
Supplementary Material

1 Supplementary Figures and Tables

Figure S1. Multivariate pseudo standard error (MultSE) plotted against sample size for the historical 
trawl samples at each of the three sites. MultSE calculations used Bray-Curtis dissimilarities 
calculated on square-root transformed, standardized catch data. Error bars represent 2.5 and 97.5 
percentiles from 10 000 bootstrap samples.
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Figure S2. Histograms contrasting historical and re-survey trawl sample a) mid-trawl times, b) 
months, c) trawl distance and d) trawl depths for the data used in analyses. Vertical red lines 
indicate mean values.



Table S1. SIMPER results showing the contribution of all taxa towards dissimilarity between 
periods. Average dissimilarity between periods was 81.7%. Standardized catches (count·nautical 
mile-1) were square-root transformed prior to analysis.

Taxon Ratio (D/sd)

Argyrosomus spp. 6.68 0.00 12.06 1.89 14.76
Pterogymnus laniarius 6.61 0.34 11.28 2.35 28.56
Austroglossus pectoralis 6.62 1.21 9.94 2.09 40.73
Chelidonichthys spp. 0.64 5.53 8.32 1.46 50.90
Argyrozona argyrozona 3.39 0.02 5.99 0.98 58.23
Trachurus trachurus 0.39 3.20 5.27 0.86 64.68
Squalus spp. 0.89 3.68 5.09 0.78 70.91
Merluccius capensis 1.06 2.72 3.74 1.29 75.49
Rhabdosargus globiceps 1.62 0.01 3.03 0.84 79.20
other 0.28 1.90 2.76 1.35 82.58
Galeichthys feliceps 0.03 1.69 2.61 0.62 85.77
Torpediniformes 1.27 0.11 2.17 0.94 88.43
Umbrina canariensis 1.25 0.03 2.13 1.21 91.03
Rajidae 1.25 1.35 2.12 1.60 93.63
Myliobatiformes 0.25 1.03 1.47 0.66 95.43
Cynoglossus spp. 0.42 0.78 1.17 0.97 96.87
Carcharhiniformes 0.20 0.47 0.77 0.98 97.81
Paracallionymus costatus 0.20 0.06 0.41 0.49 98.31
Atractoscion aequidens 0.29 0.02 0.39 0.51 98.78
Lithognathus lithognathus 0.17 0.00 0.27 0.64 99.11
Pomatomus saltatrix 0.17 0.00 0.26 0.51 99.43
Chrysoblephus gibbiceps 0.05 0.00 0.11 0.26 99.56
Genypterus capensis 0.07 0.00 0.1 0.36 99.69
Petrus rupestris 0.06 0.00 0.1 0.35 99.80
Polysteganus undulosus 0.06 0.00 0.08 0.30 99.90
Pachymetopon aeneum 0.03 0.01 0.07 0.25 99.99
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Table S2. Site-disaggregated summary statistics (mean ± SD) for catches of all taxa analysed. CI Cape Infanta, MB Mossel Bay, BI Bird Island.

Taxon
CI MB BI CI MB BI

97.15 ± 76.36 35.02 ± 26.85 28.61 ± 25.7 0 ± 0 0 ± 0 0 ± 0
Argyrozona argyrozona 43.88 ± 57.75 24.84 ± 36.21 3.65 ± 7.63 0 ± 0 0 ± 0 0.05 ± 0.26
Atractoscion aequidens 0.12 ± 0.95 0.01 ± 0.04 0.96 ± 1.47 0 ± 0 0 ± 0 0.06 ± 0.21
Austroglossus pectoralis 71.06 ± 27.1 48.99 ± 28.06 24.64 ± 13.44 2.79 ± 2.39 2.23 ± 3 1.58 ± 2.55
Carcharhiniformes 0.06 ± 0.15 0.15 ± 0.17 0.13 ± 0.19 0.02 ± 0.11 0.26 ± 0.55 1.67 ± 1.11

2.09 ± 4.1 1.46 ± 4.76 0.34 ± 0.75 18.8 ± 9.87 16.73 ± 17.98 110.91 ± 92.2
Chrysoblephus cristiceps 0 ± 0 0.01 ± 0.03 0 ± 0 0 ± 0 0 ± 0 0 ± 0
Chrysoblephus gibbiceps 0.03 ± 0.16 0.1 ± 0.34 0.01 ± 0.06 0 ± 0 0 ± 0 0 ± 0

0 ± 0 0.28 ± 0.67 1.2 ± 0.87 0.39 ± 0.51 2.01 ± 2.26 1.08 ± 1.12
Galeichthys feliceps 0 ± 0 0.24 ± 0.96 0 ± 0 0 ± 0 0.59 ± 1.09 32.16 ± 33.53
Genypterus capensis 0 ± 0.03 0.02 ± 0.05 0.09 ± 0.23 0 ± 0 0 ± 0 0 ± 0
Lithognathus lithognathus 0.03 ± 0.08 0.09 ± 0.14 0.2 ± 0.33 0 ± 0 0 ± 0 0 ± 0
Merluccius capensis 2.75 ± 3.39 1.1 ± 1.18 1.67 ± 2.9 12.67 ± 6.7 16.73 ± 13.17 1.16 ± 1.79
Myliobatiformes 0.01 ± 0.04 0.19 ± 0.33 0.26 ± 0.19 0 ± 0 0.09 ± 0.24 12.86 ± 14.71
Pachymetopon aeneum 0 ± 0 0.03 ± 0.12 0.04 ± 0.12 0 ± 0 0 ± 0 0.03 ± 0.15
Paracallionymus costatus 0.04 ± 0.18 0.69 ± 1.26 0.07 ± 0.27 0 ± 0 0.08 ± 0.22 0.06 ± 0.21
Petrus rupestris 0.02 ± 0.07 0.06 ± 0.13 0.01 ± 0.06 0 ± 0 0 ± 0 0 ± 0
Polysteganus undulosus 0 ± 0 0 ± 0 0.13 ± 0.32 0 ± 0 0 ± 0 0 ± 0
Pomatomus saltatrix 0.01 ± 0.09 0.1 ± 0.19 0.29 ± 0.68 0 ± 0 0 ± 0 0 ± 0
Pterogymnus laniarius 52.55 ± 24.53 51.13 ± 30.62 46.02 ± 39.54 0.06 ± 0.2 0 ± 0 3.57 ± 9.43
Rajidae 2.38 ± 1.68 2.21 ± 1.35 0.91 ± 0.51 0.6 ± 0.76 1.63 ± 2.11 8.22 ± 5.46
Rhabdosargus globiceps 1.91 ± 1.81 19.89 ± 16.38 0.49 ± 1.18 0.03 ± 0.14 0 ± 0 0 ± 0

0.23 ± 0.39 1.59 ± 1.9 2.52 ± 2.92 0.09 ± 0.25 4.19 ± 14.49 130.31 ± 116.73
Torpediniformes 1.84 ± 1.53 5.38 ± 14.89 1.68 ± 1.28 0.03 ± 0.16 0.06 ± 0.19 0.24 ± 0.5
Trachurus capensis 0.03 ± 0.13 0.07 ± 0.11 1.71 ± 3.09 19.95 ± 28.34 31.26 ± 87.47 33.28 ± 78.86
Umbrina canariensis 1.59 ± 3.15 4.54 ± 7.81 2.41 ± 4.44 0 ± 0 0 ± 0 0.16 ± 0.67
other 0.01 ± 0.05 0.43 ± 0.46 0.33 ± 0.53 2.5 ± 4.61 3.1 ± 3.22 11.37 ± 7.23

Historical numbers (count·nautical mile -1) Re-survey numbers (count·nautical mile -1)

Argyrosomus spp.
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Cynoglossus spp.
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Figure S3. Comparison of multivariate pseudo variance calculated between pairs of randomly 
chosen samples from historical and repeat surveys (Hist-Res; N=500 for each site), as well as all 
possible combinations of DAFF samples that were separated by ≥2 month but <12 months 
(DAFF.sn), ≥12 months but <18 months (DAFF.int) and ≥18 months but ≤60 months (DAFF.my). 
Mean and non-parametric 95% confidence intervals are indicated in red. See Methods for details.



Figure S4. Same as Fig 3, but showing taxa that distinguished periods at individual sites a) Cape 
Infanta, b) Mossel Bay and c) Bird Island, using a pairwise SIMPER analysis.



2 Examination of Assumptions

2.1 Trawl gear performance

The historical trawl gear was carefully imitated in design, materials and function and the resultant 
gear selectivity and catching power are expected to be closely related to those of the historical trawl 
gear (Currie et al., 2018). Although the range of realistic values is conscribed, the exact dimensions 
of the historical trawl net were not certain. Similarly, there is some uncertainty around the trawling 
speed attained by the Pieter Faure. Therefore, the most likely figures were used for analyses, 
assuming that they represent historical fishing power. Trawling speeds and net headline lengths are 
central to the standardisation of catches and incorrect assumptions about them may result in biased 
catch rates. Assessment of the most extreme bias that might result from the combination of these two 
variables in the calculation of standardized catches confirmed that they would have negligible effect 
on the results and interpretations reported here. The adjustments effectively inflated historical 
standardized catches by 25% or reduced them by 37%, and changed the sequence of species 
distinguishing between periods (reported by SIMPER and plotted in Figs 4, S4) in a few cases. 
Therefore, even though some uncertainty remains in relation to the replication of the historical trawl 
gear and methods, the results of analyses appear robust to such uncertainty and did not have material 
impact on interpretations or conclusions drawn from the results.

2.2 Trawl Duration

The trawl duration and resulting distance covered under tow is considered to be the largest 
operational difference between periods contrasted. The historical trawl samples were of typical 
commercial duration at that time (~1-3 hours), likely because their surveys were subsidized by sale of
the catch, creating incentive for relatively large, commercially-profitable catches. Recent research 
surveys typically use shorter tows (Battaglia et al., 2006; Walsh, 1991; Wieland and Storr-Paulsen, 
2006) that balance efficiency with attaining ecologically-meaningful samples. Due to economic 
(time) constraints, the repeat survey employed ~30 minute trawls, similar to the national and some 
international trawl survey protocols (ICES, 2012).

Although there are theories to explain changes in catch rates with changing trawl length, empirical 
support of such effects seem limited and predominantly shown from short trawl tows (≤15 minutes). 
Walsh (1991) and Godø et al. (1990) found greater catch per unit effort (CPUE) for various demersal 
fish in the shortest (5-minute) trawls, but not when they compared 15- and 30-minute trawls. Wieland
and Storr-Paulsen (2006) concluded there was no effect on shrimp or halibut CPUE in their 
comparison of 15- and 30-minute trawls. Investigating three crab species, Somerton et al. (2002) 
showed that CPUE was significantly greater in 15-minute tows compared to 30-minute trawls for two
of their taxa. Elevated catch rates in short-duration trawls are likely due to a proportionally greater 
impact of the 'end effect' - catches taken during shooting and hauling of the net, the time of which is 
frequently excluded from the tow duration (Battaglia et al., 2006). Such potential end effects were 
removed from the re-survey catches here and were assumed to have minimal effect on the longer-
duration historical trawls.

Sala (2018) compared 30- and 60-minute tow durations in a single area with similar depths in the 
Central Adriatic Sea. In contrast to the studies cited above, their results suggested greater CPUE for 
longer duration trawls, although their limited sample size (7 trawls per length category) meant that 



differences were significant only for lobster (Nephrops norvegicus) and for summed catches. The 
author suggested that longer tows were more efficient than shorter tows because a greater proportion 
of fish swimming ahead of the moving net would become fatigued and fall back into the net. None of
the above studies demonstrated an effect of trawl length on the sizes of individuals caught. 

A related assumption implicit in comparison of the historical and re-survey catches is that the 
magnitude of catches did not bias selectivity or catch rates. It is likely that as a trawl net fills with 
catch, its geometry and water flow through the net are affected (Battaglia et al., 2006; Somerton et 
al., 2002), thereby influencing the escapement of fish. The assumption was made that catch rates and 
selectivity remained approximately constant across different trawl durations and catch sizes. 
Although an impact of catch size on net performance cannot be discounted, such potential bias is 
expected to be relatively small in that it likely biased few samples (that had the largest catches) and 
was most likely to affect only a small proportion of the entire trawl tow (once the net had filled to a 
capacity where its catch rate was affected). Somerton et al. (2002) found no evidence that differences
between 15- and 30-minute catch rates were related to the total catch size.

2.3 Bird Island Depth Bias

As repeat trawl locations were chosen randomly from the grounds surveyed historically, depths were 
expected to be similar between periods. However a difference in depth distribution was found at Bird 
Island (Fig S2) and an effect of depth on assemblage composition was evident (Table 2). Causes of 
the unexpected Bird Island bias in depth are unclear but appear to be due to error in historical 
measurements. The depths recorded for many of the Bird Island historical trawl samples appear to be 
too shallow compared to nearby re-survey trawls and a 10-m resolution GIS bathymetry layer (not 
shown). The location of historical trawls may have been estimated inaccurately (with a systematic 
bias of overestimating the distance to shore), or the depth measurement may have been negatively 
biased, perhaps due to exaggerated correction of sounder measurements that had been affected by 
currents and/or wind drift. The currents experienced in this area are generally stronger than at the 
other two sites (Less, personal communication 2015). In case this bias was real and to assess its 
impact on results, analyses were repeated with a dataset that excluded seven Bird Island re-survey 
samples deeper than 100 m. Although the results had reduced statistical power, they did not show 
material differences to those presented.

2.4 Long-term Signal vs Short-term Variability

Trawl catches are potentially affected by multiple sources of variability over relatively short time-
frames (Arreguín-Sánchez, 1996). These could include natural- or anthropogenic-driven abundance 
changes over interannual time-frames, catchability variation due to changes in weather/oceanography
(influencing behaviour of fish or fishing gear), and seasonal changes in their catchability due to 
altered reproductive or feeding behaviour. An experimental design contrasting long-term changes 
would therefore be more powerful at isolating long-term differences from such shorter-term 
variability if it included multiple years of data for each period. Unfortunately neither the historical 
data nor repeat survey constraints allowed comparison of multi-year data. It might be argued that had 
the surveys taken place in another year, the results may have looked different. To address this point, 
the magnitude of seasonal, interannual and multi-year variability was compared to that between 
historical and re-survey periods. Those results (Fig S3) confirmed that the magnitude of change 
documented between periods was substantially (2-3.3 times) greater than shorter-term seasonal and 



interannual variability captured in DAFF trawl survey data. The sampling of three geographically 
distinct sites in different months is also expected to reduce the impact of potential short-term bias. 
The major part of observed between-period differences are therefore attributed towards long-term 
change that has occurred in the studied assemblages.

2.5 Taxonomic Limitations

The taxonomic resolution imposed by the historical records (Table 1), requires consideration during 
interpretation of results. Clearly, changes in the composition of grouped taxa cannot be resolved here.
The 'other' category of fish is especially problematic, as it has almost no taxonomic or ecological 
meaning to it. Although included in analyses, interpretation of changes in the 'other' taxon group was 
therefore not a focus. Assumedly this group was used to pool taxa that were relatively rare and not 
considered of economic interest.

The consequence of grouped taxa on comparisons of assemblage composition are expected to 
dampen differences among samples, because opposing species-level abundance changes within a 
group would be concealed (Dulvy et al., 2000). It is important to note, therefore, that long-term 
variability documented here may provide a conservative gauge and that it may have missed important
declines or increases within the grouped taxa. Dulvy et al. (2000) document a case where the 
disappearance or decline of large skates was masked by the increase of two smaller species when 
skate (Rajidae) catches were not disaggregated. Such an explanation might contribute towards the 
lack of average declines seen in this study for Rajidae, Myliobatiformes and Carcharhiniformes, 
despite drastic alterations in several other taxa. Results reported here should not necessarily be 
interpreted as evidence that these elasmobranchs have escaped fishing or other impacts.
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