S2.1.  Boxplot comparing the average Hellinger transformed abundances of the 20 most abundant 
bacterial/archaeal classes between ash (blue) and non-ash (orange) plots. Mann-Whitney U-test significance is denoted by asterisks, 
where *=p<0.05. 
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Supplementary Figure S2.2.  Boxplot comparing the average Hellinger transformed abundances of the 30 most abundant 
bacterial/archaeal orders between ash (blue) and non-ash (orange) plots. Mann-Whitney U-test significance is denoted by asterisks, 
where *=p<0.05.
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7.2 Supplementary materials – Chapter 3 

 

Supplementary Figure S3.1.  Example of Fourier transformed mid infrared (FTIR) spectra 

identifying peaks associated with soil chemical properties.  
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Supplementary Table S3.1.  List of wavelength peak numbers associated with soil chemical 
properties. Adapted from Matamala et al. 2019. For complete list of references a-z, see Matamala 

et al. 2019. 

Wavenumber 
(cm-1) 

Functional group 

 

3694 Clay mineralsa-e 

3622 Clay mineralsa-e 

3394 Phenolic OH, H- bonded waterf 

2984-2924 Aliphatic methyl & methylene groupsh-v 

2877-2852 Aliphatic methyl & methylene groupsh-v 

2516 Carbonatesh,m,q,x 

2237 CN iso-cyanate, nitrile and cyanamide 
groupsw 

2137 Carbohydratesp 

1993 Silicatesa,z 

1870 Silicatesa,z 

1788 Silicatesa,z 

1656 C=O of amided,g,n,o,q 

1616 Aromaticsy or amined 

1521 Ligning,k,q 

1423 Carboxylate/carboxylic structuresg 

1380 Phenolic, ligning 

1270 Phenolic OHf 

1159 Polysaccharidesk, nucleic acids, 
proteinsk,o 

1116 n/a* 

1060 Carbohydratesd,k,p 

1000 Clay mineralsq,u 

916 Kaolinite and smectiteb,c,d 

873 Carbonatesq 

848 Primary amineq 

811 Quartze 
aNguyen et al., 1991; bMadejova and Komadel, 2001; cNayak and Singh, 2007; dViscarra Rossel and Behrens, 2010; 
eChurchman et al., 2010; fVeum et al., 2014; gArtz et al., 2008; hSoriano-Disla et al., 2014; iEllerbrock and Gerke, 
2004; jHaberhauer and Gerzabek, 1999; kCalderon et al., 2013; lPedersen et al., 2011; mBernier et al., 2013; 
nLeifield, 2006; oMovasaghi et al., 2008; pJanik et al., 2007; qSmidt and Meissl, 2007; rNiemeyer et al., 1992; 
sD’Acqui et al., 1999; tDu and Zhou, 2011; uMadejova, 2003; vCoates, 2000; wFrancioso et al., 2009, 2011; xParikh 
et al., 2014; yVerchot et al., 2011; zCalderon et al. 2011; *not identified in the literature. 
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7.3 Supplementary materials – Chapter 4 

Supplementary Table S4.1.  List of targeted KEGG ortholog enzymes used in the PICRUSt analyses. For more information see 

materials and methods in main text. 

 
Functional role Enzyme name EC number KEGG orthology number 

PRESENT IN SAMPLES 

Arabinoside degradation arabinogalactan endo-beta-1,4-galactanase 

arabinan endo-1,5-alpha-L-arabinanase 

3.2.1.89 

3.2.1.99 

K01224 

K06113 

Cellulose degradation cellulase 

beta-glucosidase 

cellulose 1,4-beta-cellobiosidase (CBH)  

3.2.1.4 

3.2.1.21 

3.2.1.91 

K01179 

K01188, K05349, K05350 

K01225 

Chitin degradation chitinase (NAG) 

bifunctional chitinase/lysozyme   3.2.1.14  

3.2.1.14 

3.2.1.14 & 3.2.1.17 

K01183 

K13381 

Nitrogen mobilization leucyl aminopeptidase (LAP) 

urease  

3.4.11.1 

3.5.1.5   

K01255 

K01427, K01428, K01429, K01430, K14048 

Lignin degradation tyrosinase (phenol oxidase) 1.14.18.1 K00505 

Pectin degradation polygalacturonase 

alpha-L-rhamnosidase 

3.2.1.15 

3.2.1.40 

K01184 

K05989 

Phosphate mobilization alkaline phosphatase (AP) 

acid phosphatase (AP) 

3.1.3.1 

3.1.3.2 

K01077, K01113 

K01078, K01093, K09474, K03788, K14379 

Superoxides superoxide dismutase 

superoxide reductase 

1.15.1.1 

1.15.1.2 

K00518, K04564, K04565 

K05919 
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Xylan degradation xylan 1,4-beta-xylosidase 3.2.1.37 K01198 

NOT FOUND IN ANY SAMPLES 

  polyphenol oxidase 1.10.3.1 K00422 

 peroxidase 1.11.1.7 K00430 

 fructan beta-fructosidase 3.2.1.80 K03332 

 laccase (oxidoreductase) 1.10.3.2 K05909 

 eosinophil peroxidase 1.11.1.7 K10788 

 cytosol aminopeptidase 3.4.11.1 & 3.4.11.5 K11142 

 peroxiredoxin 6, 1-Cys peroxiredoxin  1.11.1.7, 1.11.1.15, & 

3.1.1.- 

K11188 

 lactoperoxidase  1.11.1.7  K12550 

 low molecular weight phosphotyrosine  

protein phosphatase  

3.1.3.2 3.1.3.48 K14394 

 lysophosphatidic acid phosphatase type 6 3.1.3.2 K14395 

 acid phosphatase 3.1.3.2 K14410 

 beta-D-xylosidase 4 3.2.1.37 K15920 



 

 

 
 

161 

 

Supplementary Figure S4.1.  Linear fit regression of Acidobacteria relative abundance with respect to soil C:N, %C, %N, and pH 

across all snow treatment sites and all soil depths (n=41). Shaded areas indicate 95% confidence intervals. 

 

Supplementary Figure S4.2.  Linear fit regression of Proteobacteria relative abundance with respect to soil C:N, %C, %N, and pH 

across all snow treatment sites and all soil depths (n=41). Shaded areas indicate 95% confidence intervals. 
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Supplementary Figure S4.3.  Linear fit regression of Verrucomicrobia relative abundance with respect to soil C:N, %C, %N, and pH 

across all snow treatment sites and all soil depths (n=41). Shaded areas indicate 95% confidence intervals. 

 

Supplementary Figure S4.4.  Linear fit regression of Actinobacteria relative abundance with respect to soil C:N, %C, %N, and pH 

across all snow treatment sites and all soil depths (n=41). Shaded areas indicate 95% confidence intervals. 
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Supplementary Figure S4.5.  Linear fit regression of Bacteroidetes relative abundance with respect to soil C:N, %C, %N, and pH 

across all snow treatment sites and all soil depths (n=41). Shaded areas indicate 95% confidence intervals. 

 

Supplementary Figure S4.6.  Linear fit regression of Chloroflexi relative abundance with respect to soil C:N, %C, %N, and pH 

across all snow treatment sites and all soil depths (n=41). Shaded areas indicate 95% confidence intervals. 
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Supplementary Figure S4.7.  Linear fit regression of estimated gene copy number of genes required for arabinoside degradation with 

respect to soil C:N, %C, %N, and pH across all snow treatment sites and all soil depths (n=41). Shaded areas indicate 95% confidence 

intervals. 

 

Supplementary Figure S4.8.  Linear fit regression of estimated gene copy number of genes required for cellulose degradation with 

respect to soil C:N, %C, %N, and pH across all snow treatment sites and all soil depths (n=41). Shaded areas indicate 95% confidence 

intervals. 
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Supplementary Figure S4.9.  Linear fit regression of estimated gene copy number of genes required for chitin degradation with 

respect to soil C:N, %C, %N, and pH across all snow treatment sites and all soil depths (n=41). Shaded areas indicate 95% confidence 

intervals. 

 

Supplementary Figure S4.10.  Linear fit regression of estimated gene copy number of genes required for lignin degradation with 

respect to soil C:N, %C, %N, and pH across all snow treatment sites and all soil depths (n=41). Shaded areas indicate 95% confidence 

intervals. 
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Supplementary Figure S4.11.  Linear fit regression of estimated gene copy number of genes required for N mobilization with respect 

to soil C:N, %C, %N, and pH across all snow treatment sites and all soil depths (n=41). Shaded areas indicate 95% confidence 

intervals. 

 

Supplementary Figure S4.12.  Linear fit regression of estimated gene copy number of genes required for Pectin degradation with 

respect to soil C:N, %C, %N, and pH across all snow treatment sites and all soil depths (n=41). Shaded areas indicate 95% confidence 

intervals. 
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Supplementary Figure S4.13.  Linear fit regression of estimated gene copy number of genes required for P mobilization with respect 

to soil C:N, %C, %N, and pH across all snow treatment sites and all soil depths (n=41). Shaded areas indicate 95% confidence 

intervals. 

 

Supplementary Figure S4.14.  Linear fit regression of estimated gene copy number of genes required for superoxide regulation with 

respect to soil C:N, %C, %N, and pH across all snow treatment sites and all soil depths (n=41). Shaded areas indicate 95% confidence 

intervals. 
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Supplementary Figure S4.15.  Linear fit regression of estimated gene copy number of genes required for superoxide regulation with 

respect to soil C:N, %C, %N, and pH across all snow treatment sites and all soil depths (n=41). Shaded areas indicate 95% confidence 

intervals. 
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Supplementary Table S4.2.  Effects of soil depth characteristics (Organic, Transition, Mineral) 
on soil chemistry, bacterial phylum relative abundance, and relative abundance of genes 
organized by functional groups, as determined by the Kruskal-Wallis test. Degrees of freedom=2 
for all analyses.  *=p<0.05, **=p<0.01, ***=p<0.001. 

 H-statistic p-value Soil layer w/ highest 

value (Org vs. Min) 
Soil Chemistry    
%C 32.32 9.57 x 10-8 *** Organic 
%N 26.53 1.74 x 10-6 *** Organic 
C:N 21.70 1.94 x 10-5 *** Organic 
pH 6.81 0.03 * Mineral 
    
Bacterial phylum abundance    
Acidobacteria 0.05 0.98 n/a 
Proteobacteria 14.78 6.17 x 10-4 *** Organic 
Verrucomicrobia 14.93 5.73 x 10-4 *** Organic 
Actinobacteria 20.16 4.12 x 10-5 *** Mineral 
Bacteroidetes 13.08 1.45 x 10-3 ** Organic 
Chloroflexi 24.80 4.13 x 10-6 *** Mineral 
    
Enzyme gene abundance    
Lignin 20.17 4.17 x 10-5 *** Organic 
Chitin 3.00 0.22 n/a 
Cellulose 8.36 0.02 * Organic 
Pectin 17.25 1.80 x 10-4 *** Organic 
Xylan 15.79 3.72 x 10-4 *** Organic 
Arabinoside 13.62 1.10 x 10-3 ** Organic 
N mobilization 11.67 2.92 x 10-3 ** Organic 
P mobilization 3.30 0.19 n/a 
Superoxide 29.61 3.72 x 10-7 *** Organic 
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Supplementary Table S4.3.  Statistical analyses of alpha diversity using non-parametric two-
sample t-tests with 999 Monte Carlo permutations. Pairwise comparisons of Shannon diversity 
metrics from each sample were made between each soil layer (Organic, Transition, Mineral) and 
each snow accumulation treatment (Control, Deep, Intermediate, Low). *=p<0.05, **=p<0.01, 
***=p<0.001. 

Two-sample t-tests 

Soil layers  t- statistic  p-value 

Organic / Mineral  5.58  0.003 ** 

Trans / Organic  -0.26  1 

Trans / Mineral  5.22  0.003** 

     

Treatment     

Cont / Deep  0.30  1 

Cont/ Int  -0.49  1 

Cont / Low  1.70  0.6 

Deep / Int  -4.0 x 10-4  1 

Deep / Low  -.30  1 

Int / Low  0.51  1 
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Supplementary Figure S4.16.  Heatmap of raw gene abundance (# of OTU’s) for all detected 
bacterial Phyla. Columns represent snow accumulation treatment groups, where the control 
=”CTL”, 100% more snow accumulation=”DEEP”, 50% more snow=”INT”, and 25% less snow 
than control=”LOW”.   

CTL DEEP INT LOW
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Supplementary Figure S4.17.  Heatmap of raw gene abundance (# of OTU’s) for all detected 
bacterial Classes. Columns represent snow accumulation treatment groups, where the control 
=”CTL”, 100% more snow accumulation=”DEEP”, 50% more snow=”INT”, and 25% less snow 
than control=”LOW”.   

CTL DEEP INT LOW
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Supplementary Figure S4.18.  Heatmap of raw gene abundance (# of OTU’s) for all detected 
bacterial Orders. Columns represent snow accumulation treatment groups, where the control 
=”CTL”, 100% more snow accumulation=”DEEP”, 50% more snow=”INT”, and 25% less snow 
than control=”LOW”.   

CTL DEEP INT LOW
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Supplementary Figure S4.19.  Heatmap of raw gene abundance (# of OTU’s) for all detected 
bacterial Families. Columns represent snow accumulation treatment groups, where the control 
=”CTL”, 100% more snow accumulation=”DEEP”, 50% more snow=”INT”, and 25% less snow 
than control=”LOW”.   

CTL DEEP INT LOW
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Supplementary Figure S4.20.  Heatmap of raw gene abundance (# of OTU’s) for all detected 
bacterial OTU’s. Columns represent snow accumulation treatment groups, where the control 
=”CTL”, 100% more snow accumulation=”DEEP”, 50% more snow=”INT”, and 25% less snow 
than control=”LOW”.

CTL DEEP INT LOW
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7.4 Supplementary materials – Chapter 5 

Supplementary Table S5.1.  Manually curated list of functions, as assigned by the KEGG orthologous classification system, 
organized by the roles they perform in the metabolism of specific carbohydrate groups related to organic matter, methane/CO2 
metabolism, nitrogen metabolism, and phosphorus metabolism. Columns 1-4 represent the KEGG classification tiers. “EC#” 
represents the enzyme commission number, “CAZy” represents the classifications from the Carbohydrate Active Enzymes database, 
and “Role” represents the role these functions were assigned to. See Figure 5.4. 

 
Carbohydrate catabolic processes 

    

Level 1 Level 2 Level 3 Function EC # CAZy Role 

Metabolism Carbohydrate 
metabolism 

00052 Galactose metabolism 
[PATH:ko00052] 

E3.2.1.10; oligo-1,6-
glucosidase [EC:3.2.1.10] 

3.2.1.10 GH13, GH31 Starch degradation 

Metabolism Carbohydrate 
metabolism 

00052 Galactose metabolism 
[PATH:ko00052] 

MGAM; maltase-glucoamylase 
[EC:3.2.1.20 3.2.1.3] 

3.2.1.20, 
3.2.1.3 

GH4, GH13, 
GH31,GH63, 
GH97, 
GH122, 
CBM34 

Starch degradation 

Metabolism Carbohydrate 
metabolism 

00500 Starch and sucrose 
metabolism [PATH:ko00500] 

AGL; glycogen debranching 
enzyme [EC:2.4.1.25 3.2.1.33] 

2.4.1.25, 
3.2.1.33 

CBM48, 
GH13 

Starch degradation 

Metabolism Carbohydrate 
metabolism 

00500 Starch and sucrose 
metabolism [PATH:ko00500] 

E2.4.1.1, glgP, PYG; starch 
phosphorylase [EC:2.4.1.1] 

2.4.1.1 GT35 Starch degradation 

Metabolism Carbohydrate 
metabolism 

00500 Starch and sucrose 
metabolism [PATH:ko00500] 

E2.4.1.20; cellobiose 
phosphorylase [EC:2.4.1.20] 

2.4.1.20 GH94 Starch degradation 

Metabolism Carbohydrate 
metabolism 

00500 Starch and sucrose 
metabolism [PATH:ko00500] 

E2.4.1.4; amylosucrase 
[EC:2.4.1.4] 

2.4.1.4 GH13 Starch degradation 

Metabolism Carbohydrate 
metabolism 

00500 Starch and sucrose 
metabolism [PATH:ko00500] 

E2.4.1.7; sucrose 
phosphorylase [EC:2.4.1.7] 

2.4.1.7 GH13 Starch degradation 

Metabolism Carbohydrate 
metabolism 

00500 Starch and sucrose 
metabolism [PATH:ko00500] 

E2.4.1.8, mapA; maltose 
phosphorylase [EC:2.4.1.8] 

2.4.1.8 GH65 Starch degradation 

Metabolism Carbohydrate 
metabolism 

00500 Starch and sucrose 
metabolism [PATH:ko00500] 

E3.2.1.1, amyA, malS; alpha-
amylase [EC:3.2.1.1] 

3.2.1.1 CBM20, 
CBM21, 

Starch degradation 
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CBM26, 
CBM41, 
GH13 

Metabolism Carbohydrate 
metabolism 

00500 Starch and sucrose 
metabolism [PATH:ko00500] 

E3.2.1.1A; alpha-amylase 
[EC:3.2.1.1] 

3.2.1.1 CBM20, 
CBM21, 
CBM26, 
CBM41, 
GH13 

Starch degradation 

Metabolism Carbohydrate 
metabolism 

00500 Starch and sucrose 
metabolism [PATH:ko00500] 

E3.2.1.54; 
cyclomaltodextrinase 
[EC:3.2.1.54] 

3.2.1.54 GH13, 
CBM34, 
CBM48 

Starch degradation 

Metabolism Carbohydrate 
metabolism 

00500 Starch and sucrose 
metabolism [PATH:ko00500] 

glgB; 1,4-alpha-glucan 
branching enzyme 
[EC:2.4.1.18] 

2.4.1.18 GH13, GH57, 
CBM48 

Starch degradation 

Metabolism Carbohydrate 
metabolism 

00500 Starch and sucrose 
metabolism [PATH:ko00500] 

malQ; 4-alpha-
glucanotransferase 
[EC:2.4.1.25] 

2.4.1.25 GH77 Starch degradation 

Metabolism Carbohydrate 
metabolism 

00500 Starch and sucrose 
metabolism [PATH:ko00500] 

otsB; trehalose 6-phosphate 
phosphatase [EC:3.1.3.12] 

3.1.3.12 GT20 Starch degradation 

Metabolism Carbohydrate 
metabolism 

00500 Starch and sucrose 
metabolism [PATH:ko00500] 

treC; trehalose-6-phosphate 
hydrolase [EC:3.2.1.93] 

3.2.1.93 GH13 Starch degradation 

Metabolism Carbohydrate 
metabolism 

00500 Starch and sucrose 
metabolism [PATH:ko00500] 

treS; maltose alpha-D-
glucosyltransferase/ alpha-
amylase [EC:5.4.99.16 3.2.1.1] 

5.4.99.16, 
3.2.1.1 

GH13 Starch degradation 

Metabolism Biosynthesis of 
other secondary 
metabolites 

00940 Phenylpropanoid 
biosynthesis 
[PATH:ko00940] 

bglB; beta-glucosidase 
[EC:3.2.1.21] 

3.2.1.21 GH1, GH3, 
GH5, GH9, 
GH30, 
GH116, 
CBM1 

Cellulose degradation 

Metabolism Biosynthesis of 
other secondary 
metabolites 

00940 Phenylpropanoid 
biosynthesis 
[PATH:ko00940] 

bglX; beta-glucosidase 
[EC:3.2.1.21] 

3.2.1.21 GH1, GH3, 
GH5, GH9, 
GH30, 
GH116, 
CBM1 

Cellulose degradation 

Metabolism Biosynthesis of 
other secondary 
metabolites 

00940 Phenylpropanoid 
biosynthesis 
[PATH:ko00940] 

E3.2.1.21; beta-glucosidase 
[EC:3.2.1.21] 

3.2.1.21 GH1, GH3, 
GH5, GH9, 
GH30, 
GH116, 

Cellulose degradation 
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CBM1 

Metabolism Carbohydrate 
metabolism 

00500 Starch and sucrose 
metabolism [PATH:ko00500] 

E3.2.1.4; endoglucanase 
[EC:3.2.1.4] 

3.2.1.4 GH5, GH6, 
GH7, GH8, 
GH9, GH10, 
GH12, GH26, 
GH44, GH45, 
GH48, GH51, 
GH74, 
GH124, 
CBM1, 
CBM2, 
CBM3, 
CBM4, 
CBM5, 
CBM46, 
CBM49,  
CBM63, 
CBM72, 
CBM76, 
CBM81, 
+many more 

Cellulose degradation 

Metabolism Carbohydrate 
metabolism 

00500 Starch and sucrose 
metabolism [PATH:ko00500] 

E3.2.1.91; cellulose 1,4-beta-
cellobiosidase [EC:3.2.1.91] 

3.2.1.91 GH5, GH6, 
GH9, CBM1, 
CBM2, 
CBM3, CBM4 

Cellulose degradation 

Cellular 
Processes 

Transport and 
catabolism 

04142 Lysosome 
[PATH:ko04142] 

E3.2.1.25, MANBA, manB; 
beta-mannosidase 
[EC:3.2.1.25] 

3.2.1.25 GH1, GH2, 
GH5,  

Hemicellulose 
degradation 

Cellular 
Processes 

Transport and 
catabolism 

04142 Lysosome 
[PATH:ko04142] 

E3.2.1.31, GUSB, uidA; beta-
glucuronidase [EC:3.2.1.31] 

3.2.1.31 GH1, GH2, 
GH30, GH79, 
GH137, 
CBM57 

Hemicellulose 
degradation 

Cellular 
Processes 

Transport and 
catabolism 

04142 Lysosome 
[PATH:ko04142] 

GAA; lysosomal alpha-
glucosidase [EC:3.2.1.20] 

3.2.1.20 GH4, GH13, 
GH31, GH63, 
GH97, 
GH122, 
CBM34 

Hemicellulose 
degradation 

Cellular Transport and 04142 Lysosome GLA; alpha-galactosidase 3.2.1.22 GH4, GH27, Hemicellulose 
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Processes catabolism [PATH:ko04142] [EC:3.2.1.22] GH31, GH36, 
GH57, GH97, 
GH110, 
CBM35, 
CBM13 

degradation 

Cellular 
Processes 

Transport and 
catabolism 

04142 Lysosome 
[PATH:ko04142] 

MAN2B1, LAMAN; lysosomal 
alpha-mannosidase 
[EC:3.2.1.24] 

3.2.1.24 GH31, GH38, 
GH92 

Hemicellulose 
degradation 

Environmental 
Information 
Processing 

Signal 
transduction 

02020 Two-component 
system [PATH:ko02020] 

sacB; levansucrase 
[EC:2.4.1.10] 

2.4.1.10 GH68 Hemicellulose 
degradation 

Genetic 
Information 
Processing 

Folding, sorting 
and degradation 

04141 Protein processing in 
endoplasmic reticulum 
[PATH:ko04141] 

GANAB; alpha 1,3-glucosidase 
[EC:3.2.1.84] 

3.2.1.84 GH31 Hemicellulose 
degradation 

Genetic 
Information 
Processing 

Folding, sorting 
and degradation 

04141 Protein processing in 
endoplasmic reticulum 
[PATH:ko04141] 

GCS1; mannosyl-
oligosaccharide glucosidase 
[EC:3.2.1.106] 

3.2.1.106 GH63 Hemicellulose 
degradation 

Genetic 
Information 
Processing 

Folding, sorting 
and degradation 

04141 Protein processing in 
endoplasmic reticulum 
[PATH:ko04141] 

MAN1; mannosyl-
oligosaccharide alpha-1,2-
mannosidase [EC:3.2.1.113] 

3.2.1.113 GH38, GH47, 
GH92, 
CBM32 

Hemicellulose 
degradation 

Metabolism Carbohydrate 
metabolism 

00040 Pentose and 
glucuronate interconversions 
[PATH:ko00040] 

E3.2.1.67; galacturan 1,4-
alpha-galacturonidase 
[EC:3.2.1.67] 

3.2.1.67 GH4, GH28 Hemicellulose 
degradation 

Metabolism Carbohydrate 
metabolism 

00051 Fructose and mannose 
metabolism [PATH:ko00051] 

algL; poly(beta-D-
mannuronate) lyase 
[EC:4.2.2.3] 

4.2.2.3 PL5, PL6, 
PL7, PL14, 
PL15, PL17, 
CBM32 

Hemicellulose 
degradation 

Metabolism Carbohydrate 
metabolism 

00051 Fructose and mannose 
metabolism [PATH:ko00051] 

E2.4.1.-;  [EC:2.4.1.-] 2.4.1.- Many GH and 
GT 

Hemicellulose 
degradation 

Metabolism Carbohydrate 
metabolism 

00051 Fructose and mannose 
metabolism [PATH:ko00051] 

E3.1.3.-;  [EC:3.1.3.-] 3.1.3.- GT20, CBM21 Hemicellulose 
degradation 

Metabolism Carbohydrate 
metabolism 

00051 Fructose and mannose 
metabolism [PATH:ko00051] 

E3.2.1.80; fructan beta-
fructosidase [EC:3.2.1.80] 

3.2.1.80 GH32, 
CBM38, 
CBM66 

Hemicellulose 
degradation 

Metabolism Carbohydrate 
metabolism 

00052 Galactose metabolism 
[PATH:ko00052] 

E1.1.3.9; galactose oxidase 
[EC:1.1.3.9] 

1.1.3.9 AA5 Hemicellulose 
degradation 

Metabolism Carbohydrate 
metabolism 

00052 Galactose metabolism 
[PATH:ko00052] 

E3.2.1.20, malZ; alpha-
glucosidase [EC:3.2.1.20] 

3.2.1.20 GH4, GH13, 
GH31, GH63, 

Hemicellulose 
degradation 
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GH97, 
GH122, 
CBM34 

Metabolism Carbohydrate 
metabolism 

00052 Galactose metabolism 
[PATH:ko00052] 

E3.2.1.22B, galA, rafA; alpha-
galactosidase [EC:3.2.1.22] 

3.2.1.22 GH4, GH27, 
GH31, GH36, 
GH57, GH97, 
GH110, 
CBM35, 
CBM13 

Hemicellulose 
degradation 

Metabolism Carbohydrate 
metabolism 

00052 Galactose metabolism 
[PATH:ko00052] 

E3.2.1.26, sacA; beta-
fructofuranosidase 
[EC:3.2.1.26] 

3.2.1.26 GH32, 
GH100, 
CBM38 

Hemicellulose 
degradation 

Metabolism Carbohydrate 
metabolism 

00052 Galactose metabolism 
[PATH:ko00052] 

melA; alpha-galactosidase 
[EC:3.2.1.22] 

3.2.1.22 GH4, GH27, 
GH31, GH36, 
GH57, GH97, 
GH110, 
CBM35, 
CBM13 

Hemicellulose 
degradation 

Metabolism Carbohydrate 
metabolism 

00500 Starch and sucrose 
metabolism [PATH:ko00500] 

E3.2.1.28, treA, treF; 
alpha,alpha-trehalase 
[EC:3.2.1.28] 

3.2.1.28 GH15, GH37, 
GH65 

Hemicellulose 
degradation 

Metabolism Carbohydrate 
metabolism 

00500 Starch and sucrose 
metabolism [PATH:ko00500] 

E3.2.1.3; glucoamylase 
[EC:3.2.1.3] 

3.2.1.3 GH15, GH97, 
CBM20, 
CBM21 

Hemicellulose 
degradation 

Metabolism Carbohydrate 
metabolism 

00500 Starch and sucrose 
metabolism [PATH:ko00500] 

E3.2.1.39; glucan endo-1,3-
beta-D-glucosidase 
[EC:3.2.1.39] 

3.2.1.39 GH16, GH17, 
GH55, GH64, 
GH81, 
GH128, 
GH152, 
CBM6, 
CBM13, 
CBM18, 
CBM32, 
CBM43, 
CBM52, 
CBM56 

Hemicellulose 
degradation 

Metabolism Carbohydrate 
metabolism 

00500 Starch and sucrose 
metabolism [PATH:ko00500] 

E3.2.1.58; glucan 1,3-beta-
glucosidase [EC:3.2.1.58] 

3.2.1.58 GH3, GH5, 
GH17, GH55  

Hemicellulose 
degradation 
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Metabolism Carbohydrate 
metabolism 

00500 Starch and sucrose 
metabolism [PATH:ko00500] 

xynB; xylan 1,4-beta-
xylosidase [EC:3.2.1.37] 

3.2.1.37 GH1, GH3, 
GH30, GH39, 
GH43, GH50, 
GH51, GH52, 
GH54, 
GH116, 
GH120, 
CBM42 

Hemicellulose 
degradation 

Metabolism Carbohydrate 
metabolism 

00520 Amino sugar and 
nucleotide sugar metabolism 
[PATH:ko00520] 

E3.2.1.55, abfA; alpha-N-
arabinofuranosidase 
[EC:3.2.1.55] 

3.2.1.55 GH2, GH3, 
GH10,GH43, 
GH51, GH54, 
GH62, 
GH155, 
CBM1, 
CBM6, 
CBM13, 
CBM32, 
CBM35, 
CBM42, 
CBM75 

Hemicellulose 
degradation 

Metabolism Glycan 
biosynthesis 
and metabolism 

00510 N-Glycan biosynthesis 
[PATH:ko00510] 

MAN2; alpha-mannosidase II 
[EC:3.2.1.114] 

3.2.1.114 GH38, GH92 Hemicellulose 
degradation 

Metabolism Glycan 
biosynthesis 
and metabolism 

00511 Other glycan 
degradation 
[PATH:ko00511] 

E3.2.1.24; alpha-mannosidase 
[EC:3.2.1.24] 

3.2.1.24 GH31, GH38, 
GH92 

Hemicellulose 
degradation 

Metabolism Glycan 
biosynthesis 
and metabolism 

00511 Other glycan 
degradation 
[PATH:ko00511] 

FUCA; alpha-L-fucosidase 
[EC:3.2.1.51] 

3.2.1.51 GH29, GH141 Hemicellulose 
degradation 

Cellular 
Processes 

Transport and 
catabolism 

04142 Lysosome 
[PATH:ko04142] 

GLB1, ELNR1; beta-
galactosidase [EC:3.2.1.23] 

3.2.1.23 GH1, GH2, 
GH 35, GH42, 
GH59, 
GH147, 
CBM71 

Pectin degradation 

Metabolism Carbohydrate 
metabolism 

00010 Glycolysis / 
Gluconeogenesis 
[PATH:ko00010] 

E3.2.1.86A, celF; 6-phospho-
beta-glucosidase [EC:3.2.1.86] 

3.2.1.86 GH1, GH4 Pectin degradation 

Metabolism Carbohydrate 00010 Glycolysis / E3.2.1.86B, bglA; 6-phospho- 3.2.1.86 GH1, GH4 Pectin degradation 
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metabolism Gluconeogenesis 
[PATH:ko00010] 

beta-glucosidase [EC:3.2.1.86] 

Metabolism Carbohydrate 
metabolism 

00040 Pentose and 
glucuronate interconversions 
[PATH:ko00040] 

E3.1.1.11; pectinesterase 
[EC:3.1.1.11] 

3.1.1.11 CE8 Pectin degradation 

Metabolism Carbohydrate 
metabolism 

00040 Pentose and 
glucuronate interconversions 
[PATH:ko00040] 

E3.2.1.15; polygalacturonase 
[EC:3.2.1.15] 

3.2.1.15 GH28 Pectin degradation 

Metabolism Carbohydrate 
metabolism 

00040 Pentose and 
glucuronate interconversions 
[PATH:ko00040] 

E4.2.2.2, pel; pectate lyase 
[EC:4.2.2.2] 

4.2.2.2 PL1, PL2, 
PL3, PL9, 
PL10, CBM2, 
CBM13, 
CBM35, 
CBM66 

Pectin degradation 

Metabolism Carbohydrate 
metabolism 

00040 Pentose and 
glucuronate interconversions 
[PATH:ko00040] 

E4.2.2.6; oligogalacturonide 
lyase [EC:4.2.2.6] 

4.2.2.6 PL22 Pectin degradation 

Metabolism Carbohydrate 
metabolism 

00052 Galactose metabolism 
[PATH:ko00052] 

bgaB, lacA; beta-galactosidase 
[EC:3.2.1.23] 

3.2.1.23 GH2, GH 35, 
GH42 

Pectin degradation 

Metabolism Carbohydrate 
metabolism 

00052 Galactose metabolism 
[PATH:ko00052] 

E3.2.1.85, lacG; 6-phospho-
beta-galactosidase 
[EC:3.2.1.85] 

3.2.1.85 GH1 Pectin degradation 

Metabolism Carbohydrate 
metabolism 

00052 Galactose metabolism 
[PATH:ko00052] 

ebgA; evolved beta-
galactosidase subunit alpha 
[EC:3.2.1.23] 

3.2.1.23 GH2 Pectin degradation 

Metabolism Carbohydrate 
metabolism 

00052 Galactose metabolism 
[PATH:ko00052] 

lacZ; beta-galactosidase 
[EC:3.2.1.23] 

3.2.1.23 GH2, GH42 Pectin degradation 

Metabolism Carbohydrate 
metabolism 

00052 Galactose metabolism 
[PATH:ko00052] 

LCT; lactase-phlorizin 
hydrolase [EC:3.2.1.108 
3.2.1.62] 

3.2.1.108 
3.2.1.62 

GH1 Pectin degradation 

Cellular 
Processes 

Transport and 
catabolism 

04142 Lysosome 
[PATH:ko04142] 

E3.2.1.45, GBA, srfJ; 
glucosylceramidase 
[EC:3.2.1.45] 

3.2.1.45 GH3, GH5, 

GH30, GH116 
Peptidoglycan / 
Chitin degradation 

Cellular 
Processes 

Transport and 
catabolism 

04142 Lysosome 
[PATH:ko04142] 

GALC; galactosylceramidase 
[EC:3.2.1.46] 

3.2.1.46 GH59 Peptidoglycan / 
Chitin degradation 

Cellular 
Processes 

Transport and 
catabolism 

04142 Lysosome 
[PATH:ko04142] 

HEXA_B; hexosaminidase 
[EC:3.2.1.52] 

3.2.1.52 GH3, GH18, 
GH20, GH84, 
CBM32 

Peptidoglycan / 
Chitin degradation 
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Cellular 
Processes 

Transport and 
catabolism 

04142 Lysosome 
[PATH:ko04142] 

NAGA; alpha-N-
acetylgalactosaminidase 
[EC:3.2.1.49] 

3.2.1.49 GH27, GH36, 
GH109, 
GH129, 
CBM13 

Peptidoglycan / 
Chitin degradation 

Cellular 
Processes 

Transport and 
catabolism 

04142 Lysosome 
[PATH:ko04142] 

NAGLU; alpha-N-
acetylglucosaminidase 
[EC:3.2.1.50] 

3.2.1.50 GH89, 
CBM32 

Peptidoglycan / 
Chitin degradation 

Metabolism Carbohydrate 
metabolism 

00520 Amino sugar and 
nucleotide sugar metabolism 
[PATH:ko00520] 

csn; chitosanase [EC:3.2.1.132] 3.2.1.132 GH8, GH46 Peptidoglycan / 
Chitin degradation 

Metabolism Carbohydrate 
metabolism 

00520 Amino sugar and 
nucleotide sugar metabolism 
[PATH:ko00520] 

E3.2.1.52, nagZ; beta-N-
acetylhexosaminidase 
[EC:3.2.1.52] 

3.2.1.52 GH3, GH18, 
GH20, GH84, 
CBM32 

Peptidoglycan / 
Chitin degradation 

Metabolism Carbohydrate 
metabolism 

00520 Amino sugar and 
nucleotide sugar metabolism 
[PATH:ko00520] 

E3.5.1.25, nagA, AMDHD2; 
N-acetylglucosamine-6-
phosphate deacetylase 
[EC:3.5.1.25] 

3.5.1.25 CE9 Peptidoglycan / 
Chitin degradation 

Metabolism Carbohydrate 
metabolism 

00520 Amino sugar and 
nucleotide sugar metabolism 
[PATH:ko00520] 

E3.5.1.41; chitin deacetylase 
[EC:3.5.1.41] 

3.5.1.41 CE4 Peptidoglycan / 
Chitin degradation 

Metabolism Glycan 
biosynthesis 
and metabolism 

00540 Lipopolysaccharide 
biosynthesis 
[PATH:ko00540] 

lpxC; UDP-3-O-[3-
hydroxymyristoyl] N-
acetylglucosamine deacetylase 
[EC:3.5.1.108] 

3.5.1.108 CE11 Peptidoglycan / 
Chitin degradation 

Metabolism Glycan 
biosynthesis 
and metabolism 

00563 
Glycosylphosphatidylinositol
(GPI)-anchor biosynthesis 
[PATH:ko00563] 

PIGL; N-
acetylglucosaminylphosphatidy
linositol deacetylase 
[EC:3.5.1.89] 

3.5.1.89 CE14 Peptidoglycan / 
Chitin degradation 

     

Carbohydrate anabolic processes 
    

Level 1 Level 2 Level 3 Function EC # CAZy Role 

Environmental 
Information 
Processing 

Signal 
transduction 

04151 PI3K-Akt signaling 
pathway [PATH:ko04151] 

GYS; glycogen(starch) 
synthase [EC:2.4.1.11] 

2.4.1.11 GT3 Starch biosynthesis 

Metabolism Carbohydrate 
metabolism 

00500 Starch and sucrose 
metabolism [PATH:ko00500] 

E2.4.1.21, glgA; starch 
synthase [EC:2.4.1.21] 

2.4.1.21 GT4 Starch biosynthesis 
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Metabolism Carbohydrate 
metabolism 

00500 Starch and sucrose 
metabolism [PATH:ko00500] 

otsA; trehalose 6-phosphate 
synthase [EC:2.4.1.15] 

2.4.1.15 GT20 Starch biosynthesis 

Metabolism Carbohydrate 
metabolism 

00500 Starch and sucrose 
metabolism [PATH:ko00500] 

bcsA; cellulose synthase (UDP-
forming) [EC:2.4.1.12] 

2.4.1.12 GT2 Cellulose 
biosynthesis  

Genetic 
Information 
Processing 

Folding, sorting 
and degradation 

04141 Protein processing in 
endoplasmic reticulum 
[PATH:ko04141] 

HUGT; UDP-
glucose:glycoprotein 
glucosyltransferase [EC:2.4.1.-] 

2.4.1.- GT24 Hemicellulose 
biosynthesis 

Metabolism Carbohydrate 
metabolism 

00051 Fructose and mannose 
metabolism [PATH:ko00051] 

E2.4.1.217; mannosyl-3-
phosphoglycerate synthase 
[EC:2.4.1.217] 

2.4.1.217 GT55, GT78, 
GT81 

Hemicellulose 
biosynthesis 

Metabolism Carbohydrate 
metabolism 

00500 Starch and sucrose 
metabolism [PATH:ko00500] 

E2.4.1.13; sucrose synthase 
[EC:2.4.1.13] 

2.4.1.13 GT4 Hemicellulose 
biosynthesis 

Metabolism Carbohydrate 
metabolism 

00500 Starch and sucrose 
metabolism [PATH:ko00500] 

E2.4.1.14; sucrose-phosphate 
synthase [EC:2.4.1.14] 

2.4.1.14 GT4 Hemicellulose 
biosynthesis 

Metabolism Carbohydrate 
metabolism 

00500 Starch and sucrose 
metabolism [PATH:ko00500] 

E2.4.1.34; 1,3-beta-glucan 
synthase [EC:2.4.1.34] 

2.4.1.34 GT48 Hemicellulose 
biosynthesis 

Metabolism Glycan 
biosynthesis 
and metabolism 

00510 N-Glycan biosynthesis 
[PATH:ko00510] 

ALG1; beta-1,4-
mannosyltransferase 
[EC:2.4.1.142] 

2.4.1.142 GT33 Hemicellulose 
biosynthesis 

Metabolism Glycan 
biosynthesis 
and metabolism 

00510 N-Glycan biosynthesis 
[PATH:ko00510] 

ALG10; alpha-1,2-
glucosyltransferase 
[EC:2.4.1.256] 

2.4.1.256 GT59 Hemicellulose 
biosynthesis 

Metabolism Glycan 
biosynthesis 
and metabolism 

00510 N-Glycan biosynthesis 
[PATH:ko00510] 

ALG11; alpha-1,2-
mannosyltransferase 
[EC:2.4.1.-] 

2.4.1.- GT83 Hemicellulose 
biosynthesis 

Metabolism Glycan 
biosynthesis 
and metabolism 

00510 N-Glycan biosynthesis 
[PATH:ko00510] 

ALG12; alpha-1,6-
mannosyltransferase 
[EC:2.4.1.260] 

2.4.1.260 GT22 Hemicellulose 
biosynthesis 

Metabolism Glycan 
biosynthesis 
and metabolism 

00510 N-Glycan biosynthesis 
[PATH:ko00510] 

ALG2; alpha-1,3/alpha-1,6-
mannosyltransferase 
[EC:2.4.1.132 2.4.1.257] 

2.4.1.132 
2.4.1.257 

GT4 Hemicellulose 
biosynthesis 

Metabolism Glycan 
biosynthesis 
and metabolism 

00510 N-Glycan biosynthesis 
[PATH:ko00510] 

ALG3; alpha-1,3-
mannosyltransferase 
[EC:2.4.1.258] 

2.4.1.258 GT58 Hemicellulose 
biosynthesis 

Metabolism Glycan 
biosynthesis 
and metabolism 

00510 N-Glycan biosynthesis 
[PATH:ko00510] 

ALG5; dolichyl-phosphate 
beta-glucosyltransferase 
[EC:2.4.1.117] 

2.4.1.117 GT2 Hemicellulose 
biosynthesis 

Metabolism Glycan 00510 N-Glycan biosynthesis ALG6; alpha-1,3- 2.4.1.267 GT57 Hemicellulose 
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biosynthesis 
and metabolism 

[PATH:ko00510] glucosyltransferase 
[EC:2.4.1.267] 

biosynthesis 

Metabolism Glycan 
biosynthesis 
and metabolism 

00510 N-Glycan biosynthesis 
[PATH:ko00510] 

ALG8; alpha-1,3-
glucosyltransferase 
[EC:2.4.1.265] 

2.4.1.265 GT57 Hemicellulose 
biosynthesis 

Metabolism Glycan 
biosynthesis 
and metabolism 

00510 N-Glycan biosynthesis 
[PATH:ko00510] 

ALG9; alpha-1,2-
mannosyltransferase 
[EC:2.4.1.259 2.4.1.261] 

2.4.1.259, 
2.4.1.261 

GT22 Hemicellulose 
biosynthesis 

Metabolism Glycan 
biosynthesis 
and metabolism 

00510 N-Glycan biosynthesis 
[PATH:ko00510] 

DPM1; dolichol-phosphate 
mannosyltransferase 
[EC:2.4.1.83] 

2.4.1.83 GT2 Hemicellulose 
biosynthesis 

Metabolism Glycan 
biosynthesis 
and metabolism 

00513 Various types of N-
glycan biosynthesis 
[PATH:ko00513] 

MNN2; alpha 1,2-
mannosyltransferase 
[EC:2.4.1.-] 

2.4.1.- GT71 Hemicellulose 
biosynthesis 

Metabolism Glycan 
biosynthesis 
and metabolism 

00513 Various types of N-
glycan biosynthesis 
[PATH:ko00513] 

MNN9; mannan polymerase 
complexes MNN9 subunit 
[EC:2.4.1.-] 

2.4.1.- GT62 Hemicellulose 
biosynthesis 

Metabolism Glycan 
biosynthesis 
and metabolism 

00513 Various types of N-
glycan biosynthesis 
[PATH:ko00513] 

OCH1; alpha 1,6-
mannosyltransferase 
[EC:2.4.1.232] 

2.4.1.232 GT32 Hemicellulose 
biosynthesis 

Metabolism Glycan 
biosynthesis 
and metabolism 

00514 Other types of O-
glycan biosynthesis 
[PATH:ko00514] 

POFUT; peptide-O-
fucosyltransferase 
[EC:2.4.1.221] 

2.4.1.221 GT65 Hemicellulose 
biosynthesis 

Metabolism Glycan 
biosynthesis 
and metabolism 

00514 Other types of O-
glycan biosynthesis 
[PATH:ko00514] 

POMT; dolichyl-phosphate-
mannose-protein 
mannosyltransferase 
[EC:2.4.1.109] 

2.4.1.109 GT39 Hemicellulose 
biosynthesis 

Metabolism Glycan 
biosynthesis 
and metabolism 

00540 Lipopolysaccharide 
biosynthesis 
[PATH:ko00540] 

lpxB; lipid-A-disaccharide 
synthase [EC:2.4.1.182] 

2.4.1.182 GT19 Hemicellulose 
biosynthesis 

Metabolism Glycan 
biosynthesis 
and metabolism 

00540 Lipopolysaccharide 
biosynthesis 
[PATH:ko00540] 

waaG, rfaG; UDP-
glucose:(heptosyl)LPS alpha-
1,3-glucosyltransferase 
[EC:2.4.1.-] 

2.4.1.- GT4 Hemicellulose 
biosynthesis 

Metabolism Glycan 
biosynthesis 
and metabolism 

00563 
Glycosylphosphatidylinositol
(GPI)-anchor biosynthesis 
[PATH:ko00563] 

PIGB; phosphatidylinositol 
glycan, class B [EC:2.4.1.-] 

2.4.1.- GT22 Hemicellulose 
biosynthesis 
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Metabolism Glycan 
biosynthesis 
and metabolism 

00563 
Glycosylphosphatidylinositol
(GPI)-anchor biosynthesis 
[PATH:ko00563] 

PIGM; phosphatidylinositol 
glycan, class M [EC:2.4.1.-] 

2.4.1.- GT35 Hemicellulose 
biosynthesis 

Metabolism Glycan 
biosynthesis 
and metabolism 

00563 
Glycosylphosphatidylinositol
(GPI)-anchor biosynthesis 
[PATH:ko00563] 

PIGZ, SMP3; 
phosphatidylinositol glycan, 
class Z [EC:2.4.1.-] 

2.4.1.- GT22 Hemicellulose 
biosynthesis 

Metabolism Lipid 
metabolism 

00561 Glycerolipid 
metabolism [PATH:ko00561] 

DGAT1; diacylglycerol O-
acyltransferase 1 [EC:2.3.1.20 
2.3.1.75 2.3.1.76] 

2.3.1.20, 
2.3.1.75, 
2.3.1.76 

CE1 Hemicellulose 
biosynthesis 

Metabolism Lipid 
metabolism 

00561 Glycerolipid 
metabolism [PATH:ko00561] 

E2.3.1.20; diacylglycerol O-
acyltransferase [EC:2.3.1.20] 

2.3.1.20 CE1 Hemicellulose 
biosynthesis 

Metabolism Lipid 
metabolism 

00561 Glycerolipid 
metabolism [PATH:ko00561] 

E2.4.1.46; 1,2-diacylglycerol 3-
beta-galactosyltransferase 
[EC:2.4.1.46] 

2.4.1.46 GT28 Hemicellulose 
biosynthesis 

Metabolism Lipid 
metabolism 

00561 Glycerolipid 
metabolism [PATH:ko00561] 

ugtP; 1,2-diacylglycerol 3-
glucosyltransferase 
[EC:2.4.1.157] 

2.4.1.157 GT28 Hemicellulose 
biosynthesis 

Cellular 
Processes 

Cell growth and 
death 

04112 Cell cycle - 
Caulobacter 
[PATH:ko04112] 

murG; UDP-N-
acetylglucosamine--N-
acetylmuramyl-(pentapeptide) 
pyrophosphoryl-undecaprenol 
N-acetylglucosamine 
transferase [EC:2.4.1.227] 

2.4.1.227 GT28 Peptidoglycan 
biosynthesis 

Metabolism Biosynthesis of 
other secondary 
metabolites 

00311 Penicillin and 
cephalosporin biosynthesis 
[PATH:ko00311] 

E3.1.1.41; cephalosporin-C 
deacetylase [EC:3.1.1.41] 

3.1.1.41 CE7 Peptidoglycan 
biosynthesis 

Metabolism Glycan 
biosynthesis 
and metabolism 

00550 Peptidoglycan 
biosynthesis 
[PATH:ko00550] 

E2.4.1.129; peptidoglycan 
glycosyltransferase 
[EC:2.4.1.129] 

2.4.1.129 GT51 Peptidoglycan 
biosynthesis 

Metabolism Glycan 
biosynthesis 
and metabolism 

00550 Peptidoglycan 
biosynthesis 
[PATH:ko00550] 

ftsI; cell division protein FtsI 
(penicillin-binding protein 3) 
[EC:2.4.1.129] 

2.4.1.129 GT51 Peptidoglycan 
biosynthesis 

Metabolism Glycan 
biosynthesis 
and metabolism 

00550 Peptidoglycan 
biosynthesis 
[PATH:ko00550] 

mrcA; penicillin-binding 
protein 1A [EC:2.4.1.- 3.4.-.-] 

2.4.1.-, 
3.4.-.- 

GT51 Peptidoglycan 
biosynthesis 

Metabolism Glycan 00550 Peptidoglycan mrcB; penicillin-binding 2.4.1.129, GT51 Peptidoglycan 
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biosynthesis 
and metabolism 

biosynthesis 
[PATH:ko00550] 

protein 1B [EC:2.4.1.129 3.4.-.-
] 

3.4.-.- biosynthesis 

Metabolism Glycan 
biosynthesis 
and metabolism 

00550 Peptidoglycan 
biosynthesis 
[PATH:ko00550] 

mtgA; monofunctional 
biosynthetic peptidoglycan 
transglycosylase [EC:2.4.1.-] 

2.4.1.- GT51 Peptidoglycan 
biosynthesis 

Metabolism Glycan 
biosynthesis 
and metabolism 

00550 Peptidoglycan 
biosynthesis 
[PATH:ko00550] 

pbp2A; penicillin-binding 
protein 2A [EC:2.4.1.129 
2.3.2.-] 

2.4.1.129, 
2.3.2.- 

GT51 Peptidoglycan 
biosynthesis 

Metabolism Carbohydrate 
metabolism 

00520 Amino sugar and 
nucleotide sugar metabolism 
[PATH:ko00520] 

CHS1; chitin synthase 
[EC:2.4.1.16] 

2.4.1.16 GT2 Chitin biosynthesis 

Metabolism Glycan 
biosynthesis 
and metabolism 

00510 N-Glycan biosynthesis 
[PATH:ko00510] 

MGAT1; alpha-1,3-mannosyl-
glycoprotein beta-1,2-N-
acetylglucosaminyltransferase 
[EC:2.4.1.101] 

2.4.1.101 GT13 Chitin biosynthesis 

Metabolism Glycan 
biosynthesis 
and metabolism 

00510 N-Glycan biosynthesis 
[PATH:ko00510] 

MGAT3; beta-1,4-mannosyl-
glycoprotein beta-1,4-N-
acetylglucosaminyltransferase 
[EC:2.4.1.144] 

2.4.1.144 GT17 Chitin biosynthesis 

Metabolism Glycan 
biosynthesis 
and metabolism 

00512 Mucin type O-glycan 
biosynthesis 
[PATH:ko00512] 

C1GALT1; glycoprotein-N-
acetylgalactosamine 3-beta-
galactosyltransferase 
[EC:2.4.1.122] 

2.4.1.122 GT31 Chitin biosynthesis 

Metabolism Glycan 
biosynthesis 
and metabolism 

00534 Glycosaminoglycan 
biosynthesis - heparan sulfate 
/ heparin [PATH:ko00534] 

EXTL3; alpha-1,4-N-
acetylglucosaminyltransferase 
EXTL3 [EC:2.4.1.223 
2.4.1.224] 

2.4.1.223, 
2.4.1.224 

GT47, GT64 Chitin biosynthesis 

     

Methane / CO2 metabolism 
    

Level 1 Level 2 Level 3 Function EC # CAZy Role 

Metabolism Energy 
metabolism 

00680 Methane metabolism 
[PATH:ko00680] 

cdhE; acetyl-CoA 
decarbonylase/synthase 
complex subunit gamma 
[EC:2.1.1.245] 

2.1.1.245 
 

Methanogenesis 

Metabolism Energy 
metabolism 

00680 Methane metabolism 
[PATH:ko00680] 

CODH-ACSA; carbon 
monoxide dehydrogenase / 
acetyl-CoA synthase subunit 

1.2.7.4, 
1.2.99.2, 
2.3.1.169 

Methanogenesis 
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alpha [EC:1.2.7.4 1.2.99.2 
2.3.1.169] 

Metabolism Energy 
metabolism 

00680 Methane metabolism 
[PATH:ko00680] 

E1.2.99.2C, cooS; carbon-
monoxide dehydrogenase 
catalytic subunit [EC:1.2.99.2] 

1.2.99.2 
 

Methanogenesis 

Metabolism Energy 
metabolism 

00680 Methane metabolism 
[PATH:ko00680] 

E1.2.99.2L, cutL, coxL; 
carbon-monoxide 
dehydrogenase large subunit 
[EC:1.2.99.2] 

1.2.99.2 
 

Methanogenesis 

Metabolism Energy 
metabolism 

00680 Methane metabolism 
[PATH:ko00680] 

E1.2.99.2M, cutM, coxM; 
carbon-monoxide 
dehydrogenase medium subunit 
[EC:1.2.99.2] 

1.2.99.2 
 

Methanogenesis 

Metabolism Energy 
metabolism 

00680 Methane metabolism 
[PATH:ko00680] 

E1.2.99.2S, coxS; carbon-
monoxide dehydrogenase small 
subunit [EC:1.2.99.2] 

1.2.99.2 
 

Methanogenesis 

Metabolism Energy 
metabolism 

00680 Methane metabolism 
[PATH:ko00680] 

E1.2.99.5A, fwdA, fmdA; 
formylmethanofuran 
dehydrogenase subunit A 
[EC:1.2.99.5] 

1.2.99.5 
 

Methanogenesis 

Metabolism Energy 
metabolism 

00680 Methane metabolism 
[PATH:ko00680] 

E1.2.99.5B, fwdB, fmdB; 
formylmethanofuran 
dehydrogenase subunit B 
[EC:1.2.99.5] 

1.2.99.5 
 

Methanogenesis 

Metabolism Energy 
metabolism 

00680 Methane metabolism 
[PATH:ko00680] 

E1.2.99.5C, fwdC, fmdC; 
formylmethanofuran 
dehydrogenase subunit C 
[EC:1.2.99.5] 

1.2.99.5 
 

Methanogenesis 

Metabolism Energy 
metabolism 

00680 Methane metabolism 
[PATH:ko00680] 

E1.2.99.5E, fmdE; 
formylmethanofuran 
dehydrogenase subunit E 
[EC:1.2.99.5] 

1.2.99.5 
 

Methanogenesis 

Metabolism Energy 
metabolism 

00680 Methane metabolism 
[PATH:ko00680] 

E1.5.1.20, metF; 
methylenetetrahydrofolate 
reductase (NADPH) 
[EC:1.5.1.20] 

1.5.1.20 
 

Methanogenesis 

Metabolism Energy 
metabolism 

00680 Methane metabolism 
[PATH:ko00680] 

E1.5.8.2; trimethylamine 
dehydrogenase [EC:1.5.8.2] 

1.5.8.2 
 

Methanogenesis 
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Metabolism Energy 
metabolism 

00680 Methane metabolism 
[PATH:ko00680] 

E2.3.1.101, ftr; 
formylmethanofuran--
tetrahydromethanopterin N-
formyltransferase 
[EC:2.3.1.101] 

2.3.1.101 
 

Methanogenesis 

Metabolism Energy 
metabolism 

00680 Methane metabolism 
[PATH:ko00680] 

E3.1.3.71, comB; 2-
phosphosulfolactate 
phosphatase [EC:3.1.3.71] 

3.1.3.71 
 

Methanogenesis 

Metabolism Energy 
metabolism 

00680 Methane metabolism 
[PATH:ko00680] 

E4.4.1.19, comA; 
phosphosulfolactate synthase 
[EC:4.4.1.19] 

4.4.1.19 
 

Methanogenesis 

Metabolism Energy 
metabolism 

00680 Methane metabolism 
[PATH:ko00680] 

ehbQ; energy-converting hydrogenase B subunit Q Methanogenesis 

Metabolism Energy 
metabolism 

00680 Methane metabolism 
[PATH:ko00680] 

frhB; coenzyme F420 
hydrogenase beta subunit 
[EC:1.12.98.1] 

1.12.98.1 
 

Methanogenesis 

Metabolism Energy 
metabolism 

00680 Methane metabolism 
[PATH:ko00680] 

hdrA; heterodisulfide reductase 
subunit A [EC:1.8.98.1] 

1.8.98.1 
 

Methanogenesis 

Metabolism Energy 
metabolism 

00680 Methane metabolism 
[PATH:ko00680] 

hdrB; heterodisulfide reductase 
subunit B [EC:1.8.98.1] 

1.8.98.1 
 

Methanogenesis 

Metabolism Energy 
metabolism 

00680 Methane metabolism 
[PATH:ko00680] 

K06034, comD; sulfopyruvate 
decarboxylase subunit alpha 
[EC:4.1.1.79] 

4.1.1.79 
 

Methanogenesis 

Metabolism Energy 
metabolism 

00680 Methane metabolism 
[PATH:ko00680] 

K13039, comE; sulfopyruvate 
decarboxylase subunit beta 
[EC:4.1.1.79] 

4.1.1.79 
 

Methanogenesis 

Metabolism Energy 
metabolism 

00680 Methane metabolism 
[PATH:ko00680] 

mer; coenzyme F420-
dependent N5,N10-
methenyltetrahydromethanopte
rin reductase [EC:1.5.99.11] 

1.5.99.11 
 

Methanogenesis 

Metabolism Energy 
metabolism 

00680 Methane metabolism 
[PATH:ko00680] 

mtdB; methylene-
tetrahydromethanopterin 
dehydrogenase [EC:1.5.1.-] 

1.5.1.- 
 

Methanogenesis 

Metabolism Energy 
metabolism 

00680 Methane metabolism 
[PATH:ko00680] 

mttB; trimethylamine---
corrinoid protein Co-
methyltransferase 
[EC:2.1.1.250] 

2.1.1.250 
 

Methanogenesis 

Metabolism Energy 00680 Methane metabolism mttC; trimethylamine corrinoid protein Methanogenesis 
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metabolism [PATH:ko00680] 

Metabolism Energy 
metabolism 

00680 Methane metabolism 
[PATH:ko00680] 

mvhA, vhuA, vhcA; F420-non-
reducing hydrogenase subunit 
A [EC:1.12.99.-] 

1.12.99.- 
 

Methanogenesis 

Metabolism Energy 
metabolism 

00680 Methane metabolism 
[PATH:ko00680] 

nhaA; Na+:H+ antiporter, NhaA family Methanogenesis 

Metabolism Energy 
metabolism 

00680 Methane metabolism 
[PATH:ko00680] 

nhaB; Na+:H+ antiporter, NhaB family Methanogenesis 

Metabolism Energy 
metabolism 

00680 Methane metabolism 
[PATH:ko00680] 

nhaC; Na+:H+ antiporter, NhaC family Methanogenesis 

Metabolism Energy 
metabolism 

00680 Methane metabolism 
[PATH:ko00680] 

E1.14.13.8; dimethylaniline 
monooxygenase (N-oxide 
forming) [EC:1.14.13.8] 

1.14.13.8 
 

Methanogenesis 

Metabolism Energy 
metabolism 

00680 Methane metabolism 
[PATH:ko00680] 

mch; 
methenyltetrahydromethanopte
rin cyclohydrolase 
[EC:3.5.4.27] 

3.5.4.27 
 

Methanogenesis 

Metabolism Energy 
metabolism 

00680 Methane metabolism 
[PATH:ko00680] 

E2.7.1.29, DAK1, DAK2; 
dihydroxyacetone kinase 
[EC:2.7.1.29] 

2.7.1.29 
 

Methanotrophy 

Metabolism Energy 
metabolism 

00680 Methane metabolism 
[PATH:ko00680] 

fae; formaldehyde-activating 
enzyme [EC:4.3.-.-] 

4.3.-.- 
 

Methanotrophy 

Metabolism Energy 
metabolism 

00680 Methane metabolism 
[PATH:ko00680] 

fdhA; glutathione-independent 
formaldehyde dehydrogenase 
[EC:1.2.1.46] 

1.2.1.46 
 

Methanotrophy 

Metabolism Energy 
metabolism 

00680 Methane metabolism 
[PATH:ko00680] 

frmB, ESD, fghA; S-
formylglutathione hydrolase 
[EC:3.1.2.12] 

3.1.2.12 
 

Methanotrophy 

Metabolism Energy 
metabolism 

00680 Methane metabolism 
[PATH:ko00680] 

qhpA; quinohemoprotein amine 
dehydrogenase [EC:1.4.9.1] 

1.4.9.1 
 

Methanotrophy 

Metabolism Energy 
metabolism 

00680 Methane metabolism 
[PATH:ko00680] 

E1.12.1.2; hydrogen 
dehydrogenase [EC:1.12.1.2] 

1.12.1.2 
 

Methanotrophy 

Metabolism Energy 
metabolism 

00680 Methane metabolism 
[PATH:ko00680] 

E1.12.7.2S; ferredoxin 
hydrogenase small subunit 
[EC:1.12.7.2] 

1.12.7.2 
 

Methanotrophy 

Metabolism Energy 
metabolism 

00680 Methane metabolism 
[PATH:ko00680] 

gfa; S-
(hydroxymethyl)glutathione 
synthase [EC:4.4.1.22] 

4.4.1.22 
 

Methanotrophy 
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Metabolism Energy 
metabolism 

00910 Nitrogen metabolism 
[PATH:ko00910] 

cah; carbonic anhydrase 
[EC:4.2.1.1] 

4.2.1.1 
 

Carbonic anhydrase 

Metabolism Energy 
metabolism 

00910 Nitrogen metabolism 
[PATH:ko00910] 

cynT, can; carbonic anhydrase 
[EC:4.2.1.1] 

4.2.1.1 
 

Carbonic anhydrase 

Metabolism Energy 
metabolism 

00910 Nitrogen metabolism 
[PATH:ko00910] 

E4.2.1.1; carbonic anhydrase 
[EC:4.2.1.1] 

4.2.1.1 
 

Carbonic anhydrase 

      

Nitrogen cycling 
     

Level 1 Level 2 Level 3 Function EC # 

Metabolism Energy 
metabolism 

00910 Nitrogen metabolism 
[PATH:ko00910] 

nifB; nitrogen fixation protein NifB N-fixation 

Metabolism Energy 
metabolism 

00910 Nitrogen metabolism 
[PATH:ko00910] 

nifD; nitrogenase 
molybdenum-iron protein alpha 
chain [EC:1.18.6.1] 

1.18.6.1 
 

N-fixation 

Metabolism Energy 
metabolism 

00910 Nitrogen metabolism 
[PATH:ko00910] 

nifH; nitrogenase iron protein 
NifH [EC:1.18.6.1] 

1.18.6.1 
 

N-fixation 

Metabolism Energy 
metabolism 

00910 Nitrogen metabolism 
[PATH:ko00910] 

nifK; nitrogenase 
molybdenum-iron protein beta 
chain [EC:1.18.6.1] 

1.18.6.1 
 

N-fixation 

Metabolism Energy 
metabolism 

00910 Nitrogen metabolism 
[PATH:ko00910] 

nifN; nitrogenase molybdenum-iron protein NifN N-fixation 

Metabolism Energy 
metabolism 

00910 Nitrogen metabolism 
[PATH:ko00910] 

nifT; nitrogen fixation protein NifT N-fixation 

Metabolism Energy 
metabolism 

00910 Nitrogen metabolism 
[PATH:ko00910] 

nifV; homocitrate synthase NifV N-fixation 

Metabolism Energy 
metabolism 

00910 Nitrogen metabolism 
[PATH:ko00910] 

nifW; nitrogen fixation protein NifW N-fixation 

Metabolism Energy 
metabolism 

00910 Nitrogen metabolism 
[PATH:ko00910] 

nifW; nitrogenase-stabilizing/protective protein N-fixation 

Metabolism Energy 
metabolism 

00910 Nitrogen metabolism 
[PATH:ko00910] 

amoB; ammonia monooxygenase subunit B Nitrification 

Metabolism Energy 
metabolism 

00910 Nitrogen metabolism 
[PATH:ko00910] 

amoC; ammonia monooxygenase subunit C Nitrification 

Metabolism Energy 
metabolism 

00910 Nitrogen metabolism 
[PATH:ko00910] 

hao; hydroxylamine oxidase 
[EC:1.7.3.4] 

1.7.3.4 
 

Nitrification 

Metabolism Energy 
metabolism 

00910 Nitrogen metabolism 
[PATH:ko00910] 

E1.7.1.1; nitrate reductase 
(NADH) [EC:1.7.1.1] 

1.7.1.1 
 

Nitrate reduction 
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Metabolism Energy 
metabolism 

00910 Nitrogen metabolism 
[PATH:ko00910] 

E1.7.2.1; nitrite reductase (NO-
forming) [EC:1.7.2.1] 

1.7.2.1 
 

Nitrate reduction 

Metabolism Energy 
metabolism 

00910 Nitrogen metabolism 
[PATH:ko00910] 

E1.7.99.1, hcp; hydroxylamine 
reductase [EC:1.7.99.1] 

1.7.99.1 
 

Nitrate reduction 

Metabolism Energy 
metabolism 

00910 Nitrogen metabolism 
[PATH:ko00910] 

E1.7.99.4C; nitrate reductase 
catalytic subunit [EC:1.7.99.4] 

1.7.99.4 
 

Nitrate reduction 

Metabolism Energy 
metabolism 

00910 Nitrogen metabolism 
[PATH:ko00910] 

napA; periplasmic nitrate 
reductase NapA [EC:1.7.99.4] 

1.7.99.4 
 

Nitrate reduction 

Metabolism Energy 
metabolism 

00910 Nitrogen metabolism 
[PATH:ko00910] 

napB; cytochrome c-type protein NapB Nitrate reduction 

Metabolism Energy 
metabolism 

00910 Nitrogen metabolism 
[PATH:ko00910] 

napC; cytochrome c-type protein NapC Nitrate reduction 

Metabolism Energy 
metabolism 

00910 Nitrogen metabolism 
[PATH:ko00910] 

napE; periplasmic nitrate reductase NapE Nitrate reduction 

Metabolism Energy 
metabolism 

00910 Nitrogen metabolism 
[PATH:ko00910] 

napG; ferredoxin-type protein NapG Nitrate reduction 

Metabolism Energy 
metabolism 

00910 Nitrogen metabolism 
[PATH:ko00910] 

narB; ferredoxin-nitrate 
reductase [EC:1.7.7.2] 

1.7.7.2 
 

Nitrate reduction 

Metabolism Energy 
metabolism 

00910 Nitrogen metabolism 
[PATH:ko00910] 

NIAD; nitrate reductase 
(NADPH) [EC:1.7.1.3] 

1.7.1.3 
 

Nitrate reduction 

Metabolism Energy 
metabolism 

00910 Nitrogen metabolism 
[PATH:ko00910] 

nirA; ferredoxin-nitrite 
reductase [EC:1.7.7.1] 

1.7.7.1 
 

Nitrate reduction 

Metabolism Energy 
metabolism 

00910 Nitrogen metabolism 
[PATH:ko00910] 

nirB; nitrite reductase 
(NAD(P)H) large subunit 
[EC:1.7.1.4] 

1.7.1.4 
 

Nitrate reduction 

Metabolism Energy 
metabolism 

00910 Nitrogen metabolism 
[PATH:ko00910] 

nirD; nitrite reductase 
(NAD(P)H) small subunit 
[EC:1.7.1.4] 

1.7.1.4 
 

Nitrate reduction 

Metabolism Energy 
metabolism 

00910 Nitrogen metabolism 
[PATH:ko00910] 

nrfC; protein NrfC 
 

Nitrate reduction 

Metabolism Energy 
Metabolism 

00910 Nitrogen metabolism 
[PATH:ko00910] 

nrfD; formate-dependent nitrate reductase complex, 
transmembrane protein 

Nitrate reduction 

Metabolism Energy 
metabolism 

00910 Nitrogen metabolism 
[PATH:ko00910] 

norB; nitric oxide reductase 
subunit B [EC:1.7.2.5] 

1.7.2.5 
 

Denitrification 

Metabolism Energy 
metabolism 

00910 Nitrogen metabolism 
[PATH:ko00910] 

norC; nitric oxide reductase subunit C Denitrification 

Metabolism Energy 
metabolism 

00910 Nitrogen metabolism 
[PATH:ko00910] 

norC; nitric-oxide reductase, 
cytochrome c-containing 

1.7.99.7 
 

Denitrification 
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subunit II [EC:1.7.99.7] 

Metabolism Energy 
metabolism 

00910 Nitrogen metabolism 
[PATH:ko00910] 

norF; nitric-oxide reductase 
NorF protein [EC:1.7.99.7] 

1.7.99.7 
 

Denitrification 

Metabolism Energy 
metabolism 

00910 Nitrogen metabolism 
[PATH:ko00910] 

nosZ; nitrous-oxide reductase 
[EC:1.7.2.4] 

1.7.2.4 
 

Denitrification 

Metabolism Energy 
metabolism 

00910 Nitrogen metabolism 
[PATH:ko00910] 

E1.13.12.16; nitronate 
monooxygenase 
[EC:1.13.12.16] 

1.13.12.16 
 

Nitroalkane oxidase 

      

Phosphorus cycling 
     

Level 1 Level 2 Level 3 Function EC # CAZy 

Metabolism Carbohydrate 
metabolism 

00562 Inositol phosphate 
metabolism [PATH:ko00562] 

appA; 4-phytase / acid 
phosphatase [EC:3.1.3.26 
3.1.3.2] 

3.1.3.26, 
3.1.3.2 

Inositol phospate 

Metabolism Carbohydrate 
metabolism 

00562 Inositol phosphate 
metabolism [PATH:ko00562] 

E3.1.3.8; 3-phytase 
[EC:3.1.3.8] 

3.1.3.8 
 

Inositol phospate 

Metabolism Carbohydrate 
metabolism 

00562 Inositol phosphate 
metabolism [PATH:ko00562] 

E4.6.1.13, plc; 1-
phosphatidylinositol 
phosphodiesterase 
[EC:4.6.1.13] 

4.6.1.13 
 

Inositol phospate 

Metabolism Carbohydrate 
metabolism 

00562 Inositol phosphate 
metabolism [PATH:ko00562] 

iolB; 5-deoxy-glucuronate 
isomerase [EC:5.3.1.-] 

5.3.1.- 
 

Inositol phospate 

Metabolism Carbohydrate 
metabolism 

00562 Inositol phosphate 
metabolism [PATH:ko00562] 

iolC; 5-dehydro-2-
deoxygluconokinase 
[EC:2.7.1.92] 

2.7.1.92 
 

Inositol phospate 

Metabolism Carbohydrate 
metabolism 

00562 Inositol phosphate 
metabolism [PATH:ko00562] 

iolD; 3D-(3,5/4)-
trihydroxycyclohexane-1,2-
dione hydrolase [EC:3.7.1.-] 

3.7.1.- 
 

Inositol phospate 

Metabolism Carbohydrate 
metabolism 

00562 Inositol phosphate 
metabolism [PATH:ko00562] 

iolE; inosose dehydratase 
[EC:4.2.1.44] 

4.2.1.44 
 

Inositol phospate 

Metabolism Carbohydrate 
metabolism 

00562 Inositol phosphate 
metabolism [PATH:ko00562] 

iolJ; 6-phospho-5-dehydro-2-
deoxy-D-gluconate aldolase 
[EC:4.1.2.29] 

4.1.2.29 
 

Inositol phospate 

Metabolism Carbohydrate 
metabolism 

00562 Inositol phosphate 
metabolism [PATH:ko00562] 

MINPP1; multiple inositol-
polyphosphate phosphatase 
[EC:3.1.3.62] 

3.1.3.62 
 

Inositol phospate 
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Metabolism Carbohydrate 
metabolism 

00562 Inositol phosphate 
metabolism [PATH:ko00562] 

plcC; phospholipase C 
[EC:3.1.4.3] 

3.1.4.3 
 

Inositol phospate 

Cellular 
Processes 

Cell 
communication 

04510 Focal adhesion 
[PATH:ko04510] 

PPP1C; protein phosphatase 1, 
catalytic subunit [EC:3.1.3.16] 

3.1.3.16 
 

Phosphomonoesters 

Cellular 
Processes 

Cell 
communication 

04510 Focal adhesion 
[PATH:ko04510] 

PTEN; phosphatidylinositol-
3,4,5-trisphosphate 3-
phosphatase and dual-
specificity protein phosphatase 
PTEN [EC:3.1.3.16 3.1.3.48 
3.1.3.67] 

3.1.3.16, 
3.1.3.48, 
3.1.3.67 

Phosphomonoesters 

Cellular 
Processes 

Cell 
communication 

04530 Tight junction 
[PATH:ko04530] 

PPP2C; protein phosphatase 2 
(formerly 2A), catalytic subunit 
[EC:3.1.3.16] 

3.1.3.16 
 

Phosphomonoesters 

Cellular 
Processes 

Cell growth and 
death 

04110 Cell cycle 
[PATH:ko04110] 

CDC14; cell division cycle 14 
[EC:3.1.3.48] 

3.1.3.48 
 

Phosphomonoesters 

Cellular 
Processes 

Cell growth and 
death 

04111 Cell cycle - yeast 
[PATH:ko04111] 

MIH1; M-phase inducer 
tyrosine phosphatase 
[EC:3.1.3.48] 

3.1.3.48 
 

Phosphomonoesters 

Cellular 
Processes 

Cell growth and 
death 

04114 Oocyte meiosis 
[PATH:ko04114] 

PPP3C, CNA; protein 
phosphatase 3, catalytic subunit 
[EC:3.1.3.16] 

3.1.3.16 
 

Phosphomonoesters 

Environmental 
Information 
Processing 

Membrane 
transport 

03070 Bacterial secretion 
system [PATH:ko03070] 

stp1, pppA; serine/threonine 
protein phosphatase Stp1 
[EC:3.1.3.16] 

3.1.3.16 
 

Phosphomonoesters 

Environmental 
Information 
Processing 

Signal 
transduction 

02020 Two-component 
system [PATH:ko02020] 

E3.1.3.1, phoA, phoB; alkaline 
phosphatase [EC:3.1.3.1] 

3.1.3.1 
 

Phosphomonoesters 

Environmental 
Information 
Processing 

Signal 
transduction 

02020 Two-component 
system [PATH:ko02020] 

phoD; alkaline phosphatase D 
[EC:3.1.3.1] 

3.1.3.1 
 

Phosphomonoesters 

Environmental 
Information 
Processing 

Signal 
transduction 

02020 Two-component 
system [PATH:ko02020] 

phoN; acid phosphatase (class 
A) [EC:3.1.3.2] 

3.1.3.2 
 

Phosphomonoesters 

Environmental 
Information 
Processing 

Signal 
transduction 

04010 MAPK signaling 
pathway [PATH:ko04010] 

DUSP, MKP; dual specificity 
phosphatase [EC:3.1.3.16 
3.1.3.48] 

3.1.3.16, 
3.1.3.48 

Phosphomonoesters 

Environmental 
Information 

Signal 
transduction 

04010 MAPK signaling 
pathway [PATH:ko04010] 

PPP5C, PP5; protein 
phosphatase 5 [EC:3.1.3.16] 

3.1.3.16 
 

Phosphomonoesters 
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Processing 

Environmental 
Information 
Processing 

Signal 
transduction 

04011 MAPK signaling 
pathway - yeast 
[PATH:ko04011] 

MSG5; tyrosine-protein 
phosphatase [EC:3.1.3.48] 

3.1.3.48 
 

Phosphomonoesters 

Environmental 
Information 
Processing 

Signal 
transduction 

04013 MAPK signaling 
pathway - fly 
[PATH:ko04013] 

PTPN11; tyrosine-protein 
phosphatase non-receptor type 
11 [EC:3.1.3.48] 

3.1.3.48 
 

Phosphomonoesters 

Environmental 
Information 
Processing 

Signal 
transduction 

04070 Phosphatidylinositol 
signaling system 
[PATH:ko04070] 

E3.1.3.25, IMPA, suhB; myo-
inositol-1(or 4)-
monophosphatase 
[EC:3.1.3.25] 

3.1.3.25 
 

Phosphomonoesters 

Environmental 
Information 
Processing 

Signal 
transduction 

04070 Phosphatidylinositol 
signaling system 
[PATH:ko04070] 

E3.1.3.36; 
phosphatidylinositol-
bisphosphatase [EC:3.1.3.36] 

3.1.3.36 
 

Phosphomonoesters 

Environmental 
Information 
Processing 

Signal 
transduction 

04070 Phosphatidylinositol 
signaling system 
[PATH:ko04070] 

INPP1; inositol polyphosphate 
1-phosphatase [EC:3.1.3.57] 

3.1.3.57 
 

Phosphomonoesters 

Environmental 
Information 
Processing 

Signal 
transduction 

04070 Phosphatidylinositol 
signaling system 
[PATH:ko04070] 

VTC4; inositol-phosphate 
phosphatase / L-galactose 1-
phosphate phosphatase 
[EC:3.1.3.25 3.1.3.-] 

3.1.3.25, 
3.1.3.- 

Phosphomonoesters 

Human 
Diseases 

Infectious 
diseases 

05152 Tuberculosis 
[PATH:ko05152] 

E3.1.3.2; acid phosphatase 
[EC:3.1.3.2] 

3.1.3.2 
 

Phosphomonoesters 

Metabolism Amino acid 
metabolism 

00260 Glycine, serine and 
threonine metabolism 
[PATH:ko00260] 

serB, PSPH; phosphoserine 
phosphatase [EC:3.1.3.3] 

3.1.3.3 
 

Phosphomonoesters 

Metabolism Amino acid 
metabolism 

00260 Glycine, serine and 
threonine metabolism 
[PATH:ko00260] 

thrH; phosphoserine / 
homoserine phosphotransferase 
[EC:3.1.3.3 2.7.1.39] 

3.1.3.3, 
2.7.1.39 

Phosphomonoesters 

Metabolism Amino acid 
metabolism 

00270 Cysteine and 
methionine metabolism 
[PATH:ko00270] 

mtnC, ENOPH1; enolase-
phosphatase E1 [EC:3.1.3.77] 

3.1.3.77 
 

Phosphomonoesters 

Metabolism Amino acid 
metabolism 

00270 Cysteine and 
methionine metabolism 
[PATH:ko00270] 

mtnX; 2-hydroxy-3-keto-5-
methylthiopentenyl-1-
phosphate phosphatase 
[EC:3.1.3.87] 

3.1.3.87 
 

Phosphomonoesters 

Metabolism Amino acid 
metabolism 

00340 Histidine metabolism 
[PATH:ko00340] 

E3.1.3.15B; histidinol-
phosphatase (PHP family) 

3.1.3.15 
 

Phosphomonoesters 
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[EC:3.1.3.15] 

Metabolism Biosynthesis of 
other secondary 
metabolites 

00521 Streptomycin 
biosynthesis 
[PATH:ko00521] 

strK; streptomycin-6-
phosphatase [EC:3.1.3.39] 

3.1.3.39 
 

Phosphomonoesters 

Metabolism Carbohydrate 
metabolism 

00010 Glycolysis / 
Gluconeogenesis 
[PATH:ko00010] 

FBP, fbp; fructose-1,6-
bisphosphatase I [EC:3.1.3.11] 

3.1.3.11 
 

Phosphomonoesters 

Metabolism Carbohydrate 
metabolism 

00010 Glycolysis / 
Gluconeogenesis 
[PATH:ko00010] 

fbp3; fructose-1,6-
bisphosphatase III 
[EC:3.1.3.11] 

3.1.3.11 
 

Phosphomonoesters 

Metabolism Carbohydrate 
metabolism 

00010 Glycolysis / 
Gluconeogenesis 
[PATH:ko00010] 

glpX-SEBP; fructose-1,6-
bisphosphatase II / 
sedoheptulose-1,7-
bisphosphatase [EC:3.1.3.11 
3.1.3.37] 

3.1.3.11, 
3.1.3.37 

Phosphomonoesters 

Metabolism Carbohydrate 
metabolism 

00010 Glycolysis / 
Gluconeogenesis 
[PATH:ko00010] 

glpX; fructose-1,6-
bisphosphatase II [EC:3.1.3.11] 

3.1.3.11 
 

Phosphomonoesters 

Metabolism Carbohydrate 
metabolism 

00500 Starch and sucrose 
metabolism [PATH:ko00500] 

otsB; trehalose 6-phosphate 
phosphatase [EC:3.1.3.12] 

3.1.3.12 
 

Phosphomonoesters 

Metabolism Carbohydrate 
metabolism 

00562 Inositol phosphate 
metabolism [PATH:ko00562] 

appA; 4-phytase / acid 
phosphatase [EC:3.1.3.26 
3.1.3.2] 

3.1.3.26, 
3.1.3.2 

Phosphomonoesters 

Metabolism Carbohydrate 
metabolism 

00562 Inositol phosphate 
metabolism [PATH:ko00562] 

E3.1.3.8; 3-phytase 
[EC:3.1.3.8] 

3.1.3.8 
 

Phosphomonoesters 

Metabolism Carbohydrate 
metabolism 

00562 Inositol phosphate 
metabolism [PATH:ko00562] 

MINPP1; multiple inositol-
polyphosphate phosphatase 
[EC:3.1.3.62] 

3.1.3.62 
 

Phosphomonoesters 

Metabolism Carbohydrate 
metabolism 

00630 Glyoxylate and 
dicarboxylate metabolism 
[PATH:ko00630] 

E3.1.3.18, gph; 
phosphoglycolate phosphatase 
[EC:3.1.3.18] 

3.1.3.18 
 

Phosphomonoesters 

Metabolism Energy 
metabolism 

00680 Methane metabolism 
[PATH:ko00680] 

E3.1.3.71, comB; 2-
phosphosulfolactate 
phosphatase [EC:3.1.3.71] 

3.1.3.71 
 

Phosphomonoesters 

Metabolism Energy 
metabolism 

00920 Sulfur metabolism 
[PATH:ko00920] 

E3.1.3.7, cysQ, MET22, 
BPNT1; 3'(2'), 5'-bisphosphate 
nucleotidase [EC:3.1.3.7] 

3.1.3.7 
 

Phosphomonoesters 
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Metabolism Glycan 
biosynthesis 
and metabolism 

00540 Lipopolysaccharide 
biosynthesis 
[PATH:ko00540] 

gmhB; D-glycero-D-manno-
heptose 1,7-bisphosphate 
phosphatase [EC:3.1.3.82 
3.1.3.83] 

3.1.3.82, 
3.1.3.83 

Phosphomonoesters 

Metabolism Glycan 
biosynthesis 
and metabolism 

00540 Lipopolysaccharide 
biosynthesis 
[PATH:ko00540] 

kdsC; 3-deoxy-D-manno-
octulosonate 8-phosphate 
phosphatase (KDO 8-P 
phosphatase) [EC:3.1.3.45] 

3.1.3.45 
 

Phosphomonoesters 

Metabolism Lipid 
metabolism 

00561 Glycerolipid 
metabolism [PATH:ko00561] 

GPP1; glycerol 3-phosphatase 
1 [EC:3.1.3.21] 

3.1.3.21 
 

Phosphomonoesters 

Metabolism Lipid 
metabolism 

00564 Glycerophospholipid 
metabolism [PATH:ko00564] 

pgpA; 
phosphatidylglycerophosphatas
e A [EC:3.1.3.27] 

3.1.3.27 
 

Phosphomonoesters 

Metabolism Lipid 
metabolism 

00564 Glycerophospholipid 
metabolism [PATH:ko00564] 

pgpB; 
phosphatidylglycerophosphatas
e B [EC:3.1.3.27] 

3.1.3.27 
 

Phosphomonoesters 

Metabolism Metabolism of 
cofactors and 
vitamins 

00740 Riboflavin metabolism 
[PATH:ko00740] 

ACP1; low molecular weight 
phosphotyrosine protein 
phosphatase [EC:3.1.3.2 
3.1.3.48] 

3.1.3.2, 
3.1.3.48 

Phosphomonoesters 

Metabolism Metabolism of 
cofactors and 
vitamins 

00760 Nicotinate and 
nicotinamide metabolism 
[PATH:ko00760] 

E3.1.3.5; 5'-nucleotidase 
[EC:3.1.3.5] 

3.1.3.5 
 

Phosphomonoesters 

Metabolism Metabolism of 
cofactors and 
vitamins 

00760 Nicotinate and 
nicotinamide metabolism 
[PATH:ko00760] 

surE; 5'-nucleotidase 
[EC:3.1.3.5] 

3.1.3.5 
 

Phosphomonoesters 

Metabolism Metabolism of 
cofactors and 
vitamins 

00760 Nicotinate and 
nicotinamide metabolism 
[PATH:ko00760] 

ushA; 5'-nucleotidase / UDP-
sugar diphosphatase 
[EC:3.1.3.5 3.6.1.45] 

3.1.3.5, 
3.6.1.45 

Phosphomonoesters 

Metabolism Metabolism of 
cofactors and 
vitamins 

00760 Nicotinate and 
nicotinamide metabolism 
[PATH:ko00760] 

yfbR; 5'-nucleotidase 
[EC:3.1.3.5] 

3.1.3.5 
 

Phosphomonoesters 

Metabolism Nucleotide 
metabolism 

00230 Purine metabolism 
[PATH:ko00230] 

E3.1.3.6; 3'-nucleotidase 
[EC:3.1.3.6] 

3.1.3.6 
 

Phosphomonoesters 

Metabolism Xenobiotics 
biodegradation 
and metabolism 

00627 Aminobenzoate 
degradation 
[PATH:ko00627] 

E3.1.3.41; 4-nitrophenyl 
phosphatase [EC:3.1.3.41] 

3.1.3.41 
 

Phosphomonoesters 

Cellular Cell 04540 Gap junction PLCB; phosphatidylinositol 3.1.4.11 
 

Phosphodiesters 
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Processes communication [PATH:ko04540] phospholipase C, beta 
[EC:3.1.4.11] 

Cellular 
Processes 

Cell growth and 
death 

04112 Cell cycle - 
Caulobacter 
[PATH:ko04112] 

pdeA; c-di-GMP-specific 
phosphodiesterase 
[EC:3.1.4.52] 

3.1.4.52 
 

Phosphodiesters 

Cellular 
Processes 

Transport and 
catabolism 

04142 Lysosome 
[PATH:ko04142] 

SMPD1, ASM; sphingomyelin 
phosphodiesterase 
[EC:3.1.4.12] 

3.1.4.12 
 

Phosphodiesters 

Cellular 
Processes 

Transport and 
catabolism 

04144 Endocytosis 
[PATH:ko04144] 

PLD; phospholipase D 
[EC:3.1.4.4] 

3.1.4.4 
 

Phosphodiesters 

Environmental 
Information 
Processing 

Signal 
transduction 

04012 ErbB signaling 
pathway [PATH:ko04012] 

PLCG1; phosphatidylinositol 
phospholipase C, gamma-1 
[EC:3.1.4.11] 

3.1.4.11 
 

Phosphodiesters 

Environmental 
Information 
Processing 

Signal 
transduction 

04020 Calcium signaling 
pathway [PATH:ko04020] 

PDE1; calcium/calmodulin-
dependent 3',5'-cyclic 
nucleotide phosphodiesterase 
[EC:3.1.4.17] 

3.1.4.17 
 

Phosphodiesters 

Environmental 
Information 
Processing 

Signal 
transduction 

04020 Calcium signaling 
pathway [PATH:ko04020] 

PLCD; phosphatidylinositol 
phospholipase C, delta 
[EC:3.1.4.11] 

3.1.4.11 
 

Phosphodiesters 

Environmental 
Information 
Processing 

Signal 
transduction 

04020 Calcium signaling 
pathway [PATH:ko04020] 

PLCE; phosphatidylinositol 
phospholipase C, epsilon 
[EC:3.1.4.11] 

3.1.4.11 
 

Phosphodiesters 

Human 
Diseases 

Substance 
dependence 

05032 Morphine addiction 
[PATH:ko05032] 

PDE; 3',5'-cyclic-nucleotide 
phosphodiesterase 
[EC:3.1.4.17] 

3.1.4.17 
 

Phosphodiesters 

Human 
Diseases 

Substance 
dependence 

05032 Morphine addiction 
[PATH:ko05032] 

PDE11; dual 3',5'-cyclic-AMP 
and -GMP phosphodiesterase 
11 [EC:3.1.4.17 3.1.4.35] 

3.1.4.17, 
3.1.4.35 

Phosphodiesters 

Metabolism Carbohydrate 
metabolism 

00500 Starch and sucrose 
metabolism [PATH:ko00500] 

ENPP1_3; ectonucleotide 
pyrophosphatase/phosphodieste
rase family member 1/3 
[EC:3.1.4.1 3.6.1.9] 

3.1.4.1, 
3.6.1.9 

Phosphodiesters 

Metabolism Carbohydrate 
metabolism 

00562 Inositol phosphate 
metabolism [PATH:ko00562] 

E4.6.1.13, plc; 1-
phosphatidylinositol 
phosphodiesterase 
[EC:4.6.1.13] 

4.6.1.13 
 

Phosphodiesters 

Metabolism Carbohydrate 00562 Inositol phosphate plcC; phospholipase C 3.1.4.3 
 

Phosphodiesters 
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metabolism metabolism [PATH:ko00562] [EC:3.1.4.3] 

Metabolism Glycan 
biosynthesis 
and metabolism 

00563 
Glycosylphosphatidylinositol
(GPI)-anchor biosynthesis 
[PATH:ko00563] 

E3.1.4.50; 
glycosylphosphatidylinositol 
phospholipase D [EC:3.1.4.50] 

3.1.4.50 
 

Phosphodiesters 

Metabolism Lipid 
metabolism 

00564 Glycerophospholipid 
metabolism [PATH:ko00564] 

E3.1.4.46, glpQ, ugpQ; 
glycerophosphoryl diester 
phosphodiesterase 
[EC:3.1.4.46] 

3.1.4.46 
 

Phosphodiesters 

Metabolism Nucleotide 
metabolism 

00230 Purine metabolism 
[PATH:ko00230] 

cpdB; 2',3'-cyclic-nucleotide 2'-
phosphodiesterase 
[EC:3.1.4.16] 

3.1.4.16 
 

Phosphodiesters 

Metabolism Nucleotide 
metabolism 

00230 Purine metabolism 
[PATH:ko00230] 

PDE5; cGMP-specific 3',5'-
cyclic phosphodiesterase 
[EC:3.1.4.35] 

3.1.4.35 
 

Phosphodiesters 

Metabolism Nucleotide 
metabolism 

00230 Purine metabolism 
[PATH:ko00230] 

PDE6N; cGMP-specific 3',5'-
cyclic phosphodiesterase, 
invertebrate [EC:3.1.4.35] 

3.1.4.35 
 

Phosphodiesters 

Metabolism Nucleotide 
metabolism 

00230 Purine metabolism 
[PATH:ko00230] 

PDEB2, PDE2B; cAMP-
specific phosphodiesterase 
[EC:3.1.4.53] 

3.1.4.53 
 

Phosphodiesters 

Metabolism Nucleotide 
metabolism 

00230 Purine metabolism 
[PATH:ko00230] 

dgt; dGTPase [EC:3.1.5.1] 3.1.5.1 
 

Triphosphoric 
monoester hydrolase 

Cellular 
Processes 

Transport and 
catabolism 

04146 Peroxisome 
[PATH:ko04146] 

E3.6.1.22, NUDT12, nudC; 
NAD+ diphosphatase 
[EC:3.6.1.22] 

3.6.1.22 
 

Inorganic phosphate 

Genetic 
Information 
Processing 

Folding, sorting 
and degradation 

03018 RNA degradation 
[PATH:ko03018] 

nudH; putative (di)nucleoside 
polyphosphate hydrolase 
[EC:3.6.1.-] 

3.6.1.- 
 

Inorganic phosphate 

Metabolism Amino acid 
metabolism 

00340 Histidine metabolism 
[PATH:ko00340] 

HIS4; phosphoribosyl-ATP 
pyrophosphohydrolase / 
phosphoribosyl-AMP 
cyclohydrolase / histidinol 
dehydrogenase [EC:3.6.1.31 
3.5.4.19 1.1.1.23] 

3.6.1.31, 
3.5.4.19, 
1.1.1.23 

Inorganic phosphate 

Metabolism Amino acid 
metabolism 

00340 Histidine metabolism 
[PATH:ko00340] 

hisE; phosphoribosyl-ATP 
pyrophosphohydrolase 
[EC:3.6.1.31] 

3.6.1.31 
 

Inorganic phosphate 
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Metabolism Amino acid 
metabolism 

00340 Histidine metabolism 
[PATH:ko00340] 

hisIE; phosphoribosyl-ATP 
pyrophosphohydrolase / 
phosphoribosyl-AMP 
cyclohydrolase [EC:3.6.1.31 
3.5.4.19] 

3.6.1.31, 
3.5.4.19 

Inorganic phosphate 

Metabolism Carbohydrate 
metabolism 

00620 Pyruvate metabolism 
[PATH:ko00620] 

acyP; acylphosphatase 
[EC:3.6.1.7] 

3.6.1.7 
 

Inorganic phosphate 

Metabolism Energy 
metabolism 

00190 Oxidative 
phosphorylation 
[PATH:ko00190] 

LHPP; phospholysine 
phosphohistidine inorganic 
pyrophosphate phosphatase 
[EC:3.6.1.1 3.1.3.-] 

3.6.1.1, 
3.1.3.- 

Inorganic phosphate 

Metabolism Energy 
metabolism 

00190 Oxidative 
phosphorylation 
[PATH:ko00190] 

ppa; inorganic pyrophosphatase 
[EC:3.6.1.1] 

3.6.1.1 
 

Inorganic phosphate 

Metabolism Energy 
metabolism 

00190 Oxidative 
phosphorylation 
[PATH:ko00190] 

ppaX; pyrophosphatase PpaX 
[EC:3.6.1.1] 

3.6.1.1 
 

Inorganic phosphate 

Metabolism Glycan 
biosynthesis 
and metabolism 

00510 N-Glycan biosynthesis 
[PATH:ko00510] 

E3.6.1.43; 
dolichyldiphosphatase 
[EC:3.6.1.43] 

3.6.1.43 
 

Inorganic phosphate 

Metabolism Glycan 
biosynthesis 
and metabolism 

00540 Lipopolysaccharide 
biosynthesis 
[PATH:ko00540] 

lpxH; UDP-2,3-
diacylglucosamine hydrolase 
[EC:3.6.1.54] 

3.6.1.54 
 

Inorganic phosphate 

Metabolism Glycan 
biosynthesis 
and metabolism 

00550 Peptidoglycan 
biosynthesis 
[PATH:ko00550] 

E3.6.1.27, bacA; undecaprenyl-
diphosphatase [EC:3.6.1.27] 

3.6.1.27 
 

Inorganic phosphate 

Metabolism Lipid 
metabolism 

00564 Glycerophospholipid 
metabolism [PATH:ko00564] 

cdh; CDP-diacylglycerol 
pyrophosphatase [EC:3.6.1.26] 

3.6.1.26 
 

Inorganic phosphate 

Metabolism Nucleotide 
metabolism 

00230 Purine metabolism 
[PATH:ko00230] 

apaH; bis(5'-nucleosyl)-
tetraphosphatase (symmetrical) 
[EC:3.6.1.41] 

3.6.1.41 
 

Inorganic phosphate 

Metabolism Nucleotide 
metabolism 

00230 Purine metabolism 
[PATH:ko00230] 

E3.6.1.17; bis(5'-nucleosidyl)-
tetraphosphatase [EC:3.6.1.17] 

3.6.1.17 
 

Inorganic phosphate 

Metabolism Nucleotide 
metabolism 

00230 Purine metabolism 
[PATH:ko00230] 

E3.6.1.3; 
adenosinetriphosphatase 
[EC:3.6.1.3] 

3.6.1.3 
 

Inorganic phosphate 

Metabolism Nucleotide 
metabolism 

00230 Purine metabolism 
[PATH:ko00230] 

ITPA; inosine triphosphate 
pyrophosphatase [EC:3.6.1.19] 

3.6.1.19 
 

Inorganic phosphate 
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Metabolism Nucleotide 
metabolism 

00230 Purine metabolism 
[PATH:ko00230] 

nudE; ADP-ribose 
diphosphatase [EC:3.6.1.-] 

3.6.1.- 
 

Inorganic phosphate 

Metabolism Nucleotide 
metabolism 

00230 Purine metabolism 
[PATH:ko00230] 

nudF; ADP-ribose 
pyrophosphatase [EC:3.6.1.13] 

3.6.1.13 
 

Inorganic phosphate 

Metabolism Nucleotide 
metabolism 

00230 Purine metabolism 
[PATH:ko00230] 

ppx-gppA; exopolyphosphatase 
/ guanosine-5'-triphosphate,3'-
diphosphate pyrophosphatase 
[EC:3.6.1.11 3.6.1.40] 

3.6.1.11, 
3.6.1.40 

Inorganic phosphate 

Metabolism Nucleotide 
metabolism 

00230 Purine metabolism 
[PATH:ko00230] 

PPX1; exopolyphosphatase 
[EC:3.6.1.11] 

3.6.1.11 
 

Inorganic phosphate 

Metabolism Nucleotide 
metabolism 

00230 Purine metabolism 
[PATH:ko00230] 

rdgB; dITP/XTP 
pyrophosphatase [EC:3.6.1.19] 

3.6.1.19 
 

Inorganic phosphate 

Metabolism Nucleotide 
metabolism 

00240 Pyrimidine 
metabolism [PATH:ko00240] 

E3.6.1.23, dut; dUTP 
pyrophosphatase [EC:3.6.1.23] 

3.6.1.23 
 

Inorganic phosphate 

 
  



 

 

 
 

202 

Supplementary Table S5.2.  Kruskal-Wallis and posthoc Nemenyi test results comparing the relative abundances of functional genes 
between snow fence treatment zones (Ctl, Deep, Int, Low). Genes are grouped into functional categories based on the SEED 
Subsystems classification system. Posthoc Nemenyi test results are only shown for functional groups with Kruskal-Wallis  p-
values<0.15 and are displayed as the treatment zone with the highest abundance, followed by the treatment zone with the lowest 
abundance, followed by the p-value (e.g. “highest-lowest=0.10”). 

SEED Subsystem functional classification of gene groups  Kruskal-Wallis Posthoc Nemenyi 

Lvl 1 Lvl 2 Lvl 3  H p-value p-value 

Amino Acids and Derivatives   6.23 0.101 Deep-Low=0.061 

 Arginine, urea cycle, polyamines Urea decomposition  6.28 0.099* Deep-Low=0.140 

Carbohydrates   6.08 0.108 Ctl-Deep=0.081 

 Aminosugars Chitin and N-

acetylglucosamine 

utilization 

 

3.00 0.392 n/a 

 Central carbohydrate metabolism  8.74 0.033** Ctl-Deep=0.017 

 Di- and oligosaccharides   6.44 0.092* Ctl-Deep=0.110 

  Beta-Glucoside 

Metabolism 
 

1.46 0.691 n/a 

 Fermentation  8.23 0.041** Ctl-Deep=0.033 

 Monosaccharides  2.28 0.516 n/a 

 One-carbon Metabolism Methanogenesis  9.46 0.024** Deep-Low=0.012 



 

 

 
 

203 

  Serine-glyoxylate cycle  4.18 0.243 n/a 

 Organic acids   7.51 0.057* Low-Deep=0.046 

 Polysaccharides Cellulosome  7.51 0.057* Deep-Ctl=0.061 

  Glycogen metabolism  3.41 0.333 n/a 

 Sugar alcohols   3.15 0.369 n/a 

Cell Wall and Capsule    6.44 0.092* Int-Deep=0.061 

 Capsular and extracellular 

polysaccharides 

 

 

8.74 0.033** Int-Low=0.046 

 Gram-Negative cell wall components   5.26 0.154 n/a 

 Gram-Positive cell wall components   6.18 0.103 Ctl-Deep=0.110 

 NULL Murein Hydrolases  4.38 0.223 n/a 

 NULL Peptidoglycan 

Biosynthesis  

4.85 0.183 n/a 

Fatty Acids, Lipids, and Isoprenoids    5.62 0.132 Low-Deep/Ctl=0.170 

 Fatty acids   5.46 0.141 Low-Deep=0.220 

 Isoprenoids   5.15 0.161 n/a 

 Phospholipids   3.62 0.306 n/a 

 Triacylglycerols   6.38 0.094* Low-Ctl=0.110 

Membrane Transport    6.28 0.99 n/a 
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 ABC transporters   6.85 0.077* Deep-Low=0.061 

 Protein and nucleoprotein secretion 

system, Type IV 

 

 

6.90 0.075* Low-Deep=0.140 

 Protein secretion system, Type I   9.15 0.027** Deep-Ctl=0.017 

 Protein secretion system, Type II   0.95 0.814 n/a 

 Protein secretion system, Type III   6.23 0.101 Deep-Ctl/Int/Low= 0.170 

 Protein secretion system, Type V   2.90 0.408 n/a 

 Protein secretion system, Type VI   0.74 0.863 n/a 

 Protein secretion system, Type VII 

(Chaperone/Usher pathway, CU) 

 

 

5.36 0.1473 Low-Deep=0.110 

 Protein secretion system, Type VIII 

(Extracellular nucleation/precipitation 

pathway, ENP) 

 

 

5.36 0.1473 Deep-Ctl=0.140 

 Protein translocation across 

cytoplasmic membrane 

 

 

0.28 0.963 n/a 

Metabolism of Aromatic Compounds    0.74 0.863 n/a 

Motility and Chemotaxis    5.15 0.161 n/a 

Nitrogen Metabolism    6.90 0.075* Deep-Low=0.081 

 NULL Ammonia assimilation  6.69 0.082* Deep-Low=0.081 

 NULL Denitrification  6.28 0.099* Deep-Low=0.081 
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 NULL Dissimilatory nitrite 

reductase  

8.54 0.036** Deep-Ctl=0.081 

 NULL Nitrate and nitrite 

ammonification  

7.82 0.050** Deep-Ctl=0.046 

 NULL Nitrogen fixation  7.82 0.050** Deep-Low=0.033 

Phosphorus Metabolism    6.38 0.094* Deep-Ctl=0.081 

Potassium metabolism    6.18 0.103 Deep-Low/Ctl=0.14 

Protein Metabolism    1.51 0.679 n/a 

 Protein biosynthesis   1.77 0.622 n/a 

 Protein degradation   2.28 0.516 n/a 

Respiration    4.79 0.187 n/a 

 Electron accepting reactions   4.64 0.200 n/a 

 Electron donating reactions   5.21 0.157 n/a 

Stress Response    4.44 0.218 n/a 

 Cold shock   6.69 0.082* Low-Deep=0.081 

 Oxidative stress   4.13 0.248 n/a 

Sulfur Metabolism    6.90 0.075 Deep-Int=0.140 

 Inorganic sulfur assimilation   6.28 0.099* Deep-Int=0.140 

 Organic sulfur assimilation   6.49 0.090* Low-Int=0.061 
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