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Exploring space
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Imagine that the metric space (X,d) represents a territory. We

want to make maps of (X, d) in the metric space (Y, D) (a piece of
paper, or a scaled model).
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Exploring space
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We need many maps, at several scales €1 > eo > ... > ep,.

An atlas of compatible maps, a manifold?
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Exploring space

A model of a map of (X,d) in (Y, D) is a relation p C X x Y.

How good is the map? Look at: | d(u,v) — D(u/,v") |.
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Exploring space

Accuracy: "closeness of agreement between a measured quantity
value and a true quantity value of a measurand’ .

acc(p) = sup{| D(y1,y2) —d(z1,z2) | : (z1,y1) € p, (z2,y2) € p}
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Exploring space

Resolution: "smallest change in a quantity being measured that
causes a perceptible change in the corresponding indication’ .

res(p)(y) = sup{d(xz1,z2) : (z1,y) € p, (z2,y) € p}
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Exploring space

Precision: 'closeness of agreement between indications or mea-
sured quantity values obtained by replicate measurements on the
same or similar objects under specified conditions’ .

prec(p)(z) = sup{D(y1,y2) : (z,y1) € p, (x,y2) € p}
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Exploring space

" Cartographic generalization is the method whereby information is
selected and represented on a map in a way that adapts to the
scale of the display medium of the map, not necessarily preserving
all intricate geographical or other cartographic details’.

Let p C X XY be a relation such that dom p is e-dense in (X, d) and
im p is u-dense in (Y, D). We define then p C X xY by: (z,y) € p
if there is (2/,4) € p such that d(z,z’) < e and D(y,y") < u.
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Exploring space

(a) res(p) < acc(p), prec(p) < acc(p),
(b) res(p) + 2e < res(p) < acc(p) + 2(e + p),
(c) prec(p) + 2u < prec(p) < acc(p) + 2(e + p),

(d) | ace(p) — acelp) |< 2(e + ).
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ARE THERE a priori LOWER BOUNDS ON THE ACCURACY?



Gromov-Hausdorff distance

1 > 0 is adimissible for the pair of spaces (X,d), (Y, D) if there is a
relation p C X X Y such that

dom p = X,
mm p=Y,
acc(p) < p.

The Gromov-Hausdorff distance between (X,d) and (Y, D) is

dag((X,d),(Y,D)) = inf{u , admissible }
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Scale

1

A map of (X,d) into (Y, D), at scale € > 0 is a map of (X, —d) into
g

(Y, D).

In cartography, maps of the same territory done at smaller and
smaller scales (smaller and smaller £€) must have the property:

- at the same accuracy and precision, the resolution has to become
smaller and smaller.
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Scale

(Y,D,y) (y € Y) represents the (pointed unit ball in the) metric
tangent space at z € X of (X,d) if there exist a pair formed by:

- a ""zoom sequence’, that is a map
_ 1
(e,z) € (0,1] x X + p; C (B(w,e),—d) x (Y, D)
g

such that dom pf = B(z,e), im pf =Y, (z,y) € p¥ for any
e € (0,1] and

- a""zoom modulus” F: (0,1) — [0, 400) such that Iin% F(e) =0,
E—>

such that for all e € (0,1) we have acc(pl) < F(e).
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Scale

accuracy:
SUD{| D(y1,y2) — éd(afla@?) | @ (%1,91), (22,92) € P?} = O(e)
precision:

sup {D(y1,y2) : (w,y1) € pZ, (u,y2) € p7, u € B(z,e)} = O(e)
resolution:

sup {d(x1,z2) @ (z1,2) € pz, (x2,2) €Epz, 2 €Y} = €0O(e)
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Scale stability

Let e, € (0,1) and pf C B(xz,e) x B(y,1) , pf,, C B(z,ep) x B(y,1)
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Scale stability

1
CASCADING OF ERRORS: acc(pz,) < —O(e) + O(ep)
’ 7
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Scale stability

scale stable if Dffausdor]] (pgu,ﬁ@ < Fyu(e)
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Scale stability

If there is a scale stable zoom sequence pZ then the space (Y, D) is
self-similar in a neighbourhood of point y € Y

for any (u',u"), (v',v") € pj, we have:

1
D(u”,’U” — _D(u/, v/)
|92

In particular ﬁﬁ is the graph of a function.
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Viewpoint stability

Y A, (¥, ) 1
V J>

1

=d 1

X d

P 1 € € X
€ ' = pgz

We have a zoom sequence, a scale € € (0,1) and two points: z € X
and v’ € B(y,1).
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Viewpoint stability
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P 1 € € X
€ ' = pgz

difference at scale ¢, from x to x1, as seen from u

/
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Viewpoint stability

Y A, (¥, ) 1
=%
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viewpoint stable if Dﬁawdorff (Ag’f(u’,-),Am(u’,-)) < Fyips(e)
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Viewpoint stability

Y A, (¥, ) 1
=%
(G5

A% (d,-) is the graph of an isometry of (Y, D).
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Foveal maps

A scale stable zoom sequence of maps can be improved such that
all maps from the new zoom sequence have better accuracy near
the "center’” of the map =z € X, which justifies the name " foveal
maps'’ .

The accuracy of the restriction of each improved map

¢L N (B(x,ep) x B(y, 1))

is bounded by pF(ewn), therefore the right hand side term in the
cascading of errors inequality can be improved to 2F(eu).
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ARE THERE a priori OBSTRUCTIONS FOR HAVING

- SCALE STABLE - VIEWPOINT STABLE - FOVEAL

ZOOM MAPS FROM (X,d) INTO (Y, D)?



Dilation structures

Dilation structure (a generalization): a foveal, scale stable, view-
point stable sequence of zoom maps of (X,d) into (Y, D).

Suppose there is a dilation structure of (X,d) into (Y,D). Then
for any x € X the space (Y,D) admits a local group operation
(v,w) — v -z w such that:

- all left translations are D isometries

- the difference relation A*(u,-) is the graph of the left translation

vl—>u_1 Y

Moreover, the local group operation admits a one-parameter family
of isomorphisms, which have as graphs the dilation relations ,Eﬁ.
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Conical groups
A CONICAL GROUP is a pair (NN,6) such that:
- N is a topological group,

- § is an action of a commutative group (say (0, +o0)) by automor-
phisms on N, such that

lim dcx = €

e—0

uniformly with respect to x in a compact neighbourhood of the
identity e.

NORMED CONICAL GROUP:
- there is also a group norm ||-|| : N — [0, 4o00), ||lzy| < ||z||+ |ly]| -.-

- such that ||decx|| = ||z
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Conical groups

(Siebert) Locally compact, connected conical groups are Carnot
groups.

(Goldbring) same statement for local groups.
Examples:
- (R™, +) with 6z = ex, and a usual norm

- Heisenberg group: H(n) = R?" x R with (X,z) - (Y,y) = (X +
1

Y,z +y + 5w(X,Y) and 5.(X,z) = (eX,e?x). Norm given by a

Carnot-Carathéodory left invariant distance.

- there are also plenty of examples of non connected locally compact

conical groups (coming from ultrametric spaces).
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Conical groups
Conical groups appear in (not exclusive):

- Gromov polynomial growth theorem: a finitely generated group
with polynomial growth (i.e. number of elements which can be ex-
pressed as a product of at most n generators grows like a polynomial
in n) is virtually (up to factorization by a finite group) conical.

- Mitchell theorem: the metric tangent space at a point in a regular
sub-riemannian manifold is a conical group.

- Pansu-Rademacher theorem: a Lipschitz function between two
Carnot groups is derivable (see later) almost everywhere.

- Tao-Green-Breuillard theorem: an approximate group is roughly
equivalent with a ball in a normed conical group.
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Differentiability
Take two dilation structures:
- of (Xq,dy) into (Y1,D1)
- of (X»5,d») into (Yo, D»)

and a function f: X7 — Xo. For any x € X7 and € > 0 consider the
relation

Pl (o)

from Y7 into Y>. If this relation converges (w.r.t. Hausdorff dis-
tance) TO THE GRAPH OF A MORPHISM OF CONICAL GROUPS

then we say f is differentiable in x.
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Non-euclidean analysis
A dilation structure of (X1,dy) into (Yy,D1)
looks down at
another dilation structure of (X5,d>) into (Ys, D»>)
if for any z € X4 there is a neighbourhood of = and a Dbijective
map, from it to a neighbourhood of f(x), which is differentiable

everywhere, uniformly w.r.t. z € X.

Two dilation structures are equivalent if each looks down at the
other.

An equivalence class of dilation structures is called an " analysis’”.
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Non-euclidean analysis

Examples:

- a real manifold endowed with the dilation structure given by an
atlas is equivalent with R".

- a metric contact manifold has a dilation structure equivalent with
the one of a Heisenberg group.

- if two Carnot groups have equivalent left invariant dilation struc-
tures (over themselves) then they are isomorphic as groups.

- any sub-riemannian (or Carnot-Carathéodory) manifold has a di-
lation structure which looks down at any riemannian structure over
the same manifold.
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Non-euclidean analysis
Do we really need distances?
Is this a metric phenomenon?

NO.

Google search:
"metric spaces with dilations”

"dilation structures”

"emergent algebras”
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