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1 RELATION BETWEEN CV AND FSAO

To understand the relationship between the coefficient of variation, CV and fSAO, we consider that the
spikes in LAOs appear with probability fLAO and peaks in SAOs with probability fSAO = 1 − fLAO.
Furthermore, we assume that we have a sequence of spike-time intervals {TLAO, . . . , TSAO, . . . , TLAO}.
Based on the Bernoulli process (Golomb, 2014), if TLAO appears with probability fLAO in the entire
sequence, then kTLAO (where k is an integer with k ≥ 2) will appear with probability (1−fLAO)

k−1fLAO.
Therefore,

〈ISI〉n =
n∑

k=1

kTLAO(1− fLAO)
k−1fLAO

= fLAO

n∑
k=1

kTLAO(fSAO)
k−1

= fLAOTLAO
d

d(fSAO)

n∑
k=1

(
(fSAO)

k

)
.
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Setting fSAO = x ∈ [0, 1), we have that

n∑
k=0

xk =
1− xn+1

1− x

=
1− xn+1

1− x
− 1

=
x(1− xn)

1− x
.

Thus,
n∑

k=1

fkSAO =
fSAO(1− fnSAO)

1− fSAO
.

Next, we compute 〈ISI〉n

〈ISI〉n = fLAOTLAO
d

d(fSAO)

(
fSAO(1− fnSAO)

1− fSAO

)
= fLAOTLAO

(
n(fSAO)

n+1 − (n+ 1)(fSAO)
n + 1

(1− fSAO)2

)
,

and, in the limit of n→∞, i.e., limn→∞, we have

〈ISI〉 = fLAOTLAO
1

(1− fSAO)2
=

TLAO

fLAO
, (1)

where fLAO = 1− fSAO.

Then,

〈ISI2〉n =
n∑

k=1

k2T 2
LAO(1− fLAO)

k−1fLAO

= fLAO

n∑
k=1

k2T 2
LAO(fSAO)

k−1

= fLAOT
2
LAO

n∑
k=1

k2(fSAO)
k−1

= fLAOT
2
LAO

(
− d

d(fSAO)

∞∑
k=1

(fSAO)
k +

d2

d(fSAO)2

∞∑
k=1

(fSAO)
k+1

)
. (2)

Manipulating Eq. (2) further, in the limit of n→∞, we get that

lim
n→∞

〈ISI2〉n = 〈ISI2〉

= fLAOT
2
LAO

(
2

f3LAO

− 1

f2LAO

)
. (3)
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Combining Eqs. (1) and (3), we find that

CV =

(
〈ISI2〉 − 〈ISI〉2

) 1
2

〈ISI〉

=

(
fLAOT

2
LAO

(
2

f3LAO
− 1

f2LAO

)
− f2LAOT

2
LAO

1
f4LAO

)1/2

fLAOTLAO
1

f2LAO

=

((
−f−1LAO + 2f−2LAO

)
− f−2LAO

)1/2

f−1LAO

= (1− fLAO)
1/2 = (fSAO)

1/2,

thus,
CV = f

1/2
SAO,

where CV ≥ 0 and fSAO range in the interval [0, 1).

To validate our theoretical analysis, we have plotted CV vs
√
fSAO in Fig. 1 here for a wide range of

couplings K in [0, 2] . One can see that they follow a linear relationship. In particular, for higher coupling
K ∈ [1, 2], both CV and

√
fSAO tend to zero (near the origin in Fig. 1, see also Fig. 4(c) in the paper).

However, for weak coupling (i.e., for K in [0, 1]), these quantities deviate from each other and reside
away from the origin (these points are depicted in the right top corner in Fig. 1, see also Fig. 4(c) in the
paper). This ensures the existence of MMOs. The discrepancy appears due to the small sample size used to
compute them, as we have considered integer k values in the calculations above. In the future, we plan to
explore the possibility that k assumes real values in [0,∞).

Figure 1. Linear relation between CV and
√
fSAO. The coupling strength K is varied in [0, 2] and

the arrow shows the direction of increasing K in [0, 2].
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