DEVELOPMENT OF A BALANCE MEASURE FOR AMPUTEES

Johansson, J.¹; Kelly, C.¹; King, C.¹; Rozell, B.¹; Messer, C.¹; Buijs, R.¹; Delph, M.¹; D'Andrea, S.²; Wheeler, J.³

- ¹ Liberating Technologies, Inc., a College Park Company
- ² Providence VA Medical Center
- ³ Sandia National Laboratories

2019 AOPA National Assembly28 September 2019San Diego, CA

THE PROBLEM

- 52.4% of lower-limb amputees report falling in the previous year [1]
- 66% of above-knee amputees report falling annually, twice the rate of ablebodied adults over 65 years old [2]
- There are no <u>quantitative</u>, clinicbased outcome measures that determine <u>balance in ambulation</u> for amputees

PROBLEM - Motion Capture is space and cost prohibitive

SOLUTION

- Tool for clinicians to fit patients
- **Portable** system
- Accurately measure gait parameters
- Determine <u>dynamic</u> balance
- Tell user subtle differences between different prosthetic feet

12 IMUs

- XSENS MTw Awinda
- Motion of each body segment
- Used to calculate COM

Pressure Sensing Insoles

- Developed by Sandia National Laboratories
- Custom shear and pressure sensors
- Used to calculate COP & GRF

- Created **custom** amputee-specific articulated hierarchical model of the human body

Goal

 Find 2 feet with similar size but walk differently

Rollover Shape

Used to quantitatively determine "smoothness"

- Tested on 7 BK human subjects
- 5 tested in a mocap lab to compare human models
- COM within 1.5 cm and COP within 2.0 mm of the gold standard 14 camera Qualisys motion capture system
- Analyzed gait parameters to find relevant measures of dynamic balance

- Inclination angles used to detect elderly fallers [3]
- Focusing on prosthetic foot single support

[3] Lee,H.; Chou, L. Detection of Gait Instability
Using the Center of Mass and Center of
Pressure Inclination Angles. Arch. Phys. Med.
Rehabil. 2006, 87, 569-575

RESULTS

Butterfly Plot

RESULTS

Butterfly Plot

ML Inclination Angles (deg)

[3] Lee,H.; Chou, L. Detection of Gait Instability Using the Center of Mass and Center of Pressure Inclination Angles. Arch. Phys. Med. Rehabil. 2006, 87, 569-575

RESULTS - Large difference between subject ability

 \triangleright Slope: **111.5** $\frac{deg}{deg}$

> Gait Score: **4.8/5.0**

 \triangleright Slope: **1.5** $\frac{deg}{deg}$

Gait Score: 1.8/5.0

RESULTS

 Human subject balance compared

RESULTS - Subtle differences between feet

> Slope: 28.9 $\frac{deg}{deg}$ > Gait Score: 5.0/5.0

➤ Slope: 15.9 deg/deg
 ➤ Gait Score: 4.0/5.0

DISCUSSION

- Inclination angles may quantify an amputee's balance
- Quantifiable measurements of balance may assist prosthetists in the selection of feet
- Reduces the space and cost needed for traditional motion capture gait analysis
- Further investigation needed to determine accuracy of balance comparison

ACKNOWLEDGEMENTS - CO-AUTHORS

ACKNOWLEDGEMENTS - FUNDING

- The U.S. Army Medical Research Acquisition Activity, 820 Chandler Street, Fort Detrick MD 21702-5014 is the awarding and administering acquisition office.
- This work was supported by:
 - The Office of the Assistant Secretary of Defense for Health Affairs under award number W81XWH-15-1-0542 through the Orthotics and Prosthetics Outcomes Research Program.
- Opinions, interpretations, conclusions and recommendations are those of the author and are not necessarily endorsed by the Department of Defense.

collegepark

TECHNOLOGY for the HUMAN RACE

Craig.Kelly@LiberatingTech.com

