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Abstract—We propose a generic Scattering Power Factoriza-
tion Framework (SPFF) for Polarimetric Synthetic Aperture
Radar (PolSAR) data to directly obtain N scattering power
components along with a residue power component for each pixel.
Each scattering power component is factorized into similarity
(or dissimilarity) using elementary targets and a generalized
random volume model. The similarity measure is derived using a
geodesic distance between pairs of 4×4 real Kennaugh matrices.
In standard model-based decomposition schemes, the 3 × 3
Hermitian positive semi-definite covariance (or coherency) matrix
is expressed as a weighted linear combination of scattering targets
following a fixed hierarchical process. In contrast, under the
proposed framework, a convex splitting of unity is performed to
obtain the weights while preserving the dominance of the scatter-
ing components. The product of the total power (Span) with these
weights provides the non-negative scattering power components.
Furthermore, the framework along the geodesic distance is
effectively used to obtain specific roll-invariant parameters which
are then utilized to design an unsupervised classification scheme.
The SPFF, the roll invariant parameters, and the classification
results are assessed using C-band RADARSAT-2 and L-band
ALOS-2 images of San Francisco.

Index Terms—PolSAR, Scattering Power, Factorization,
Framework, Geodesic Distance, Roll-Invariant parameters, Un-
supervised Classification, Radar Polarimetry

TARGET decomposition (TD) theorems are an essential
avenue of research in the study of Polarimetric Synthetic

Aperture Radar (PolSAR) imagery. In this context, the study
of light scattering by small anisotropic particles by Chan-
drasekhar [1] was the first instance of a TD. Later, Huynen [2]
rigorously formulated this notion and laid the foundations of
the modern day TDs.

According to Huynen, the objective of TD is to identify
the average scattering mechanism within the pixel in the form
of a rank-1 covariance/coherency matrix. The interpretation
of this information is achieved by obtaining a set of unique
parameters often roll-invariant in nature for a description of the
target under study. On the one hand, this approach is utilized
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in the eigenvalue/eigenvector based decomposition schemes.
On the other hand, model-based decompositions interpret
the observation as a weighted linear combination of specific
scattering mechanisms. In the later, the scattering components
can be rank-1 or distributed (rank ≥ 1, e.g. volume scattering
models) targets [3].

The extraction of a desirable rank-1 (pure or coherent) target
is often synonymous with the most dominant scattering mech-
anism component from the observation [4]. However, retaining
all the components (in decreasing order of dominance) is more
useful for a complete and more realistic characterization of
the target. This task is leveraged for better interpretation of
the observation by model-based decompositions [5], [6], and
for uniqueness, by the eigenvalue-eigenvector based decom-
positions [7], [8].

Recently, Xu et al. [9] brought together rank-1 PolSAR de-
composition, model-based decomposition, and image cluster-
ing under the single umbrella of image factorization problems.
Motivated by the concept of factorization, Ratha et al. [10]
proposed an alternative approach to characterize the observa-
tion through a vector of bounded distances from elementary
scatterers.

In this context, we utilized the geodesic distance (GD)
measured over the unit sphere centered at the origin in the
space of real 4× 4 matrices. This unit sphere contains all the
normalized Kennaugh (K) matrices which are equivalent to
the second-order information conveyed by the coherency (or
covariance) matrices corresponding to an observation. On the
unit sphere, the proximity of the observation to the respective
elementary scatterer determines the order of the dominant
scattering mechanism.

Often the validity of TDs is assessed based on (a) the
preservation of dominance order of scattering mechanism
components, (b) the reduction in the number of pixels with
negative power, and (c) the conservation of total power (Span).
The usability is evaluated based on better scattering mecha-
nism discrimination, classification, and accurate biophysical
parameter extraction [11].

In this perspective, we propose a novel generalized and
flexible scattering power factorization (SPFF) framework using
a similarity measure derived from the geometrically motivated
geodesic distance. At first, a convex splitting of unity is
performed to obtain the weights preserving the order of
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dominance of scattering components. The individual weights
stem from the similarity and dissimilarity (distance) of the
observed pixel with the input scattering models. Finally, the
multiplication of the total power (Span) with these weights
provides the non-negative scattering power components. In the
process, we also obtain some novel roll-invariant parameters
which we use for designing a new unsupervised classification
scheme for PolSAR images.

Actually, SPFF should not be categorized as a TD, because
we split the Span instead of the matrix representation of the
full observation. However, at the same time, the criteria of
validity and the assessment of SPFF coincides with that of
TDs and hence, the comparison.

In the manuscript, Section I discusses the formulation of
geodesic distance (on the unit sphere), and its particular ad-
vantages when working with PolSAR data. Section II provides
the details about the data sets used for the results. Section III
is devoted to the novel roll-invariant parameters which are
a function of the geodesic distance of the observation from
roll-invariant targets. These parameters are compared against
standard roll-invariant parameters existing in PolSAR litera-
ture. Section IV discusses the identification of scattering zones
using the proposed roll-invariant parameters. In Section V we
propose an alternative unsupervised classification scheme for
PolSAR images. Section VI describes the general flowchart
showing the steps involved in the SPFF. In Section VI the
SPFF is utilized for multi-looked PolSAR images using a
generalized volume scattering model [12]. The results are dis-
cussed in Section VIII. Section IX concludes this manuscript.

I. GEODESIC DISTANCE ON THE UNIT SPHERE

The geometry of the unit sphere plays an important role in
polarimetry theory. For example, the Poincaré sphere is used to
visualize the state of polarization [3] in the Stokes formalism.
Similarly, the unit sphere in the space of 4×4 real matrices is
ideal for studying scattering behavior of targets in the context
of Kennaugh matrices.

In this case, the geodesic distance [13] on the unit sphere is
a natural way to measure the dissimilarity between the targets.
In particular, the geodesic distance (GD) on the unit sphere
of 4 × 4 real matrices was found to be useful for several
applications such as change detection [14], unsupervised land-
cover classification [15], vegetation monitoring [16] and ex-
traction of urban footprint [17] using PolSAR images. The
GD between two Kennaugh matrices K1 and K2 is defined
as

GD(K1,K2) =
2

π
cos−1

Tr(KT
1 K2)√

Tr(KT
1 K1)

√
Tr(KT

2 K2)
. (1)

Under this definition, GD is the distance between the projec-
tions of K1 and K2 on the unit sphere centered at the origin
in the space of 4× 4 real matrices.

In the following section, we explore the properties of GD
and provide its physical significance.

A. Properties of GD and PolSAR significance

Here we discuss a few more properties of GD relevant to
PolSAR image analysis and interpretation.

(P1) By definition, GD is bounded in [0, 1].
Significance: Hence, GD is desirable over unbounded
metrics, e.g., the Euclidean distance. Moreover, it can
be directly used as an element of a feature vector for
algorithms designed for PolSAR applications.

(P2) GD is scale invariant i.e., GD(λ1K1, λ2K2) =
GD(K1,K2) where λ1 and λ2 are positive real numbers.
Significance: This property makes GD a metric that
captures changes in scattering mechanism only, as it is
invariant under the scaling by the Span; identical targets
with unequal power return can still be identified as one.

(P3) GD is invariant under orthogonal transformation of the
basis i.e., for P ∈ O(4) (the set of 4 × 4 orthogonal
matrices such that PTP = PPT = I),

GD(PTK1P,P
TK2P) = GD(K1,K2).

Significance: In polarimetry there exists special matrices
O4(2φ), O4(2τ) and O4(2α). These are used in combi-
nation i.e., O4(2φ, 2τ, 2α) = O4(2φ)O(2τ)O4(2α) for
changing the polarimetric basis from one orthonormal
system to another in the Kennaugh matrix represen-
tation [3]. These matrices are orthogonal, hence, (P3)
makes GD invariant under the orthogonal transformation
of wave polarization basis.

B. GD for other PolSAR data representations

The current form of GD seems to have a restrictive defini-
tion, which is suitable only for the Kennaugh matrices. In this
section, we work out its equivalent forms for the covariance,
coherency and the scattering matrices.

Let us recall the conversions from S and T to K. Given
a scattering matrix S, the 4 × 4 real Kennaugh matrix K is
defined as [3]:

K =
1

2
A∗(S⊗ S∗)A∗T , A =


1 0 0 1
1 0 0 −1
0 1 1 0
0 j −j 0

 , (2)

where ⊗ is the Kronecker product, superscripts ∗ and T
denote conjugate and transpose respectively, and j =

√
−1.

Alternatively, the Kennaugh matrix for the incoherent case can
be obtained from the coherency matrix T as follows [18]:

K =


T11+T22+T33

2 <(T12) <(T13) =(T23)
<(T12) T11+T22−T33

2 <(T23) =(T13)
<(T13) <(T23) T11−T22+T33

2 −=(T12)
=(T23) =(T13) −=(T12) −T11+T22+T33

2

 , (3)

where <(·) and =(·) denote real and imaginary parts of a
complex number.

Let K and K̄ be two Kennaugh matrices and T and T̄ be
their corresponding coherency matrices.

Note that the expression Tr(KT K̄) is the scalar dot product
of real matrices K and K̄. Thus, the sum of product of
diagonal and non-diagonal elements can be separated from
its expression i.e.,
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Tr(KT K̄) =

4∑
i=1

4∑
j=1

KijK̄ij (4)

=

4∑
i=1

KiiK̄ii +

4∑
i=1
i 6=j

4∑
j=1

KijK̄ij (5)

By substituting the relationship between entries of Ken-
naugh and corresponding coherency matrix (3) into the di-
agonal and off-diagonal parts in the preceding equation we
obtain upon simplification,

4∑
i=1

KiiK̄ii =

4∑
i=1

TiiT̄ii (6)

4∑
i=1
i 6=j

4∑
j=1

KijK̄ij =

4∑
i=1
i<j

4∑
j=1

2(<(Tij)<(T̄ij) . . .

· · ·+ =(Tij)=(T̄ij)) (7)

=

4∑
i=1
i 6=j

4∑
j=1

<(Tij)<(T̄ij) . . .

· · ·+ =(Tij)=(T̄ij). (8)

The last expression is obtained due to the hermitian nature
of the coherency matrices i.e., Tji = T ∗ij and T̄ji = T̄ ∗ij . Note
that this property forces the diagonal elements of coherency
matrices Tii and T̄ii to be real numbers.

Now we expand the term Tr(THT̄) which the scalar
dot product for complex matrices and obtain the following
expression,

Tr(THT̄) =

4∑
i=1

TiiT̄ii +

4∑
i=1
i 6=j

4∑
j=1

<(Tij)<(T̄ij) . . .

· · ·+ =(Tij)=(T̄ij)

= Tr(KT K̄). (9)

It is interesting to note that the scalar dot product for
complex coherency matrices maps to the real numbers due
to its equality with scalar dot product for real symmetric
Kennaugh matrices.

Using the identity obtained in (9) we further obtain,

Tr(KT
1 K2)√

Tr(KT
1 K1)

√
Tr(KT

2 K2)
=

Tr(TH
1 T2)√

Tr(TH
1 T1)

√
Tr(TH

2 T2)
,

(10)
where the superscript H stands for the conjugate transpose of
the matrix.

The relationship between a covariance matrix C and the
corresponding coherency matrix T is expressed via a special
unitary matrix U3(L7→P ) ∈ SU(3) = {U ∈ C3×C3 : UHU =
I = UUH and det(U) = 1} where I is the 3 × 3 identity
matrix and det(·) denotes the determinant of the matrix. Then
the transformation from C to T is obtained as follows:

T = U3(L7→P )CUH
3(L 7→P ), (11)

where

U3(L 7→P ) =
1√
2

 1 0 1
1 0 −1

0
√

2 0

 , (12)

and, by definition, satisfying the property:

U3(L 7→P )U
H
3(L 7→P ) = UH

3(L7→P )U3(L7→P ) = I. (13)

Substituting (11) in (10) we obtain,

Tr(TH
1 T2)√

Tr(TH
1 T1)

√
Tr(TH

2 T2)
=

Tr(CH
1 C2)√

Tr(CH
1 C1)

√
Tr(CH

2 C2)
.

(14)
Thus, we can obtain GD from C or T (14) interchangeably.

Under coherent conditions, where K1 and K2 are derived
from corresponding scattering matrices S1 and S2 using (2),
the numerator term in (10) can be simplified as follows,

Tr(KT
1 K2)

= Tr(KH
1 K2)

= Tr((
1

2
A∗(S1 ⊗ S∗1)AH)H

1

2
A∗(S2 ⊗ S∗2)AH)

=
1

4
Tr(A(S1 ⊗ S∗1)HATA∗(S2 ⊗ S∗2)AH)

=
1

4
Tr(A(S1 ⊗ S∗1)H(S2 ⊗ S∗2)AH)

=
1

4
Tr((S1 ⊗ S∗1)H(S2 ⊗ S∗2)AHA)

=
1

4
Tr((S1 ⊗ S∗1)H(S2 ⊗ S∗2)).

To arrive at this final form, we have utilized in order: the real
nature of Kennaugh matrices, the definition of H = ∗T = T∗,
the property of Tr being invariant under cyclic permutation of
its arguments and lastly, the identity AHA = I. Thus, the
equivalent expression using S1 and S2 corresponding to the
identities (10) and (14) is given as,

Tr((S1⊗S∗
1)

H(S2⊗S∗
2))√

Tr((S1⊗S∗
1)

H(S1⊗S∗
1))
√

Tr((S2⊗S∗
2)

H(S2⊗S∗
2))

.

(15)
Thus, when this is substituted in (1), provides a way to obtain
the GD in terms of the scattering matrices.

In the case of a coherent target, the denominator can be
further simplified. It can be derived from the definition of
the covariance matrix C without the ensemble averaging. For
coherent monostatic full polarimetric SAR measurements, the
Span is defined as:

Span = |SHH |2+2|SHV |2+|SV V |2 (16)

=
√

Tr(CHC) (17)

=
√

Tr(THT) (18)

=
√

Tr(KTK). (19)

Expanding the last equality we obtain,

(Span)2 = Tr(KTK) (20)

⇒ 4K2
11 =

4∑
i=1

4∑
j=1

K2
ij , (21)
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which is precisely the Fry-Kattawar equation [19] initially
derived for the Stokes matrix in optical polarimetry. Many
of the equalities that are discussed in [19] were first explicitly
given by [20], then revised and extended in [19]. At the same
time, this equality is a necessary but not sufficient condition
to warrant that K is derived from a S matrix [18]. Thus,
we have obtained the formulation for GD for all the data
representations in PolSAR.

Although we have a distance in the form of GD, it would
be better to construct a measure of similarity from it. This
formulation can be achieved by complementing it with the
unit, i.e.,

fref = 1−GD(K,Kref), (22)

where K is an observed Kennaugh matrix and Kref is the refer-
ence elementary scatterers. In this sense, fref is a similarity and
the corresponding GD is a dissimilarity. In PolSAR literature,
Yang et al. [21], Touzi and Charboneau [22], and Chen et
al. [23] discuss similarity-based approaches for describing
scattering phenomenon from PolSAR images.

Thus, the GD is advantageous in terms of its physical
significance with parallel definitions across all data represen-
tations in PolSAR. Its simple form makes it ideal for compu-
tational implementation in several PolSAR applications [14]–
[17].

II. DATA SETS

We have utilized two PolSAR images of the San Francisco
(SF) Area. The first one is a C-Band RADARSAT-2 (RS-2)
acquired on 9th April 2008. The near to far range incidence
angle is specified as 28.02◦ to 29.82◦. The original image is
multi-looked by a factor of 2 in range and 4 in the azimuth
resulting in a 20 m ground resolution.

The other image is a L-Band ALOS-2 acquisition on 29th
January 2019. The off-nadir angle is specified as 30.8◦. The
original image is multi-looked by a factor of 3 in range and 5
in the azimuth resulting in a 15.7 m ground resolution. Fig. 1
shows the two Pauli RGBs for these data sets.

(a)
Pauli
RGB
1

(b)
Pauli
RGB
2

Fig. 1: Pauli RGB images of RS-2 C-band (on left) and ALOS-
2 L-band (on right) acquisition over San Francisco.

III. NEW ROLL INVARIANT PARAMETERS

In the phenomenon of a roll, the antenna coordinate system
is rotated by an angle θ about the radar line of sight (LoS) [3].
In such a case, the observed Kennaugh matrix K transforms
as follows,

K(θ) = R(θ)KR(θ)T (23)

where the (orthogonal) rotation matrix R(θ) is given by

R(θ) =


1 0 0 0
0 cos 2θ − sin 2θ 0
0 sin 2θ cos 2θ 0
0 0 0 1

 . (24)

Let K0 be the Kennaugh matrix for a roll-invariant target. A
roll-invariant target has the property of preserving its scattering
signature despite a roll i.e.,

R(θ)K0R(θ)T = K0 (25)

for any value of the θ angle. Thus, the geodesic distance
between K(θ) and the roll invariant target K0 can be further
simplified in the following way,

GD(K(θ),K0) = GD(K(θ),K0(θ)) = GD(K,K0). (26)

The first step was obtained by applying (25) followed by the
property (P3) of GD as discussed in Sec. I in the next step.
Thus, the GD between the observation and a roll-invariant
target is a roll-invariant quantity.

Table I presents the Kennaugh matrices for the elementary
scatterers such as the trihedral, cylinder, dipole, dihedral,
narrow dihedral, ±1/4-wave, left helix and right helix in the
HV basis.

TABLE I: Kennaugh Matrices for Elementary Targets

Target Row 1 Row 2 Row 3 Row 4

Kd 1 0 0 0 0 1 0 0 0 0 -1 0 0 0 0 1
Knd 5/8 3/8 0 0 3/8 5/8 0 0 0 0 -1/2 0 0 0 0 1/2
Kt 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 -1
Kc 5/8 3/8 0 0 3/8 5/8 0 0 0 0 1/2 0 0 0 0 -1/2
Kdp 1 -1 0 0 -1 1 0 0 0 0 0 0 0 0 0 0
K+1/4 1 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0
K−1/4 1 0 0 0 0 1 0 0 0 0 0 -1 0 0 -1 0

Klh 1 0 0 -1 0 0 0 0 0 0 0 0 -1 0 0 1
Krh 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 1

Among these elementary scattering models, the trihedral and
helices are roll-invariant.

A. Alpha angle αGD
In PolSAR literature, the scattering type angle α given by

Cloude and Pottier is a roll invariant quantity [24] which varies
in 0◦ to 90◦, corresponding to trihedral and dihedral scattering
in the extremities, respectively. Alternately, the scattering type
can be interpreted as the deviation/dissimilarity w.r.t. trihedral
scattering. Using this interpretation, we define a new parameter
αGD:

αGD(K) = 90◦ ×GD(K,Kt). (27)

The multiplication by 90◦ equals the scale for comparison with
α. For dihedral target, αGD(Kd) = 90◦ which matches with
the scattering at extremities of α scale. Table II shows αGD
for other elementary targets.

Three clusters of elementary target models on the αGD
scale are evident. They are trihedral and cylinder; dipole and
quarter wave devices; and lastly, narrow dihedral, dihedral, and
helices.

B. Helicity τGD
The helicity parameter provides a quantitative estimation

of target symmetry [8] in the observation. This quantity is
derived from flh and frh, i.e., the individual similarity of
the observation with left and right helix models respectively.
A single measure of helicity is obtained by replacing GD
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TABLE II: αGD and τGD for elementary targets

Target αGD [0◦, 90◦] τGD [0◦, 45◦]

Krh 90 45
Klh 90 45
Kd 90 15
Knd 84.26 13.37
K+1/4 60 7.24
K−1/4 60 7.24
Kdp 60 7.24
Kc 25.84 1.43
Kt 0 0

with the (geometric) mean of the distances from left and right
helices in the definition of similarity:

τGD = 45◦ ×
(

1−
√
GD(K,Klh)GD(K,Krh)

)
. (28)

The multiplication by 45◦ makes the scale equal for com-
parison with |τm1

| [8]. For trihedral target, τGD = 0 and
for helices τGD = 45◦, which matches with the scattering at
extremities of |τm1

|. Table II provides the helicity values for
other elementary targets. It is observed that τGD discriminates
between helices and dihedral, in addition to the discrimination
of elementary targets as provided by αGD.

C. Purity Index PGD
The ensemble averaging of the Stokes matrix was explored

in [19]. Under such circumstances (21) turns into an inequal-
ity:

4K2
11 ≥

4∑
j=1

K2
ij . (29)

Later, the Stokes-Mueller formalism was revisited by
Barakat [25] and Simon [26] to obtain equivalent equations in
a different mathematical setting for a fully polarized system.
Using (21) and its physical significance as given in [26],
Gil and Bernabeau identified its potential as a criterion for
depolarization using Mueller matrices [27]. They defined a
depolarization index (presented here using the Kennaugh ma-
trix) as:

PD =

√
Tr(KTK)−K2

11

3K2
11

, (30)

where PD being 1 and 0 corresponds to a non-depolarizing
media and the ideal depolarizer, respectively. The Kennaugh
matrix form for the ideal depolarizer [18] is:

Kdep =


1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 . (31)

It can be shown that there exists no corresponding Sdep matrix
for Kdep. Hence, a coherent physical target does not exist for
the ideal depolarizer in nature. Eq. (30) can also be rewritten
as:

PD =
1√
3

∥∥∥∥( K

K11
−Kdep

)∥∥∥∥ , (32)

where ‖·‖ denotes the Euclidean norm of a real matrix.
Thus, PD is obtained by measuring the distance between

K11 = Span/2 (normalized) observation and the ideal de-
polarizer. It may be noted that Kdep is invariant under the roll
transformation. Thus, it is important to investigate the limits
of GD(K,Kdep) by simplifying the expression:

Tr(KTKdep)√
Tr(KTK) Tr(KT

depKdep)
=

K11√
Tr(KTK)

.

Using (29) we obtain that

K11√
Tr(KTK)

≥ 1

2
.

This implies that

GD(K,Kdep) ≤
2

π
cos−1

(
1

2

)
=

2

3
.

Thus, GD(K,Kdep) varies in the range [0, 2/3] with zero
corresponding to the ideal depolarizer and 2/3 correspond-
ing to non-depolarizing media. Thus the resulting quantity
3
2GD(K,Kdep) is the dissimilarity between the observation
and Kdep. This quantity is large even for distributed targets.
Hence, to have a good contrast we take the square of this
quantity as our definition for the depolarization index:

PGD =

(
3

2
GD(K,Kdep)

)2

, (33)

where PGD = 0 corresponds to the ideal depolarizer and
PGD = 1 corresponds to non-depolarizing targets. All co-
herent targets shown in Table I have PGD = 1.

These three roll-invariant parameters along with the Span
can be utilized to classify a PolSAR scene and interpret the
scattering type.

A disadvantage with roll-invariant parameters is their in-
ability to separate the quarter waves from the dipole. In the
next section, we compare the proposed parameters with some
well-known parameters from the PolSAR literature.

D. Comparisons with parameters from literature

We have derived the three roll invariant parameters αGD,
τGD and PGD using the geodesic distance. Although these
parameters are obtained from a different formulation their
interpretation is similar to specific well-known parameters in
PolSAR literature [8], [24], [27].

Figs. 2 and 3 respectively show the proposed parameters
and the corresponding parameters from PolSAR literature for
RS-2 C-band and ALOS-2 L-band images of San Francisco
in pairs. It is observed that αGD has a more dynamic range in
comparison to α, leading to better discrimination of different
scatterers. The τGD has a higher value than |τm1

|, especially
pronounced over land masses. The purity parameters PGD and
PD look identical.

For a more in-depth understanding, we performed a quan-
titative assessment of the above parameters in Fig. 4. The
figure shows the transect for two particular rows for RS-2 and
ALOS-2 data sets respectively. The transect passes through
the Golden Gate Park of San Francisco and the South Market
Area, i.e., the oriented urban buildings elusive to most target
decompositions under identification. The transect contains
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(a)
αGD

(b)
α

(c)
τGD

(d)
|τm1 |

(e)
PGD

(f)
PD

Fig. 2: Parameter values for proposed and existing parameters
for RS-2 C-Band SF Image

(a)
αGD

(b)
α

(c)
τGD

(d)
|τm1 |

(e)
PGD

(f)
PD

Fig. 3: Parameter values for proposed and existing parameters
for ALOS-2 L-band SF Image

several scattering zones: sea-surface, vegetation, urban area
block perpendicular to radar LoS and those oriented to it.

(a)
Ref.
row
of
RS-
2
im-
age

(b)
Ref.
row
of
ALOS-
2
im-
age

(c)
αGD

vs
α

(d)
αGD

vs
α

(e)
τGD

vs
|τm1|

(f)
τGD

vs
|τm1|

(g)
PGD

vs
PD

(h)
PGD

vs
PD

Fig. 4: Profile of roll-invariant parameters computed along
particular transects in the RS-2 and the ALOS-2 SF images

It can be seen from the transects that the αGD has a better
dynamic range than α. It is lower for scattering from sea
surface (0◦ to 25◦) and vegetation (20◦ to 40◦), and higher for
urban areas (> 40◦) than α. The value of τGD is higher than
τ throughout the transect for all the types scatters. However, a
marked jump is seen over land surfaces where τGD > 10◦. It is
also observed that τGD and |τm1

| are different to a great extent
because of their respective definitions. However, both quanti-
ties are measures of the asymmetric nature of the scattering
in the pixel, which makes them similar for comparison. The

purity indices PGD and PD are very similar; however, PGD
is slightly better than PD from purer to distributed targets.

IV. SCATTERING ZONE IDENTIFICATION USING
ROLL-INVARIANT PARAMETERS
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Fig. 5: Histograms for αGD and τGD for different scattering
zones for RS-2 and ALOS-2 SF images.
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Fig. 6: Segmentation results
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In this section, we utilize the roll-invariant parameters for
unsupervised classification of the PolSAR scene. At first, we
assess the nature of classification provided by the parame-
ters αGD and τGD independently. And finally we propose a
PGD/αGD scheme for unsupervised classification for PolSAR
images using both these parameters simultaneously.

We begin by recalling Table II which shows the values of
αGD and τGD for various elementary scatterers. Among them,
the family of coherent odd-bounce scatters is restricted to
within 30◦ on the αGD scale and less than 5◦ on the τGD scale.
This kind of scattering is mainly seen from the sea surface. For
the rest of the elementary scatterers except helices, the τGD
is restricted to the closed range 5◦ to 15◦. Thus, segmenting
τGD into two parts, namely below and above 5◦, separates the
sea from the terrain.

Another point of interest is the vegetation, which is a dis-
tributed target. In this respect, the Yamaguchi 3-case volume
model [6] is a simple and popular model often used in PolSAR
literature. The αGD for the three cases are 40.40◦, 35.26◦

and 40.40◦ respectively. For the identification of urban areas,
the even-bounce family of narrow dihedral and dihedral are
often employed. Ref. [6] introduces the helix component into
the decomposition to account for the co-pol and cross-pol
correlation in the urban areas. Hence, on the αGD scale the
odd-bounce scatterers occur first, then the volume scatterers
and finally the even bounce and helix scatterers. Based on this
analysis, we have good estimates of the segments that the αGD
scale can be broken into for identification of these scattering
zones: [0◦, 30◦), [30◦, 40◦), and [40◦, 90◦].

We further validate the choice of these segments by plotting
the histograms for αGD and τGD for samples from different
scattering zones within the PolSAR images in Fig. 5. These
samples are representative areas of the sea surface, orthogonal
urban area, oriented urban area and, vegetation.

The largest overlap between αGD histograms occurs for
vegetation and oriented urban areas. Resolving this ambiguity
is a significant avenue of research within PolSAR litera-
ture [11], [28]. The peaks of the distribution for different
scattering zones lie in the exclusive segments that we hypoth-
esized for αGD. The segmentation with 5◦ is an effective way
of segmenting a PolSAR image by using τGD because of the
wide separation between the odd-bounce scatterers and other
scatterers on its scale.

Figure 6 shows the classification achieved using the above
segments for αGD and τGD individually. The αGD is able to
extract the oriented urban areas from the San Francisco scene
in both the data sets, while τGD identifies the land and ships
from the sea accurately.

V. PGD/αGD CLASSIFICATION SCHEME

We have verified the usefulness of αGD for urban mapping.
It will be beneficial if this segmentation of αGD is combined
with other roll-invariant parameters to form a more detailed
classification scheme.

We chose PGD as the second parameter. A similar kind of
classification scheme was first attempted in [29], to provide
an alternative to the original H/α classification [24]. The

parameters utilized were the surface scattering fraction and
the scattering diversity, the latter being related to the degree
of purity PD. The authors utilized ranges following the H/α
scheme, a choice that led to suboptimal exploitation of the
potential of their work. In this light, we stipulated the param-
eters’ segments according to their behavior over well-known
scattering zones as obtained in our previous analysis.

We chose four segments of αGD instead of three. The last
segment [40◦, 90◦] is divided in two: [40◦, 80◦) and [80◦, 90◦].
Canonical scatterers like the narrow dihedral, dihedral, and
helices concentrate in the last interval. The PGD is split in the
middle at 0.5 to discriminate coherent targets from the rest.

Fig. 7 shows the scatterplot of (PGD, αGD) and the clas-
sification results for the RS-2 C-band and ALOS-2 L-band
San Francisco images. The classes are based on the Euclidean
product of segments of αGD and PGD listed in Table III.

TABLE III: PGD/αGD classes

αGD ∈ [0◦, 30◦) [30◦, 40◦) [40◦, 80◦) [80◦, 90◦]

PGD ≤ 0.5 1 3 5 7
PGD > 0.5 2 4 6 8

A. Shape of the Scatter Plot

In a similar manner to the computation of the feasible region
for the H/α scatter plot [24], we compute the theoretical
bounds for the physical scatterers in terms of PGD/αGD.

For physical scatterers, the feasible region in the PGD/αGD
plane is delimited by two curves namely I and II. The
two curves are characterized by scatterers whose coherency
matrices are given in [24]. We present their corresponding
Kennaugh matrix forms using (3) as given below,

KI =


2m+1

2 0 0
0 1

2 0 0
0 0 1

2 0
0 0 0 2m−1

2

 0 ≤ m ≤ 1,

KII =


2m+1

2 0 0
0 1−2m

2 0 0
0 0 2m−1

2 0
0 0 0 2m+1

2

 0 ≤ m ≤ 0.5,

KIII =


2m+1

2 0 0
0 2m−1

2 0 0
0 0 2m−1

2 0
0 0 0 3−2m

2

 0.5 ≤ m ≤ 1.

(34)

The curve I which bounds the scatter plot from below, in
particular, called the azimuthal symmetry curve. We compute
the PGD/αGD values for these scatterers and trace the curves
(shown in black) within the scatter plot plane in the Fig. 7.
The azimuthal symmetry curve fits tightly with the scatter plot
as it is derived from a purely physical consideration.

Nevertheless, the delimiting curve in PGD/αGD plane is
distinct from that in the H/α plane. Firstly, the direction of
the curve is reversed. This is because the physical depolarizers
satisfying the Fry-Kattawar equation (21) which also includes
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the coherent scatterers, all of which have a value of PGD = 1.
Secondly, the PGD has a physical lower bound for the physical
depolarizers which is computed to be 0.25. Thus, the zone with
PGD < 0.25 is never realized. This is achieved for the end
point of the curve I evaluated for m = 1 whose Kennaugh
matrix is given as,

K =


3
2 0 0 0
0 1

2 0 0
0 0 1

2 0
0 0 0 1

2

 ,
for which the corresponding coherency matrix is given by

T =

 1 0 0
0 1 0
0 0 1

 .
Thus, it is the case of degenerate eigenvalues with eigenvalue
1 of multiplicity 3. This also corresponds to the point of
maximum entropy i.e., H = 1 in the H/α plane. This
unique point in PGD/αGD scatter plot is characterized by
PGD = 0.25 and αGD = 90◦ × cos−1(1/

√
3) ≈ 54.7356◦.
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Fig. 7: Unsupervised classification using PGD and αGD

B. Interpretation of the Classes

In our interpretation of the classes, the scattering be-
havior is determined by αGD, while PGD determines the
purity/depolarizing nature of scattering. Table III identi-
fies the classes with the segments from αGD and PGD.
Under this classification scheme, each pair starting from
(1, 2), (3, 4), (5, 6) and (7, 8) belongs to the same zone in
αGD which is the proxy for the type of scattering as given
in Table II. The even-numbered class within each pair is purer
or less depolarizing than the odd-numbered class.

Classes 1 and 2 discriminate the sea from land. The vege-
tation mostly belongs to class 3 because it is characterized
as a distributed scatterer, and hence majorly depolarizing.
The urban areas oriented about the radar LoS and those
perpendicular are identified in class 5 and 6. Class 7 is
virtually absent because the corresponding αGD segment is
very narrow, i.e., [80◦, 90◦] and contains mostly pure scatterers
viz., narrow dihedral and dihedral, hence, PGD > 0.5.

VI. A GENERIC SCATTERING POWER FACTORIZATION
FRAMEWORK

In this section, we discuss a novel framework to obtain the
component scattering powers using the order of dominance of
similarity to known scattering models in PolSAR literature.

Fig. 8 outlines a generic scheme for scattering power
factorization. It involves five key steps A–E (as shown in the
figure) that are applied to a PolSAR image in a pixel-by-pixel
manner to obtain the scattering powers.

Fig. 8: PolSAR Scattering Power Factorization Framework

This generic framework may be used for any similarity
measure defined for the representation of polarimetric SAR
data in the form of scattering matrix (S), covariance or
coherency matrix (C or T) or Kennaugh matrix (K). The
data can be either coherent or incoherent. Moreover, it also
provides the flexibility of using an arbitrary number of input
scattering models to compare the observed data given in a
particular representation.

In this study, we utilized this scattering power factorization
framework, using the geodesic distance given in [14], [15].
Within the flowchart, all intermediate products: the optimized
radar line of sight (LoS) oriented observation w.r.t. the ele-
mentary scattering models, the similarity vector, the order of
dominance of scattering components, the convex weights and
the scattering powers can be used to infer various properties
of a target.

Among the steps from A–E, the transformation from sim-
ilarity to convex weights takes place in step D. In general,
similarity is a quantity between 0 and 1, and its additive
complement w.r.t. 1 is the dissimilarity. Given, n−quantities
(x1, x2, . . . , xn) between 0 and 1, a unique convex splitting
of unity can be carried out in the following manner:

1 = x1 + x2(1− x1) + · · ·+ xn · · · (1− x2)(1− x1)

+(1− xn) · · · (1− x2)(1− x1) (35)

Except for the last term, all other terms are factored as one of
the n−quantities while the rest of the factors are complements.
The last term is the product of all the n−complements.

Fig. 9 shows a diagram of the convex splitting of unity,
denoting x′i = (1 − xi). A single leaf node is produced by
splitting a binary tree. Hence at the end of the split, one
obtains the n leaves contained in the dashed rectangle P, and
an additional leaf R. It can be seen that the weights of the
nodes in P and R add 1 (root node).

Fig. 9: Convex splitting of unity

VII. THE GD FRAMEWORK

In this section, we utilize the framework outlined in Fig. 8
for multi-looked PolSAR images using a generalized volume
scattering model [12]. As a matter of fact, the preliminary yet
impressive results in this direction were first obtained in [30].
Fig. 10 shows the scattering power factorization framework
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using GD which is discussed here. In the flowchart, K1 to
K(N−1) are rank-1 elementary scatterers while Krv given
in (36) denotes a volume scattering model. The parameter
γ = 〈|SHH |2〉/〈|SV V |2〉 i.e., the ratio of the pixel’s co-
polarized return intensities.

Initially, the observed Kennaugh matrix K is desyed to
determine the maximal similarity with an elementary scatterer.

GD(K(θms),Kj) = min
θ,i

GD(K(θ),Ki),

where i = 1, 2, . . . , (N − 1) and θ ∈ [−π/8 , π/8]. K(θ) is
the observed Kennaugh matrix in the θ-rotated HV basis about
the radar line of sight (LoS), earlier defined in (23) of Sec. III.

Natural areas containing distributed scatterers show an αGD
value between 30◦ to 40◦. Thus, the condition C := 30◦ ≤
αGD < 40◦ is used for sorting pixels containing distributed
targets from natural areas. Once the nature of the pixel is
determined, a branch is assigned according to the truth value
of C.

Each branch consists of five labeled blocks: (0) input of
models, (1) measurement of scattering similarities, (2) de-
termination of dominant similarity order, (3) computation of
convex weights with GD and (1−GD) as factors, and, finally,
(4) estimation of scattering powers by modulating the weights
with Span = 2K11 ((1, 1)th element of K).

It is to be noted that the main difference between branches
A and B is the position of Krv in the similarity dominance
vector D. In branch A, [1 − GD(Kms,Krv)] is allowed to
position itself in D according to its natural order in the array
of similarities computed for each target. Whereas, in B it is
forced to be the least dominant mechanism in the computing
of the scattering power components. Finally, we compute the
power components w.r.t. each of the input models, along with
a residue power component Pres.

The rank-1 elementary scattering models for input are those
of the trihedral (t), cylinder (c), narrow dihedral (nd), dihedral
(d), left helix (lh) and right helix (rh). The restrictive volume
model of Antropov et al. [12] is used as the Krv component.
The scattering powers obtained in the output are grouped as
shown in Table IV to produce a power composite RGB image.

TABLE IV: Pseudocolor convention

Podd Prand Peven Phlx

Pt + Pc Prv + Pres Pnd + Pd Plh + Prh

Blue Green Red —

VIII. FRAMEWORK RESULTS

Figures 11 and 12 show the Pauli RGB, the Y4R [31] RGB,
the SPFF RGB, and the dominant scattering class label from
the framework for each pixel respectively for the San Francisco
imaged by RS-2 and ALOS-2 sensors.

We can identify the South Market Area (SoMA) [28] in the
SPFF RGB as an urban area which is present in both data sets.
The Golden Gate park area is found to be a dominant volume
scattering region while the sea surface is correctly identified
as a dominant odd-bounce scattering zone.

A significant difference between the two scenes of San
Francisco acquired by RS-2 and ALOS-2 sensors is the change
in the dominant scattering label from odd-bounce to volume
scattering for the region north of San Francisco across the
iconic Golden Gate bridge. This is unlike the Pauli RGB and
the Y4R RGB which show it as a dominant volume scattering
zone. This area is typically a rugged terrain with sparse
vegetation to dense forests. The images are acquired over a
temporal gap of about 11 years. Additionally, the sensors are
observing the area in different bands; hence the interaction
with the targets is of different nature. An independent study
using the H/α plot suggests that this region belongs to Zone 6
(medium entropy surface scatters) for the RS-2 data set,
whereas it is Zone 5 (medium entropy vegetation scattering)
for the ALOS-2 data set. As the framework uses the αGD as a
decisive parameter, this phenomenon is also clearly captured.

IX. CONCLUSION

We have proposed a scattering power factorization frame-
work and a few associated roll-invariant parameters for the
analysis of PolSAR imagery. We have adopted a measure of
similarity derived from the geodesic distance (GD) on the
unit sphere in the space of 4 × 4 real matrices extended to
the Kennaugh matrices. This GD is shown to be bounded,
measures only the scattering behavior, and is invariant to
Span scaling and to the orthogonal transformation of the HV
polarization basis. In the process, we have shown that the
expression for the distance has convenient equivalent forms
for the covariance/coherency and scattering matrices for multi-
look and single-look data sets respectively.

The framework is shown to be flexible concerning the
addition of input scattering models. The convex splitting of
unity helps in conserving the Span, thus providing a direct
splitting of total power into components. It is shown to provide
auxiliary information in the form of dominant scattering maps
and roll-invariant parameters which are useful for classifi-
cation studies. We also proposed three directly computable
roll-invariant parameters, namely scattering type angle αGD,
helicity τGD, and depolarization index PGD, within the scope
of this framework; they were compared with their counterparts
in the PolSAR literature. The proposed parameters are useful
for effectively differentiating scattering behavior in a PolSAR
scene.

Insights are obtained by analyzing sample scattering zones.
We showed, through a quantitative study, that the proposed
parameters are expressive for classification. These parameters
are particularly useful for urban area mapping and land-
cover classification, as vegetation and oriented urban areas
are found to be separable by αGD alone. The τGD is an apt
parameter for separating land-ocean/ship-ocean scenes. Using
these parameters in conjunction, we obtained a fast PGD/αGD
classification scheme for PolSAR imagery which is capable in
identifying different scattering zones within the scene.

In summary, we provided a dynamic and flexible framework
for the analysis of PolSAR imagery, which is computationally
easy to implement and fast to execute. This framework may
be easily extended to accommodate an arbitrary number of
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Fig. 10: PolSAR Scattering Power Factorization Framework with volume model

Krv =
1

3(1+γ)
4 −

√
γ

6


3
2 (1 + γ)−

√
γ

3 γ − 1 0 0

γ − 1 1
2 (1 + γ) +

√
γ

3 0 0

0 0 1
2 (1 + γ) +

√
γ

3 0
0 0 0 1

2 (1 + γ)−√γ

 (36)
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Fig. 11: Pauli RGB and some output maps of framework for
RS-2 C-Band San Francisco
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Fig. 12: Pauli RGB and some output maps of framework for
ALOS-2 L-band San Francisco image

scattering models. The proposed parameters may be used
along with the complementary Span information to obtain
more scattering classes. In the future, it may also be used
for the study of data sets in other polarimetric and bistatic
configurations.
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