Northwest Fisheries Science Center Virtual-only mini-Symposium

April 1st, Wednesday | 9-11 am | Google Meet

Searching for signs of resilience in over-wintering juvenile pteropods to ocean acidification and deoxygenation

Shelly Trigg, Ph.D.

School of Aquatic and Fishery Sciences University of Washington

NOAA Collaborators: Krista Nichols, Shallin Busch, Paul McElhany, Michael Maher, Danielle Perez, Caitlin O'Brien NWFSC Montlake and Mukilteo Research Station, Conservation Biology Division, Genetics Section

Pteropods are important

Pteropods are sensitive to low pH, Ω_A

Pteropods are sensitive to low pH, Ω_A

pH = measure of hydrogen ions

 Ω_A = measure of carbonate ions

Studies show sensitivity to low Ω_{A}

Field:	Lab and Field:
🗸 survival	↑ shell dissolution
\checkmark shell condition	
🗸 shell growth	
Fall and winter	Summer
N. Atlantic	Antarctic, CA Current
<u>(Lischka et al. 2011)</u> (Lischka and Riebesell 2012)	<u>(Bednaršek et al. 2012;</u> <u>Bednaršek et al. 2014;</u> <u>Busch et al. 2014)</u>

Puget Sound pteropods show resilience

pH = measure of hydrogen ions

 Ω_A = measure of carbonate ions

Studies show sensitivity to low Ω_{A}

Field:	Lab and Field:
🗸 survival	↑ shell dissolution
igstyle shell condition	
↓ shell growth	
Fall and winter	Summer
N. Atlantic	Antarctic, CA Current
<u>(Lischka et al. 2011)</u> (Lischka and Riebesell 2012)	<u>(Bednaršek et al. 2012;</u> Bednaršek et al. 2014; Busch et al. 2014)

Resilience in the field

Puget Sound winter conditions:

- Low pH, Ω_A
- Low food availability

How will ocean change affect Pteropods?

Gobler and Baumann (2016) Biology Letters

How sensitive are juvenile pteropods (*L. helicina*) to low O_2 AND pH, Ω_A ?

juveniles exposed for 9 days

 $n \square \cap$

MOATS (Mobile ocean acidification treatment systems)

	P11, 32 _A		
	Norm pH Norm O ₂	Low pH	
ר	100% O ₂ pH 7.95, Ω _A 1.1	100% O ₂ pH 7.55 <i>,</i> Ω _A 0.5	
2	Low O ₂	Low pH Low O ₂	
	40% O ₂ pH 7.95, Ω _A 1.1	40% O ₂ pH 7.55, Ω _A 0.5	

Treatments calibrated to Puget Sound current and projected conditions

Survival similar across lab altered pH and O₂ conditions

Survival similar across lab altered pH and O₂ conditions

juveniles exposed for 9 days **MOATS** (Mobile ocean acidification) treatment systems)

nH O.

How are pteropods coping physiologically?

Physiology through the metabolomics lens

Metabolite abundances vary with conditions

Average metabolite abundance

Low O₂ more strongly affects metabolite abundance

Specific compounds are affected

• circles = metabolites

0

- lines = shared pathway
- cluster = chemical similarity
- big and green = significantly different

Specific compounds are affected

- circles = metabolites
- lines = shared pathway
- cluster = chemical similarity
- big and green = significantly different

Phosphotidylcholines are significantly affected by low O₂

Cross-species signs of resilience in lab pH x O₂ metabolomics studies

Summary

- Both species show resilience to low pH and O₂ stress in the lab
- Metabolomes respond to low pH and O₂
- O₂ has a more wide-spread, dominant effect on metabolites
- Species employ different physiological mechanisms to achieve resilience
- We don't know the longer term term consequences of these physiological compensations
 - Can physiological responses be sustained without compromising?