
Heterogeneous parallelization in
GROMACS

lessons learned from a accelerating
molecular dynamics on CPUs & GPUs

Szilárd Páll
pszilard@kth.se

June 9, 2020

mailto:pszilard@kth.se

Shared under CC BY 4.0: doi.org/10.6084/m9.figshare.12456314

Acknowledgments
GROMACS

Berk Hess

Artem Zhmurov

Erik Lindahl

Paul Bauer

Mark Abraham

Magnus Lundborg

Roland Schulz

Aleksei Yupinov

Alan Gray (NVIDIA)

Gaurav Garg (NVIDIA)

Hardware

Funding

Shared under CC BY 4.0: doi.org/10.6084/m9.figshare.12456314

Molecular dynamics

● Newton’s equation of motion

● Integrate e.g. leap-frog

● Fundamental challenge:

– sequential problem

– time-step limited to 1-5 fs (by fastest atomic motions)

Shared under CC BY 4.0: doi.org/10.6084/m9.figshare.12456314

Main cost: computing forces

Bonded

Non-bonded

Over all atom-pairs!
Compute force on
each particle

Shared under CC BY 4.0: doi.org/10.6084/m9.figshare.12456314

Timescale challenge

Physics Chemistry

10-15 s 10-12 s 10-9 s 10-6 s 10-3 s 100 s 103 s

Biology

Simulations:

● high spatial/temporal detail

● sampling

● model quality?

Experiments:

● lower detail

● higher efficiency

● high degree of averaging

Shared under CC BY 4.0: doi.org/10.6084/m9.figshare.12456314

Molecular simulation: use-cases

Membrane protein: 105 particles

Cellulose + lignocellulose + water: 107 particles

DNA base-pair opening: 104 particles

Contact line friction &
wetting dynamics
107 -109 particles

Materials MDBiomolecular MD

Nucleation in nano-crystals:
1010 -1012 particles

Shared under CC BY 4.0: doi.org/10.6084/m9.figshare.12456314

Molecular simulation: use-cases

Membrane protein: 105 particles

Cellulose + lignocellulose + water: 107 particles

DNA base-pair opening: 104 particles

Contact line friction &
wetting dynamics
107 -109 particles

Materials MDBiomolecular MD

Nucleation in nano-crystals:
1010 -1012 particles

Biomolecular MD

time-scale challenge

strong scaling

 → latency sensitive

often runs out of L2 cache

→ higher roofline

 → strong benefit from high algorithm
arithmetic intensity (SIMD, instruction
tuning)

Materials MD

time- & length-scale challenge

strong / weak scaling

 → (can be) latency/BW sensitive

might run out of main memory

 → lower roofline (less need for SIMD)

Shared under CC BY 4.0: doi.org/10.6084/m9.figshare.12456314

Molecular dynamics step

Bonded F PME
Pair

search

Pair-search step every 50-200 iterations

MD iteration = step

Integration,
ConstraintsNon-bonded F

~ millisecond or less

Goal: do it as fast as possible!

PME F Other F

Shared under CC BY 4.0: doi.org/10.6084/m9.figshare.12456314

MD: strong scaling challenge

Bonded F PME
Pair

search

Pair-search step every 50-200 iterations

MD iteration = step

Integration,
Constraints

Non-bonded F

~ millisecond or less

PME F Other F

● Simluation vs real-world time-scale gap

– Every simulation: 108 –1015 steps

– Every step: 106 – 109 FLOPs

● MD codes at peak: ~100 µs / step (single node)

– <100 atoms/core at peak (running in L1)
– <10000 atoms / GPU

Shared under CC BY 4.0: doi.org/10.6084/m9.figshare.12456314

● Classical MD code

– supports all major force-fields

– broad algorithm support

● Development:

Stockholm Sweden & partners worldwide

● Large user base:
– 10k's academic & industry

– deployed on most HPC resources

● Open source: LGPLv2

● Open development:

– code review & bug-tracker:https://gitlab.com/gromacs

arbitrary
units cells

parallel
constraints

virtual interaction sites

Eighth shell
domain
decomposition

Triclinic unit cell with
load balancing and
staggered cell boundaries

Shared under CC BY 4.0: doi.org/10.6084/m9.figshare.12456314

arbitrary
units cells

parallel
constraints

virtual interaction sites

Eighth shell
domain
decomposition

Triclinic unit cell with
load balancing and
staggered cell boundaries

● Focus on high performance:

efficient algorithms & highly-tuned parallel code

● Bottom-up performance oriented design:

– absolute performance over “just scaling”

● Portability

– broad CI testing, Linux distro integration

– regular testing on all HPC arch

● Code-base: C++17, >1M LOC

https://gitlab.com/gromacs

Shared under CC BY 4.0: doi.org/10.6084/m9.figshare.12456314

GROMACS parallelization
Parallelism exploited on multiple levels:

SIMD / threading / NUMA / async offload / MPI

● Hierarchical parallelization:

target each level of hw parallelism

– MPI: SPMD / MPMD; thread-MPI

– OpenMP

– SIMD: 14 flavors (SIMD library abstraction)

– CUDA, OpenCL

Shared under CC BY 4.0: doi.org/10.6084/m9.figshare.12456314

Concurrency in the MD step

Bonded Forces

PME Forces Integration
Domain decomp.

Pair search

Non-bonded
pair Forces

Reduce
Forces

Other Forces

Pair-search/DD step every 50-200 iterations

MD iteration = step

Shared under CC BY 4.0: doi.org/10.6084/m9.figshare.12456314

PME
Forces

Parallelization of the MD step

Integration

Pair-search/DD step every 50-200 iterations

MD iteration = step

3D FFT
comm

constraint
commDD

halo
exch

DD
halo
exch

Reduce
Forces

Bonded Forces

Non-bonded
pair Forces

Other Forces

Reduce + layout
 transform

Sparse
reduce

Domain decomp.
Pair search

Shared under CC BY 4.0: doi.org/10.6084/m9.figshare.12456314

rcut

rlist

Short-range:
non-bonded

Long-range:
PME

Short-range
cut-off 0.9 nm

Non-bonded interactions

● Lennard-Jones:

– decays fast, use cutoff

● Coulomb

– decays slowly, need long range

● Short-range:

calculate all interactions

within a spherical cutoff

● Long range:

PME grid-based solver using FFT

Shared under CC BY 4.0: doi.org/10.6084/m9.figshare.12456314

Pair interactions

rcut

Shared under CC BY 4.0: doi.org/10.6084/m9.figshare.12456314

Pair interactions: Verlet algorithm

rcut

rlist

Shared under CC BY 4.0: doi.org/10.6084/m9.figshare.12456314

Pair interactions: Verlet algorithm

rcut

rlist

Shared under CC BY 4.0: doi.org/10.6084/m9.figshare.12456314

Pair force calculation:
SIMD-parallel traditional algorithm

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0000

8653 9 10 11 15

Classical 1x1 neighborlist on 4-way SIMD

Traditional algorithm:
cache pressure, ill data reuse, register shuffle bound

Bad for SIMD!
● irregular data: non-contiguous layout
● need to shuffle particles in registers
● low data reuse:

for each loadeded i-atom compute only once

Shared under CC BY 4.0: doi.org/10.6084/m9.fig
share.12456314

Calculating zeros: serial vs SIMD

Source of zeros:

– need many squares/cubes to cover a sphere

– extra particles considered: cells crossed by the cut-off sphere

serial algoritm: no 0s SIMD-style algoritm: lots of 0s

Shared under CC BY 4.0: doi.org/10.6084/m9.fig
share.12456314

A better pair-interaction algorithm
design objectves

● Need:

– Data reuse: inner loop should calculate multiple interactions without having to load

– Calculate as few 0s as possible

– Fixed pair list update interval

● Nice to have:

– future-proof (can we predict the future?)

– one algorithm, many architectures: narrow & wide SIMD, accelerators, FPGAs,...

● Keep in mind:

– Flops are “free”

– Data movement is expensive

Shared under CC BY 4.0: doi.org/10.6084/m9.fig
share.12456314

Standard cell grid: spatially uniform

x,y,z gridding

x, y gridding
z sorting
z binning

make
cluster pair-list

Atom clusters: #atoms uniform

Regularize the problem:
cluster algorithm
grid cell uniform in particle count rather than dimensions!

Shared under CC BY 4.0: doi.org/10.6084/m9.figshare.12456314

Cluster algorithm

i1

Shared under CC BY 4.0: doi.org/10.6084/m9.figshare.12456314

Cluster algorithm

i1

● Regularization:

– optimizes data layout efficient access

– increases data reuse

● Flexible & adaptable:

SIMD width & reuse factor algorithmic parameters

Shared under CC BY 4.0: doi.org/10.6084/m9.figshare.12456314

Pair force calculation:
SIMD-parallel cluster algorithm

1111

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0000

7654 12 13 14 15

222

3333

2

4x4 setup on 4-way SIMD

Cluster algorithm on 128-bit SIMD SP (SSE4, VMX,
128-bit AVX): cache friendly, 4-way j-reuse

Cluster sizes are the “knobs” to adjust for a specific arch:

– j-size: adjust to SIMD width

– i-reuse: data reuse & cache pressure

=> allows restoring the algorithm’s arithmetic intensity

Shared under CC BY 4.0: doi.org/10.6084/m9.figshare.12456314

Parallel work-efficinency

● always >= 1 for a SIMD-optmimzed
implementation

● benefits outweigh the cost

1x1

4x4

0 20 40 60 80 100 120 140 160

effective pairs/
kcycle

pair thrpughput (pairs/kcycle)

Shared under CC BY 4.0: doi.org/10.6084/m9.figshare.12456314

i1

Cluster algorithm:
implicit interaction buffer

Extra particles
“sticking out”
of cut-off:
implicit
interaction
buffer

Explicit interaction
buffer:
can be reduced

Shared under CC BY 4.0: doi.org/10.6084/m9.figshare.12456314

Parallel work-efficinency revisited

● Making use of the implicit buffer

gives a parallel efficiency gain:

=> shorter explicit buffer with
the cluster

Example:

4x8 clusters allow

0.1 nm instead of 0.2 nm

(standard water-box with PME and
0.9 nm cutoff 40 steps list rebuild)

Shared under CC BY 4.0: doi.org/10.6084/m9.figshare.12456314

GPU super-cluster setup:
avoid large tiling

i1 i2

i3 i4 jm

jn

Shared under CC BY 4.0: doi.org/10.6084/m9.figshare.12456314

Super-cluster setup for GPUs

i1 i2

i3 i4 jm

jn

Wider execution: use hierarchical pair
list to avoid work-efficiency cliff
– joint list for multiple i-clusters

– swap i-j loop order

12 13 14 15111098

0 1 2 3 4 5 6 7 8 9 10 11

0
1
2
3

4
5
6
7

8
9
10
11

4x4 setup on SIMD-16

Shared under CC BY 4.0: doi.org/10.6084/m9.figshare.12456314

Cluster algorithm adaptability to
hardware
● Flavors:

– NVIDIA 32-wide 8x4

– AMD 64-wide 8x8

– Intel 8-wide 4x2

● Cluster-setup:

search 4x4, pruned to 4x2 for
force

(parallel work efficiency
advantage)

12 13 14 15111098

0 1 2 3 4 5 6 7 8 9 10 11

0
1
2
3

4
5
6
7

8
9
10
11

4X2 setup on SIMD-8

Shared under CC BY 4.0: doi.org/10.6084/m9.figshare.12456314

Pair interaction kernel throughput

1.5 3 6 12 24 48 96 192 384 768 1536 3072
1

10

GTX 1080 RTX 2080
RTX 2080 SUPER Quadro GP100
Quadro P6000 Tesla V100
Vega FE Radeon Mi50
i9 7920X 24T R9-3900X 24T
Xeon Gold 6148 40T

system size (x1000 atoms)

ke
rn

el
tim

e p
er

 at
om

 (n
s)

50

CPUs insensitive
to input size to
100s atoms/core
cache effects at
large inputs

GPUs very
sensitive
to input size:
fixed overheads
kernel startup
SM load imabanlce

Strong scaling
regime:
where most of
our efforts go!

Benchmark “show-
off” regime:

This is where the
“free lunch” from
new hardware
comes in full effect

Shared under CC BY 4.0: doi.org/10.6084/m9.figshare.12456314

Intra-GPU load balance

● GPU scheduling black-box

● Reshape irregular workload:

– sort and split lists

– improve load balance

– avoid kernel tail effects

SM
X0

SM
X1

SM
X2

SM
X3

SM
X4

SM
X5

SM
X6

SM
X7

SM
X8

SM
X9

SM
X1

0

SM
X1

1

SM
X1

2

0

50

100

150

200

250

300

K
C

yc
le

s

SM
X

0

SM
X

1

SM
X2

SM
X3

SM
X

4

SM
X5

SM
X6

SM
X7

SM
X8

SM
X9

SM
X1

0

SM
X1

1

SM
X1

2

0

50

100

150

200

250

300

0

200

400

600

800

lis
t s

iz
e

lis
t s

iz
e

200

400

600

800

raw pair list
reshaped list

0 100 200 300 4000 100 200 300 400

Workload per SMX: Tesla K20c, 1500 atoms

Raw lists:
too few blocks
imbalanced

Regularized lists:
balanced SMX
execution

Regularized:
4x faster
execution

Shared under CC BY 4.0: doi.org/10.6084/m9.figshare.12456314

Heterogeneous Parallelization

Shared under CC BY 4.0: doi.org/10.6084/m9.figshare.12456314

Heterogeneous offload design

● Heterogeneous vs homegeneous GPU offload

– full port to multiople toolkits/APIs not an option for a large codebase

● Heterogeneity: both CPU and GPU

– maintain the versatility and feature set

– performance:
● use the fastest compute unit
● allow flexibility to balance load on various hardware

● Challenges:

– short time/step

– fast CPU code

Shared under CC BY 4.0: doi.org/10.6084/m9.figshare.12456314

Force offload

GPU:

– compute forces where most

acceleration is to be had

Bonded F PMEPair
search

Integration,
Constraints

Non-bonded F PME F Other F

CPU:

– pair search

– other F / special algorithms

– integration

Shared under CC BY 4.0: doi.org/10.6084/m9.figshare.12456314

Force offload schemes

Bonded
F

PME F Integrate
Constr.

Pair
search

Nonbonded F

CPU

GPU

Other

Nonbonded F

Bonded
F

Integrate
Constr.PSCPU

GPU

Other

PME F

Integrate
Constr.

PS

<Nonbonded F

CPU

GPU

Other

PME F

● Offloading different force
components allows
adjusting to hardware
balance

● Seach / DD:

complex code

kept on the CPU

 → use algorithmic
optimization to improve
CPU—GPU overlap

Shared under CC BY 4.0: doi.org/10.6084/m9.figshare.12456314

Dual pair list

rcut

rlist-inner

rlist-outer

● Introduce two buffers

outer & inner

● Periodically re-prune

outer → inner

● Build:

– outer list less frequently

– inner list more frequently

● Reduces search space to obtaining
the inner list used for force compute

`

Shared under CC BY 4.0: doi.org/10.6084/m9.figshare.12456314

Heterogeneous scheme
load balancing

GPU
CUDA

OpenCL

CPU
OpenMP
threads

H2D
pair list

Average CPU-GPU overlap: 70-90% per step

Bonded F PME mesh F
Integration,
Constraints

Non-bonded F

Wait

IdleIdle

DD,
Pair search

Idle

Pair search: every 10-200 steps

MD step

H2D
x,q

D2H
F,E

Clear F
buffer

Balance DD+ search & pruning cost

Balance
PP – PME

Idle
Rolling
prune

Balance
PME-PP

Shared under CC BY 4.0: doi.org/10.6084/m9.figshare.12456314

Force offload schemes

Bonded
F

PME F Integrate
Constr.

Pair
search

Nonbonded F

CPU

GPU

Other

Nonbonded F

Bonded
F

Integrate
Constr.PSCPU

GPU

Other

PME F

Integrate
Constr.

PS

<Nonbonded F

CPU

GPU

Other

PME F

Integration on the CPU

=>

CPU – GPU data movement
needed

Amdahl:

as GPUs get faster,

CPU integration time
increases

● Solutions:

– use force decomp & pipeline
update (PCIe bottleneck!)

– offload integration

Shared under CC BY 4.0: doi.org/10.6084/m9.figshare.12456314

Multi-node force offload

Bonded F PME mesh F Integration
Constraints

Wait
NLoc F

Loc
PS

D
2H

 N
lo

c
F,

 E

H
2D

 L
oc

 x
,q

H
2D

Lo
c

p
ai

r
lis

t

Nloc
PS

H
2D

 N
Lo

c
p

ai
r

lis
t

Non-Local non-bonded F

D
2H

 L
oc

 F

Wait
Loc F

H
2D

 N
Lo

c
x,

q

Pair-search & domain-
decomposition step

MD step

Clear F
bufferLocal non-bonded F...

preempted
by non-local

MPI comm:
receive NLoc x

remote
rank

MPI comm:
send NLoc F

remote
rank

DD

DD
comm

3D FFT
comm

constraint
comm

CPU
OpenMP
threads

Local
stream

Non-local
stream (high priority)

GPU
CUDA

OpenCL

Shared under CC BY 4.0: doi.org/10.6084/m9.figshare.12456314

Full step offload

Pair
search / DD

Non-bonded F

Other forces
(pull, bond, etc.)CPU

GPU

PME

Bonded F

Conv.
form x

Conv.
Red. f

Integration,
Constraints

● Trade GPU idling for CPU idling: ideal for GPU dense architectures

● CPU supporting role (“back-offload”):

– non-offloaded per-step algorithms

– infrequent tasks (search, DD)

● Major benefits with direct communication

Shared under CC BY 4.0: doi.org/10.6084/m9.figshare.12456314

Heterogeneous offload performance

● Hardware:

AMD R 3900X

NVIDIA 2080 SUPER

● Inputs:

– RNAse: 24k atoms

– GluCL ion channel:
144k atoms

(AMBER FF)

#CPU cores #CPU cores

Shared under CC BY 4.0: doi.org/10.6084/m9.figshare.12456314

Ensemble performance: small system

● Input: RNAse (24k atom AMBER99sb), uncoupled ensemble run

Shared under CC BY 4.0: doi.org/10.6084/m9.figshare.12456314

GPU direct communication
● CUDA-aware MPI: requires CPU sync

● thread-MPI: exchange CUDA events, fully offload communication

● NVIDIA co-design

1 2 4 8 16
0

20

40

60

80

100

120

140

#GPUs

pe
rf

or
m

an
ce

 (
ns

/d
ay

)

1 2 4 8 16
0

20

40

60

80

100

120

140
Staged GPU comm.
Direct GPU comm.
Direct GPU comm. & GPU
Update

#GPUs

pe
rfo

rm
an

ce
 (n

s/d
ay

) System:

STMV 1M atoms

Hardware:

DGX-1V

Reaction-field electrostatics:
only halo-exchange

PME electrostatics:
halo-exchange & PME MPMD communication

Scaling limited by
1 PME GPU

Shared under CC BY 4.0: doi.org/10.6084/m9.figshare.12456314

A100 is coming

● Promising hardware and CUDA sw features

● Impressive performane at start: ~1.5x

System:

STMV 1M atoms

Hardware:

NVIDIA V100 vs A100*

*Disclaimer: the performance was
measured on pre-production hardware1 2 4 8 16

0

20

40

60

80

100

120

140
Staged GPU comm.
Direct GPU comm.
Direct GPU comm. & GPU
Update
A100

#GPUs
1 2 4 8 16

0

20

40

60

80

100

120

140

#GPUs

pe
rf

or
m

an
ce

 (
ns

/d
ay

)

PME electrostatics:
halo-exchange & PME MPMD communication

Shared under CC BY 4.0: doi.org/10.6084/m9.figshare.12456314

Summary

● Heterogeneity is here to stay

● Strong scaling is hard, fast code is hard to accelerate

● Start with the algorithms

● Target each (most) levels of parallelism

● Open standards-based tools vs propritery tech

Shared under CC BY 4.0: doi.org/10.6084/m9.figshare.12456314

Q&A

	Slide 1
	Slide 2
	Slide 3
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52

