## Non-euclidean analysis of dilation structures

#### M. Buliga

**IMAR** 

Institute of Mathematics of the Romanian Academy

marius.buliga@imar.ro



Imagine that the metric space (X,d) represents a territory. We want to make maps of (X,d) in the metric space (Y,D) (a piece of paper, or a scaled model).



We need many maps, at several scales  $\varepsilon_1 > \varepsilon_2 > ... > \varepsilon_n$ .

An atlas of compatible maps, a manifold?

A model of a map of (X,d) in (Y,D) is a relation  $\rho \subset X \times Y$ .



How good is the map? Look at: |d(u,v) - D(u',v')|.



Accuracy: "closeness of agreement between a measured quantity value and a true quantity value of a measurand".

$$acc(\rho) = \sup\{|D(y_1, y_2) - d(x_1, x_2)| : (x_1, y_1) \in \rho, (x_2, y_2) \in \rho\}$$



Resolution: "smallest change in a quantity being measured that causes a perceptible change in the corresponding indication".

$$res(\rho)(y) = \sup \{d(x_1, x_2) : (x_1, y) \in \rho, (x_2, y) \in \rho\}$$



Precision: "closeness of agreement between indications or measured quantity values obtained by replicate measurements on the same or similar objects under specified conditions".

$$prec(\rho)(x) = \sup \{D(y_1, y_2) : (x, y_1) \in \rho, (x, y_2) \in \rho\}$$

"Cartographic generalization is the method whereby information is selected and represented on a map in a way that adapts to the scale of the display medium of the map, not necessarily preserving all intricate geographical or other cartographic details".

Let  $\rho \subset X \times Y$  be a relation such that  $dom \ \rho$  is  $\varepsilon$ -dense in (X,d) and  $im \ \rho$  is  $\mu$ -dense in (Y,D). We define then  $\bar{\rho} \subset X \times Y$  by:  $(x,y) \in \bar{\rho}$  if there is  $(x',y') \in \rho$  such that  $d(x,x') \leq \varepsilon$  and  $D(y,y') \leq \mu$ .

(a) 
$$res(\rho) \leq acc(\rho)$$
,  $prec(\rho) \leq acc(\rho)$ ,

(b) 
$$res(\rho) + 2\varepsilon \le res(\bar{\rho}) \le acc(\rho) + 2(\varepsilon + \mu)$$
,

(c) 
$$prec(\rho) + 2\mu \leq prec(\bar{\rho}) \leq acc(\rho) + 2(\varepsilon + \mu)$$
,

(d) 
$$|acc(\bar{\rho}) - acc(\rho)| \leq 2(\varepsilon + \mu)$$
.



#### Gromov-Hausdorff distance

 $\mu > 0$  is adimissible for the pair of spaces (X,d), (Y,D) if there is a relation  $\rho \subset X \times Y$  such that

 $dom \ \rho = X$ ,

 $im \ \rho = Y$ ,

 $acc(\rho) \leq \mu$ .

The Gromov-Hausdorff distance between (X,d) and (Y,D) is

$$d_{GH}((X,d),(Y,D)) = \inf \{ \mu \text{ , admissible } \}$$

#### Scale

A map of (X, d) into (Y, D), at scale  $\varepsilon > 0$  is a map of  $(X, \frac{1}{\varepsilon}d)$  into (Y, D).

In cartography, maps of the same territory done at smaller and smaller scales (smaller and smaller  $\varepsilon$ ) must have the property:

- at the same accuracy and precision, the resolution has to become smaller and smaller.

#### Scale

(Y, D, y)  $(y \in Y)$  represents the (pointed unit ball in the) metric tangent space at  $x \in X$  of (X, d) if there exist a pair formed by:

- a "zoom sequence", that is a map

$$(\varepsilon, x) \in (0, 1] \times X \mapsto \rho_{\varepsilon}^{x} \subset (\bar{B}(x, \varepsilon), \frac{1}{\varepsilon}d) \times (Y, D)$$

such that  $dom\ \rho_{\varepsilon}^x=\bar{B}(x,\varepsilon)$ ,  $im\ \rho_{\varepsilon}^x=Y$ ,  $(x,y)\in\rho_{\varepsilon}^x$  for any  $\varepsilon\in(0,1]$  and

- a "zoom modulus"  $F:(0,1)\to [0,+\infty)$  such that  $\lim_{\varepsilon\to 0}F(\varepsilon)=0$ ,

such that for all  $\varepsilon \in (0,1)$  we have  $acc(\rho_{\varepsilon}^{x}) \leq F(\varepsilon)$ .

#### Scale

accuracy:

$$\sup \left\{ | D(y_1, y_2) - \frac{1}{\varepsilon} d(x_1, x_2) | : (x_1, y_1), (x_2, y_2) \in \rho_{\varepsilon}^x \right\} = \mathcal{O}(\varepsilon)$$

precision:

$$\sup \{D(y_1, y_2) : (u, y_1) \in \rho_{\varepsilon}^x, (u, y_2) \in \rho_{\varepsilon}^x, u \in \bar{B}(x, \varepsilon)\} = \mathcal{O}(\varepsilon)$$

resolution:

$$\sup \{d(x_1, x_2) : (x_1, z) \in \rho_{\varepsilon}^x, (x_2, z) \in \rho_{\varepsilon}^x, z \in Y\} = \varepsilon \mathcal{O}(\varepsilon)$$



Let  $\varepsilon, \mu \in (0,1)$  and  $\rho_{\varepsilon}^x \subset \bar{B}(x,\varepsilon) \times \bar{B}(y,1)$  ,  $\rho_{\varepsilon\mu}^x \subset \bar{B}(x,\varepsilon\mu) \times \bar{B}(y,1)$ 



CASCADING OF ERRORS:

$$acc(\rho_{\varepsilon,\mu}^x) \leq \frac{1}{\mu}\mathcal{O}(\varepsilon) + \mathcal{O}(\varepsilon\mu)$$



scale stable if  $D_{\mu}^{Hausdorff}\left(\rho_{\varepsilon,\mu}^{x},\bar{\rho}_{\mu}^{x}\right)\leq F_{\mu}(\varepsilon)$ 

If there is a scale stable zoom sequence  $\rho_{\varepsilon}^x$  then the space (Y, D) is self-similar in a neighbourhood of point  $y \in Y$ :

for any  $(u', u''), (v', v'') \in \overline{\rho}_{\mu}^x$  we have:

$$D(u'',v'') = \frac{1}{\mu}D(u',v')$$

In particular  $\bar{\rho}_{\mu}^{x}$  is the graph of a function.



We have a zoom sequence, a scale  $\varepsilon \in (0,1)$  and two points:  $x \in X$  and  $u' \in \bar{B}(y,1)$ .



difference at scale  $\varepsilon$ , from x to  $x_1$ , as seen from u'



viewpoint stable if  $D_{\mu}^{Hausdorff}\left(\Delta_{\varepsilon}^{x}(u',\cdot),\Delta^{x}(u',\cdot)\right) \leq F_{diff}(\varepsilon)$ 



 $\Delta^x(u',\cdot)$  is the graph of an isometry of (Y,D).

#### Foveal maps

A scale stable zoom sequence of maps can be improved such that all maps from the new zoom sequence have better accuracy near the "center" of the map  $x \in X$ , which justifies the name "foveal maps".

The accuracy of the restriction of each improved map

$$\phi_{\varepsilon}^{x} \cap (\bar{B}(x, \varepsilon \mu) \times \bar{B}(y, \mu))$$

is bounded by  $\mu F(\varepsilon \mu)$ , therefore the right hand side term in the cascading of errors inequality can be improved to  $2F(\varepsilon \mu)$ .

ARE THERE a priori OBSTRUCTIONS FOR HAVING

- SCALE STABLE - VIEWPOINT STABLE - FOVEAL

ZOOM MAPS FROM (X,d) INTO (Y,D)?

#### Dilation structures

Dilation structure (a generalization): a foveal, scale stable, view-point stable sequence of zoom maps of (X, d) into (Y, D).

Suppose there is a dilation structure of (X,d) into (Y,D). Then for any  $x \in X$  the space (Y,D) admits a local group operation  $(v,w) \mapsto v \cdot_x w$  such that:

- all left translations are D isometries
- the difference relation  $\Delta^x(u,\cdot)$  is the graph of the left translation  $v\mapsto u^{-1}\cdot_x v$

Moreover, the local group operation admits a one-parameter family of isomorphisms, which have as graphs the dilation relations  $\bar{\rho}_{\mu}^{x}$ .

#### Conical groups

A CONICAL GROUP is a pair  $(N, \delta)$  such that:

- N is a topological group,
- $\delta$  is an action of a commutative group (say  $(0, +\infty)$ ) by automorphisms on N, such that

$$\lim_{\varepsilon \to 0} \delta_{\varepsilon} x = e$$

uniformly with respect to x in a compact neighbourhood of the identity e.

#### NORMED CONICAL GROUP:

- there is also a group norm  $\|\cdot\|:N\to[0,+\infty)$ ,  $\|xy\|\leq \|x\|+\|y\|$  ...
- such that  $\|\delta_{\varepsilon}x\| = \varepsilon \|x\|$ .

#### Conical groups

(Siebert) Locally compact, connected conical groups are Carnot groups.

(Goldbring) same statement for local groups.

#### Examples:

- $(\mathbb{R}^n,+)$  with  $\delta_{\varepsilon}x=\varepsilon x$ , and a usual norm
- Heisenberg group:  $H(n)=\mathbb{R}^{2n}\times\mathbb{R}$  with  $(X,x)\cdot(Y,y)=(X+Y,x+y+\frac{1}{2}\omega(X,Y))$  and  $\delta_{\varepsilon}(X,x)=(\varepsilon X,\varepsilon^2 x)$ . Norm given by a Carnot-Carathéodory left invariant distance.
- there are also plenty of examples of non connected locally compact conical groups (coming from ultrametric spaces).

#### Conical groups

Conical groups appear in (not exclusive):

- Gromov polynomial growth theorem: a finitely generated group with polynomial growth (i.e. number of elements which can be expressed as a product of at most n generators grows like a polynomial in n) is virtually (up to factorization by a finite group) conical.
- Mitchell theorem: the metric tangent space at a point in a regular sub-riemannian manifold is a conical group.
- Pansu-Rademacher theorem: a Lipschitz function between two Carnot groups is derivable (see later) almost everywhere.
- Tao-Green-Breuillard theorem: an approximate group is roughly equivalent with a ball in a normed conical group.

#### Differentiability

Take two dilation structures:

- of 
$$(X_1, d_1)$$
 into  $(Y_1, D_1)$ 

- of 
$$(X_2, d_2)$$
 into  $(Y_2, D_2)$ 

and a function  $f: X_1 \to X_2$ . For any  $x \in X_1$  and  $\varepsilon > 0$  consider the relation

$$\rho_{\varepsilon}^{f(x)} f\left(\rho_{\varepsilon}^{x}\right)^{-1}$$

from  $Y_1$  into  $Y_2$ . If this relation converges (w.r.t. Hausdorff distance) TO THE GRAPH OF A MORPHISM OF CONICAL GROUPS then we say f is differentiable in x.

#### Non-euclidean analysis

A dilation structure of  $(X_1, d_1)$  into  $(Y_1, D_1)$ 

looks down at

another dilation structure of  $(X_2, d_2)$  into  $(Y_2, D_2)$ 

if for any  $x \in X_1$  there is a neighbourhood of x and a bijective map, from it to a neighbourhood of f(x), which is differentiable everywhere, uniformly w.r.t.  $x \in X$ .

Two dilation structures are equivalent if each looks down at the other.

An equivalence class of dilation structures is called an "analysis".

#### Non-euclidean analysis

#### Examples:

- a real manifold endowed with the dilation structure given by an atlas is equivalent with  $\mathbb{R}^n$ .
- a metric contact manifold has a dilation structure equivalent with the one of a Heisenberg group.
- if two Carnot groups have equivalent left invariant dilation structures (over themselves) then they are isomorphic as groups.
- any sub-riemannian (or Carnot-Carathéodory) manifold has a dilation structure which looks down at any riemannian structure over the same manifold.

## Non-euclidean analysis

Do we really need distances? Is this a metric phenomenon? NO. Google search: "metric spaces with dilations" "dilation structures" "emergent algebras"