Emergence of mixed mode oscillations in random networks of diverse excitable neurons: the role of neighbors and electrical coupling

Supplementary Material

Subrata Ghosh ${ }^{1}$, Argha Mondal 1, Peng Ji ${ }^{5, *}$, Arindam Mishra ${ }^{2}$, Syamal K.
Dana ${ }^{2,3}$, Chris G. Antonopoulos ${ }^{4}$, Chittaranjan Hens ${ }^{1, *}$
${ }^{1}$ Physics and Applied Mathematics Unit, Indian Statistical Institute, Kolkata, India
${ }^{2}$ Centre for Mathematical Biology and Ecology, Department of Mathematics, Jadavpur University, Kolkata, India
${ }^{3}$ Division of Dynamics, Faculty of Mechanical Engineering, Lodz University of Technology, Lodz, Poland
${ }^{4}$ Department of Mathematical Sciences, University of Essex, Wivenhoe Park, UK
${ }^{5}$ The Institute of Science and Technology for Brain-inspired Intelligence, Fudan
University, Shanghai, China
Correspondence*:
Chittaranjan Hens and Peng Ji chittaranjanhens@gmail.com, pengji@fudan.edu.cn

1 RELATION BETWEEN $C V$ AND $F_{S A O}$

To understand the relationship between the coefficient of variation, $C V$ and $f_{S A O}$, we consider that the spikes in $L A O$ s appear with probability $f_{L A O}$ and peaks in $S A O$ s with probability $f_{S A O}=1-f_{L A O}$. Furthermore, we assume that we have a sequence of spike-time intervals $\left\{T_{L A O}, \ldots, T_{S A O}, \ldots, T_{L A O}\right\}$. Based on the Bernoulli process (Golomb, 2014), if $T_{L A O}$ appears with probability $f_{L A O}$ in the entire sequence, then $k T_{L A O}$ (where k is an integer with $k \geq 2$) will appear with probability $\left(1-f_{L A O}\right)^{k-1} f_{L A O}$. Therefore,

$$
\begin{aligned}
\langle I S I\rangle_{n} & =\sum_{k=1}^{n} k T_{L A O}\left(1-f_{L A O}\right)^{k-1} f_{L A O} \\
& =f_{L A O} \sum_{k=1}^{n} k T_{L A O}\left(f_{S A O}\right)^{k-1} \\
& =f_{L A O} T_{L A O} \frac{d}{d\left(f_{S A O}\right)} \sum_{k=1}^{n}\left(\left(f_{S A O}\right)^{k}\right) .
\end{aligned}
$$

Setting $f_{S A O}=x \in[0,1)$, we have that

$$
\begin{aligned}
\sum_{k=0}^{n} x^{k} & =\frac{1-x^{n+1}}{1-x} \\
& =\frac{1-x^{n+1}}{1-x}-1 \\
& =\frac{x\left(1-x^{n}\right)}{1-x}
\end{aligned}
$$

Thus,

$$
\sum_{k=1}^{n} f_{S A O}^{k}=\frac{f_{S A O}\left(1-f_{S A O}^{n}\right)}{1-f_{S A O}}
$$

Next, we compute $\langle I S I\rangle_{n}$

$$
\begin{aligned}
\langle I S I\rangle_{n} & =f_{L A O} T_{L A O} \frac{d}{d\left(f_{S A O}\right)}\left(\frac{f_{S A O}\left(1-f_{S A O}^{n}\right)}{1-f_{S A O}}\right) \\
& =f_{L A O} T_{L A O}\left(\frac{n\left(f_{S A O}\right)^{n+1}-(n+1)\left(f_{S A O}\right)^{n}+1}{\left(1-f_{S A O}\right)^{2}}\right)
\end{aligned}
$$

and, in the limit of $n \rightarrow \infty$, i.e., $\lim _{n \rightarrow \infty}$, we have

$$
\begin{equation*}
\langle I S I\rangle=f_{L A O} T_{L A O} \frac{1}{\left(1-f_{S A O}\right)^{2}}=\frac{T_{L A O}}{f_{L A O}} \tag{1}
\end{equation*}
$$

where $f_{L A O}=1-f_{S A O}$.
Then,

$$
\begin{align*}
\left\langle I S I^{2}\right\rangle_{n} & =\sum_{k=1}^{n} k^{2} T_{L A O}^{2}\left(1-f_{L A O}\right)^{k-1} f_{L A O} \\
& =f_{L A O} \sum_{k=1}^{n} k^{2} T_{L A O}^{2}\left(f_{S A O}\right)^{k-1} \\
& =f_{L A O} T_{L A O}^{2} \sum_{k=1}^{n} k^{2}\left(f_{S A O}\right)^{k-1} \\
& =f_{L A O} T_{L A O}^{2}\left(-\frac{d}{d\left(f_{S A O}\right)} \sum_{k=1}^{\infty}\left(f_{S A O}\right)^{k}+\frac{d^{2}}{d\left(f_{S A O}\right)^{2}} \sum_{k=1}^{\infty}\left(f_{S A O}\right)^{k+1}\right) \tag{2}
\end{align*}
$$

Manipulating Eq. (2) further, in the limit of $n \rightarrow \infty$, we get that

$$
\begin{align*}
\lim _{n \rightarrow \infty}\left\langle I S I^{2}\right\rangle_{n} & =\left\langle I S I^{2}\right\rangle \\
& =f_{L A O} T_{L A O}^{2}\left(\frac{2}{f_{L A O}^{3}}-\frac{1}{f_{L A O}^{2}}\right) . \tag{3}
\end{align*}
$$

Combining Eqs. (1) and (3), we find that

$$
\begin{aligned}
C V & =\frac{\left(\left\langle I S I^{2}\right\rangle-\langle I S I\rangle^{2}\right)^{\frac{1}{2}}}{\langle I S I\rangle} \\
& =\frac{\left(f_{L A O} T_{L A O}^{2}\left(\frac{2}{f_{L A O}^{3}}-\frac{1}{f_{L A O}^{2}}\right)-f_{L A O}^{2} T_{L A O}^{2} \frac{1}{f_{L A O}^{4}}\right)^{1 / 2}}{f_{L A O} T_{L A O} \frac{1}{f_{L A O}^{2}}} \\
& =\frac{\left(\left(-f_{L A O}^{-1}+2 f_{L A O}^{-2}\right)-f_{L A O}^{-2}\right)^{1 / 2}}{f_{L A O}^{-1}} \\
& =\left(1-f_{L A O}\right)^{1 / 2}=\left(f_{S A O}\right)^{1 / 2}
\end{aligned}
$$

thus,

$$
C V=f_{S A O}^{1 / 2}
$$

where $C V \geq 0$ and $f_{S A O}$ range in the interval $[0,1)$.
To validate our theoretical analysis, we have plotted $C V$ vs $\sqrt{f_{S A O}}$ in Fig. 1 here for a wide range of couplings K in $[0,2]$. One can see that they follow a linear relationship. In particular, for higher coupling $K \in[1,2]$, both $C V$ and $\sqrt{f_{S A O}}$ tend to zero (near the origin in Fig. 1, see also Fig. 4(c) in the paper). However, for weak coupling (i.e., for K in $[0,1]$), these quantities deviate from each other and reside away from the origin (these points are depicted in the right top corner in Fig. 1], see also Fig. 4(c) in the paper). This ensures the existence of MMOs. The discrepancy appears due to the small sample size used to compute them, as we have considered integer k values in the calculations above. In the future, we plan to explore the possibility that k assumes real values in $[0, \infty)$.

Figure 1. Linear relation between $C V$ and $\sqrt{f_{S A O}}$. The coupling strength K is varied in $[0,2]$ and the arrow shows the direction of increasing K in [0, 2].

REFERENCES

Golomb, D. (2014). Mechanism and function of mixed-mode oscillations in vibrissa motoneurons. PLoS One 9, e109205

