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Molecular dynamics

● Newton’s equation of motion

● Integrate e.g. leap-frog

● Fundamental challenge:

– sequential problem

– time-step limited to 1-5 fs (by fastest atomic motions)
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Main cost: computing forces

Bonded

Non-bonded

Over all atom-pairs!
Compute force on 
each particle
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Timescale challenge

Physics Chemistry

10-15 s 10-12 s 10-9 s 10-6 s 10-3 s 100 s 103 s

Biology

Simulations:

● high spatial/temporal detail

● sampling 

● model quality?

Experiments:

● lower detail

● higher efficiency

● high degree of averaging 



Shared under CC BY 4.0:  doi.org/10.6084/m9.figshare.12456314

Molecular simulation: use-cases

Membrane protein: 105 particles

Cellulose + lignocellulose + water: 107 particles

DNA base-pair opening: 104 particles

Contact line friction &
wetting dynamics
107 -109 particles

Materials MDBiomolecular MD

Nucleation in nano-crystals:
1010 -1012 particles
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Molecular simulation: use-cases

Membrane protein: 105 particles

Cellulose + lignocellulose + water: 107 particles

DNA base-pair opening: 104 particles

Contact line friction &
wetting dynamics
107 -109 particles

Materials MDBiomolecular MD

Nucleation in nano-crystals:
1010 -1012 particles

Biomolecular MD

time-scale challenge

strong scaling

 → latency sensitive

often runs out of L2 cache

→ higher roofline

 → strong benefit from high algorithm 
arithmetic intensity (SIMD, instruction 
tuning)

Materials MD

time- & length-scale challenge

strong / weak scaling 

 → (can be) latency/BW sensitive

might run out of main memory

 → lower roofline (less need for SIMD)
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Molecular dynamics step

Bonded F PME
Pair

search

Pair-search step every 50-200 iterations

MD iteration = step

Integration,
ConstraintsNon-bonded F

~ millisecond or less

Goal: do it as fast as possible!

PME F Other F
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MD: strong scaling challenge

Bonded F PME
Pair

search

Pair-search step every 50-200 iterations

MD iteration = step

Integration,
Constraints

Non-bonded F

~ millisecond or less

PME F Other F

● Simluation vs real-world time-scale gap

– Every simulation: 108 –1015 steps

– Every step: 106 – 109 FLOPs

● MD codes at peak: ~100 µs / step (single node)

– <100 atoms/core at peak (running in L1)
– <10000 atoms / GPU
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● Classical MD code

– supports all major force-fields

– broad algorithm support

● Development:

Stockholm Sweden & partners worldwide

● Large user base:
– 10k's academic & industry

– deployed on most HPC resources

● Open source: LGPLv2

● Open development:

– code review & bug-tracker:https://gitlab.com/gromacs

arbitrary
units cells

parallel
constraints

virtual interaction sites

Eighth shell
domain
decomposition

Triclinic unit cell with
load balancing and
staggered cell boundaries
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arbitrary
units cells

parallel
constraints

virtual interaction sites

Eighth shell
domain
decomposition

Triclinic unit cell with
load balancing and
staggered cell boundaries

● Focus on high performance:

efficient algorithms & highly-tuned parallel code

● Bottom-up performance oriented design:

– absolute performance over “just scaling”

● Portability

– broad CI testing, Linux distro integration

– regular testing on all HPC arch

● Code-base: C++17, >1M LOC

https://gitlab.com/gromacs
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GROMACS parallelization
Parallelism exploited on multiple levels:

SIMD / threading / NUMA / async offload / MPI

● Hierarchical parallelization:

target each level of hw parallelism

– MPI: SPMD / MPMD; thread-MPI

– OpenMP

– SIMD: 14 flavors (SIMD library abstraction)

– CUDA, OpenCL
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Concurrency in the MD step

Bonded Forces

PME Forces Integration
Domain decomp.

Pair search

Non-bonded
pair Forces

Reduce
Forces

Other Forces

Pair-search/DD step every 50-200 iterations

MD iteration = step
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PME 
Forces 

Parallelization of the MD step

Integration

Pair-search/DD step every 50-200 iterations

MD iteration = step

3D FFT
comm

constraint
commDD

halo 
exch

DD
halo 
exch

Reduce
Forces

Bonded Forces

Non-bonded
pair Forces

Other Forces

Reduce + layout
 transform

Sparse
reduce

Domain decomp.
Pair search
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rcut

rlist

Short-range: 
non-bonded

Long-range: 
PME

Short-range 
cut-off 0.9 nm

Non-bonded interactions

● Lennard-Jones:

– decays fast, use cutoff

● Coulomb

– decays slowly, need long range

● Short-range:

calculate all interactions

within a spherical cutoff

● Long range:

PME grid-based solver using FFT
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Pair interactions

rcut
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Pair interactions: Verlet algorithm

rcut

rlist
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Pair interactions: Verlet algorithm

rcut

rlist
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Pair force calculation:
SIMD-parallel traditional algorithm

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0000

8653 9 10 11 15

Classical 1x1 neighborlist on 4-way SIMD

Traditional algorithm:
cache pressure, ill data reuse, register shuffle bound

Bad for SIMD!
● irregular data: non-contiguous layout
● need to shuffle particles in registers
● low data reuse:

for each loadeded i-atom compute only once
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Calculating zeros: serial vs SIMD

Source of zeros:

– need many squares/cubes to cover a sphere

– extra particles considered: cells crossed by the cut-off sphere

serial algoritm: no 0s SIMD-style algoritm: lots of 0s
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A better pair-interaction algorithm
design objectves

● Need:

– Data reuse: inner loop should calculate multiple interactions without having to load

– Calculate as few 0s as possible

– Fixed pair list update interval

● Nice to have:

– future-proof (can we predict the future?)

– one algorithm, many architectures: narrow & wide SIMD, accelerators, FPGAs,...

● Keep in mind:

– Flops are “free”

– Data movement is expensive
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Standard cell grid: spatially uniform

x,y,z gridding

x, y gridding
z sorting
z binning

make 
cluster pair-list

Atom clusters: #atoms uniform

Regularize the problem:
cluster algorithm
grid cell uniform in particle count rather than dimensions!
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Cluster algorithm

i1
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Cluster algorithm

i1

● Regularization:

– optimizes data layout  efficient access

– increases data reuse

● Flexible & adaptable:

SIMD width & reuse factor algorithmic parameters
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Pair force calculation:
SIMD-parallel cluster algorithm

1111

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0000

7654 12 13 14 15

222

3333

2

4x4 setup on 4-way SIMD

Cluster algorithm on 128-bit SIMD SP (SSE4, VMX, 
128-bit AVX): cache friendly, 4-way j-reuse

Cluster sizes are the “knobs” to adjust for a specific arch:

– j-size: adjust to SIMD width

– i-reuse: data reuse & cache pressure

=> allows restoring the algorithm’s arithmetic intensity
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Parallel work-efficinency

● always >= 1 for a SIMD-optmimzed 
implementation

● benefits outweigh the cost

1x1

4x4

0 20 40 60 80 100 120 140 160

effective pairs/
kcycle

pair thrpughput (pairs/kcycle)
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i1

Cluster algorithm:
implicit interaction buffer

Extra particles 
“sticking out” 
of cut-off:
implicit 
interaction 
buffer

Explicit interaction 
buffer:
can be reduced 
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Parallel work-efficinency revisited

● Making use of the implicit buffer

gives a parallel efficiency gain:

=> shorter explicit buffer with 
the cluster

Example:

4x8 clusters allow

0.1 nm instead of 0.2 nm

(standard water-box with PME and 
0.9 nm cutoff 40 steps list rebuild)
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GPU super-cluster setup:
avoid large tiling

i1 i2

i3 i4 jm 

jn
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Super-cluster setup for GPUs

i1 i2

i3 i4 jm 

jn

Wider execution: use hierarchical pair 
list to avoid work-efficiency cliff
– joint list for multiple i-clusters

– swap i-j loop order

12 13 14 15111098

0 1 2 3 4 5 6 7 8 9 10 11

0
1
2
3

4
5
6
7

8
9
10
11

4x4 setup on SIMD-16
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Cluster algorithm adaptability to 
hardware
● Flavors:

– NVIDIA 32-wide 8x4

– AMD 64-wide 8x8

– Intel 8-wide 4x2

● Cluster-setup:

search 4x4, pruned to 4x2 for 
force

(parallel work efficiency 
advantage)

12 13 14 15111098

0 1 2 3 4 5 6 7 8 9 10 11

0
1
2
3

4
5
6
7

8
9
10
11

4X2 setup on SIMD-8
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Pair interaction kernel throughput

1.5 3 6 12 24 48 96 192 384 768 1536 3072
1

10

GTX 1080 RTX 2080
RTX 2080 SUPER Quadro GP100
Quadro P6000 Tesla V100
Vega FE Radeon Mi50
i9 7920X 24T R9-3900X 24T
Xeon Gold 6148 40T

system size (x1000 atoms)

ke
rn

el 
tim

e p
er

 at
om

 (n
s)

50

CPUs insensitive
to input size to
100s atoms/core
cache effects at
large inputs

GPUs very 
sensitive
to input size:
fixed overheads
kernel startup
SM load imabanlce

Strong scaling 
regime:
where most of 
our efforts go!

Benchmark “show-
off” regime:

This is where the 
“free lunch” from 
new hardware 
comes in full effect
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Intra-GPU load balance

● GPU scheduling black-box

● Reshape irregular workload:

– sort and split lists

– improve load balance

– avoid kernel tail effects
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Workload per SMX: Tesla K20c, 1500 atoms

Raw lists:
too few blocks
imbalanced

Regularized lists: 
balanced SMX 
execution

Regularized:
4x faster 
execution
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Heterogeneous Parallelization
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Heterogeneous offload design

● Heterogeneous vs homegeneous GPU offload

– full port to multiople toolkits/APIs not an option for a large codebase

● Heterogeneity: both CPU and GPU

– maintain the versatility and feature set

– performance:
● use the fastest compute unit
● allow flexibility to balance load on various hardware

● Challenges:

– short time/step 

– fast CPU code
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Force offload

GPU:

– compute forces where most

acceleration is to be had

Bonded F PMEPair
search

Integration,
Constraints

Non-bonded F PME F Other F

CPU:

– pair search

– other F / special algorithms

– integration
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Force offload schemes

Bonded
F

PME F Integrate
Constr.

Pair
search

Nonbonded F

CPU

GPU

Other

Nonbonded F

Bonded
F

Integrate
Constr.PSCPU

GPU

Other

PME F

Integrate
Constr.

PS

<Nonbonded F

CPU

GPU

Other

PME F

● Offloading different force 
components allows 
adjusting to hardware 
balance

● Seach / DD:

complex code

kept on the CPU

 → use algorithmic 
optimization to improve 
CPU—GPU overlap
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Dual pair list

rcut

rlist-inner

rlist-outer

● Introduce two buffers

outer & inner

● Periodically re-prune

outer  → inner

● Build:

– outer list less frequently

– inner list more frequently

● Reduces search space to obtaining 
the inner list used for force compute

`
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Heterogeneous scheme
load balancing

GPU
CUDA

OpenCL

CPU 
OpenMP 
threads

H2D
pair list

Average CPU-GPU overlap: 70-90% per step

Bonded F PME mesh F
Integration,
Constraints

Non-bonded F

Wait

IdleIdle

DD,
Pair search

Idle

Pair search: every 10-200 steps

MD step

H2D
x,q

D2H
F,E

Clear F
buffer

Balance DD+ search & pruning cost

Balance
PP – PME

Idle
Rolling
prune

Balance 
PME-PP
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Force offload schemes

Bonded
F

PME F Integrate
Constr.

Pair
search

Nonbonded F

CPU

GPU

Other

Nonbonded F

Bonded
F

Integrate
Constr.PSCPU

GPU

Other

PME F

Integrate
Constr.

PS

<Nonbonded F

CPU

GPU

Other

PME F

Integration on the CPU

=>

CPU – GPU data movement 
needed 

Amdahl:

as GPUs get faster,

CPU integration time 
increases

● Solutions:

– use force decomp & pipeline 
update (PCIe bottleneck!)

– offload integration
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Multi-node force offload

Bonded F PME mesh F Integration
Constraints

Wait 
NLoc F

Loc
PS

D
2H

 N
lo

c 
F,

 E

H
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 L
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H
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Non-Local non-bonded F

D
2H

 L
oc

 F

Wait 
Loc F

H
2D

 N
Lo

c 
x,

q

Pair-search & domain-
decomposition step

MD step

Clear F
bufferLocal non-bonded F...

preempted
by non-local

MPI comm:
receive NLoc x

remote
rank

MPI comm: 
send NLoc F

remote
rank

DD

DD
comm

3D FFT
comm

constraint
comm

CPU 
OpenMP 
threads

Local
stream

Non-local
stream (high priority)

GPU
CUDA

OpenCL
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Full step offload

Pair
search / DD

Non-bonded F

Other forces
(pull, bond, etc.)CPU

GPU

PME

Bonded F

Conv.
form x

Conv.
Red. f

Integration,
Constraints

● Trade GPU idling for CPU idling: ideal for GPU dense architectures

● CPU supporting role (“back-offload”):

– non-offloaded per-step algorithms

– infrequent tasks (search, DD)

● Major benefits with direct communication
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Heterogeneous offload performance

● Hardware:

AMD R 3900X

NVIDIA 2080 SUPER

● Inputs:

– RNAse: 24k atoms

– GluCL ion channel: 
144k atoms

(AMBER FF)

#CPU cores #CPU cores
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Ensemble performance: small system

● Input: RNAse (24k atom AMBER99sb), uncoupled ensemble run



Shared under CC BY 4.0:  doi.org/10.6084/m9.figshare.12456314

GPU direct communication
● CUDA-aware MPI: requires CPU sync

● thread-MPI: exchange CUDA events, fully offload communication

● NVIDIA co-design
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Staged GPU comm.
Direct GPU comm.
Direct GPU comm. & GPU 
Update

#GPUs
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rfo
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 (n

s/d
ay

) System:

STMV 1M atoms

Hardware:

DGX-1V

Reaction-field electrostatics:
only halo-exchange

PME electrostatics:
halo-exchange & PME MPMD communication

Scaling limited by
1 PME GPU
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A100 is coming

● Promising hardware and CUDA sw features

● Impressive performane at start: ~1.5x

System:

STMV 1M atoms

Hardware:

NVIDIA V100 vs A100*

*Disclaimer: the performance was 
measured on pre-production hardware1 2 4 8 16

0

20

40

60

80

100

120

140
Staged GPU comm.
Direct GPU comm.
Direct GPU comm. & GPU 
Update
A100

#GPUs
1 2 4 8 16

0

20

40

60

80

100

120

140

#GPUs

pe
rf

or
m

an
ce

 (
ns

/d
ay

)

PME electrostatics:
halo-exchange & PME MPMD communication
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Summary

● Heterogeneity is here to stay

● Strong scaling is hard, fast code is hard to accelerate

● Start with the algorithms

● Target each (most) levels of parallelism

● Open standards-based tools vs propritery tech
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Q&A
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