
REV-03.18.2016.0 

ROI Analysis of the System Architecture 
Virtual Integration Initiative 

Jörgen Hansson, University of Skövde 
Steve Helton, The Boeing Company 
Peter Feiler, Software Engineering Institute 

April 2018 

TECHNICAL REPORT 
CMU/SEI-2018-TR-002 

Software Solutions Division 

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution. 

http://www.sei.cmu.edu 



 

CMU/SEI-2018-TR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY   
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution. 

 

Copyright 2018 Carnegie Mellon University. All Rights Reserved. 

This material is based upon work funded and supported by the Department of Defense under Contract 
No. FA8702-15-D-0002 with Carnegie Mellon University for the operation of the Software Engineer-
ing Institute, a federally funded research and development center. 

The view, opinions, and/or findings contained in this material are those of the author(s) and should not 
be construed as an official Government position, policy, or decision, unless designated by other docu-
mentation. 

This report was prepared for the SEI Administrative Agent AFLCMC/AZS 5 Eglin Street Hanscom 
AFB, MA 01731-2100 

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING 
INSTITUTE MATERIAL IS FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON 
UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, 
AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR 
PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE 
OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY 
WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, 
OR COPYRIGHT INFRINGEMENT. 

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited 
distribution.  Please see Copyright notice for non-US Government use and distribution. 

Internal use:* Permission to reproduce this material and to prepare derivative works from this material 
for internal use is granted, provided the copyright and “No Warranty” statements are included with all 
reproductions and derivative works. 

External use:* This material may be reproduced in its entirety, without modification, and freely distrib-
uted in written or electronic form without requesting formal permission. Permission is required for any 
other external and/or commercial use. Requests for permission should be directed to the Software En-
gineering Institute at permission@sei.cmu.edu. 

* These restrictions do not apply to U.S. government entities. 

Carnegie Mellon® is registered in the U.S. Patent and Trademark Office by Carnegie Mellon Univer-
sity. 

DM18-0482 

  

 

mailto:permission@sei.cmu.edu


 

CMU/SEI-2018-TR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY  i 
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution. 

Table of Contents 

Acknowledgments iv 

Executive Summary v 

Abstract viii 

1 Introduction 1 

2 ROI Based on Rework Cost-Avoidance 4 

3 Exponential Growth in Avionics Software Systems 7 
3.1 Growth Curve for Avionics Software 7 
3.2 Limits of Affordability 8 

4 “As-Is” System-Development Cost Estimates Using COCOMO II 9 
4.1 Setup of COCOMO II 9 
4.2 Cost Computations 12 

5 Rework Cost-Avoidance Estimates 15 
5.1 Phase-Based Rework Cost Percentages 15 
5.2 Defect Removal Efficiency 17 
5.3 Estimate of Cost Savings Due to Rework Avoidance 19 

6 ROI Estimates 23 

7 Discussion on the Use of COCOMO II 27 

8 Conclusion 30 

References   32 

 



 

CMU/SEI-2018-TR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY  ii 
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution. 

List of Figures 

Figure 1:  SLOC Growth of Avionics Software 8 

Figure 2: Total System-Development Cost as a Function of Reuse 14 

Figure 3: Rework Cost-Avoidance as a Function of Reuse for Three Project Sizes with 30% and 50% 
Rework 22 

Figure 4: Projected Arithmetic ROI as a Function of Reuse for Three Project Sizes with 30% and 
50% Rework 26 

Figure 5: Projected Logarithmic ROI as a Function of Reuse for Three Project Sizes with 30% and 
50% Rework 26 

Figure 6: Computed NPV as a Function of Reuse for Three Project Sizes with 30% and 50% 
Rework 26 

 



 

CMU/SEI-2018-TR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY  iii 
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution. 

List of Tables 

Table 1:  SLOC Growth of Avionics Software 7 

Table 2: Summary of Switch Settings in COCOMO II for the SAVI Cost Model 11 

Table 3: Size of Subsystems with Respect to Criticality and Size of Reused Code Base in 
MSLOC 12 

Table 4: Estimated Software-Development Cost in Millions of US$, Given MSLOC and Amount of 
Reuse Using the “As-Is” Process 13 

Table 5: Estimated Total System-Development Cost, Including Hardware, in Millions of US$ 14 

Table 6: Phase-Based Percentages of Introduced and Detected Defects 16 

Table 7: Defect-Removal Cost, Given the Phase of Origin 16 

Table 8: Nominal Phase-Based Rework Costs and Percentages 17 

Table 9: Hayes’s Fault Taxonomy [Hayes 2003, p. 52] 18 

Table 10: Expected Removal Efficiency of Faults and Defects When Deploying SAVI 19 

Table 11: Avoided Cost as a Function of Rework and Software Reuse 20 

Table 12: Computed NPV and PV for 33% Defect-Removal Efficiency 24 

Table 13: Computed NPV and PV for 66% Defect-Removal Efficiency 25 

 

 



 

CMU/SEI-2018-TR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY  iv 
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution. 

Acknowledgments 

This work was conducted in 2008-2009 with funding from the Aerospace Vehicle Systems Insti-
tute (AVSI) and performed by the authors along with members of AVSI, including David Redman 
(AVSI), Don Ward (AVSI), John Chilenski (Boeing), Keith Appleby (BAE Systems), Leon Cor-
ley (Lockheed Martin), Bruce Lewis (U.S. Army Aviation and Missile Research Development 
and Engineering Center Software Engineering Directorate, Department of Defense), Jean-Jacques 
Toumazet (Airbus), John Glenski (Rockwell Collins), Joe Shultz (GE Aviation), Bob Manners 
(FAA), and Manni Papadopoulos (FAA). The authors would also like to thank the members of the 
AVSI group for their comments and feedback. 

The ROI study report was originally published as an AVSI System Architecture Virtual Integra-
tion (SAVI) report. To reach a wider audience, AVSI and the Software Engineering Institute 
(SEI) made the agreement to republish the study as an SEI technical report. 

At the time of the study, Jörgen Hansson was a member of the technical staff at the SEI. Steven 
Helton retired from Boeing in 2015. 

 



 

CMU/SEI-2018-TR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY  v 
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution. 

Executive Summary 

The size of aerospace software, as measured in source lines of code (SLOC), has grown rapidly. 
Airbus and Boeing data show that software SLOC have doubled every four years. The current 
generation of aircraft software exceeds 25 million SLOC (MSLOC). These systems must satisfy 
safety-critical, embedded, real-time, and security requirements. Consequently, they cost signifi-
cantly more than general-purpose systems. Their design is more complex due to quality attribute 
requirements, high connectivity among subsystems, and sensor dependencieseach of which af-
fects all system-development phases but especially design, integration, and verification and vali-
dation. 

Several analyses of software-development projects show that detecting and removing defects are 
the most expensive and time-consuming parts of the work. Finding and fixing defects alone often 
causes projects to overrun budget and schedule because developers must perform significant 
amounts of rework. The basis of their problem is that most defects are introduced in the pre-cod-
ing phases, specifically during requirements and design, but only a fraction are detected and ad-
dressed in the same phase. More than half are not found until hardware/software integration oc-
curs. For aerospace and safety-critical systems, the cost of removing a defect introduced in pre-
coding phases but detected in post-coding phases is two orders of magnitude greater than the cost 
of removing it before code development. 

The System Architecture Virtual Integration (SAVI) initiative is a multiyear, multimillion dollar 
program for developing the capability to virtually integrate systems. The capability promises to 
allow developers to recognize system-level problems early and reduce leakage of errors into the 
post-coding phases. The program is sponsored by the Aerospace Vehicle Systems Institute 
(AVSI), a research center of the Texas Engineering Experiment Station, which is a member of the 
Texas A&M University System. Members of AVSI include Airbus, BAE Systems, Boeing, the 
Department of Defense, Embraer, the Federal Aviation Administration, General Electric, 
Goodrich, Aerospace, Hamilton Sundstrand, Honeywell International, Lockheed Martin, NASA, 
and Rockwell Collins. 

This report presents an analysis of the economic effects of the SAVI approach on the development 
of software-reliant systems for aircraft compared to existing development paradigms. It describes 
the results of a return-on-investment (ROI) analysis to determine the net present value (NPV) of 
the investment in the SAVI approach. The investment into the approach over the multi-year SAVI 
initiative by the different member companies was estimated to be $86M. Their investment covers 
the maturation, adaptation, and piloting of SAVI practices and technologies, and the transition of 
the approach into member companies. The analysis uses conservative estimates of costs and bene-
fits to establish a lower bound on the ROI; less conservative figures yield higher economic gains.  

This study was performed in 2008-2009 in the context of a proof-of-concept virtual-integration 
study in the use of the SAE International standard named the Architecture Analysis and Design 
Language (AADL). The standard is a key element of the virtual system integration approach of 
SAVI and its effectiveness in early discovery of defects through analysis of AADL models of the 
embedded software systems. 



 

CMU/SEI-2018-TR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY  vi 
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution. 

Summary of Methods 

The approach taken in this study was to determine the rework cost-avoidance based on SAVI 
practice by applying an efficiency rate for removing defects to the rework cost of a system com-
pared to current practice. The approach included the following conservative assumptions: 
• We adopted COnstructive COst MOdel (COCOMO) II, the leading tool for estimating soft-

ware development costs using the current development process. Using typical development 
processes, we derived the total cost for developing three software systems of different sizes 
as follows: 
− Each system consists of three types of subsystemssafety critical, highly critical, and 

less critical with code bases of 30%, 30%, and 40%, respectively, of the total code 
basea typical mix in aircraft industry. This let us differentiate the cost of subsystems 
with respect to their requirements. 

− Each subsystem is developed with both new code and the reuse of existing code. We 
considered three cases of new code development and varied the proportions of code re-
use from 30% to 70%. 

− We used three system sizes: two based on the current generation of aircraft software sys-
tems (27 and 30 MSLOC) and one reflecting a future system of 60 MSLOC. The syn-
thetic system clearly illustrates the economic impact of system growth, although build-
ing a system of this size is unaffordable. 

− The nominal labor rate is $28,200 per month for 2014, based on 2006 data of $22,800 = 
$150/hr. * 152 hr./mo. * 1.02694*(2014 – 2006), adjusted for annual inflation at 
2.694%. 

• On the basis of SAVI members’ experiences, we estimated the total system-development 
cost from an estimate of the software-development cost using a multiplier of 1.55, which re-
flects software development making up about 66% of system-development cost. 

• On the basis of documented and experiential evidence for aerospace systems, we used two 
conservative estimates for total rework cost: 30% and 50% of the total system-development 
cost. 

• We determined ROI and NPV based on rework cost reduction attributed to earlier discovery 
of defects and did not include reductions in maintenance cost and deployment delays. We 
limited rework cost savings to discovery of requirements errors, which make up 35% of all 
errors and 79% of the rework cost. 

• We used experts’ estimates of the efficiency rate for removing defects of 66% as well as a 
reduced rate of 33% for more conservative estimates. 

• We assumed that SAVI practices of model creation and analysis would replace existing doc-
ument-based practices of system requirement and design specification at a similar cost. 

• We used $86M as estimated investment by the SAVI member companies over multiple years 
to mature SAVI and transition current practice to SAVI. 



 

CMU/SEI-2018-TR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY  vii 
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution. 

Summary of Findings 

Our analysis produced the following outcomes and observations: 
• Approximately 70% of defects are requirements and design defects, but less than 10% are 

detected in these early phases. The rework cost of correcting defects introduced in require-
ments and design but detected late in the development lifecycle is one to two orders of mag-
nitude higher than the cost of correcting them before coding. Requirements-related rework 
cost amounts to 79% and design-related rework costs 16% of the total rework cost.  

• In the most conservative scenario, for a 27-MSLOC system, the smallest cost avoidance is 
$717 million (out of an estimated $9.176 billion cost of development, a 7.8% cost savings). 
This is with 70% reuse, rework cost as 30% of total system-development cost, and a removal 
efficiency of 33%. The arithmetic and logarithmic (continuously compounded) ROIs are 7.3 
and 2.12, with an NPV of $263 million. 

• The nominal cost reduction for a 27-MSLOC system is $2.391 billion (out of an estimated 
$9.176 billion, a 26.1% cost savings), occurring at 70% reuse, rework cost as 50% of total 
system-development cost, and 66% removal efficiency. The arithmetic and logarithmic ROIs 
are 26.8 and 3.33, with an NPV of $1.076 billion. 

• The cost reduction is linear to the rework cost and removal efficiency. With other factors 
held constant in a scenario, each unit’s increase in removal efficiency for requirements errors 
resulted in a cost reduction. For example, for the 27-MSLOC system with the highest degree 
of reuse, each 1% increase in removal efficiency resulted in a cost reduction of $22 million. 

• Cost reduction for a given system size is also linear to the amount of reuse. However, com-
paring the cost reduction for systems of different size, we observed that the cost reduction 
for 60 MSLOC was more than twice that for 30 MSLOC. This is to be expected given the 
more-than-linear increase in interaction complexity in a larger system. 

The predicted returns were considered to be higher than anticipated, which led to several follow-
on activities. First, one of the SAVI system integrator members obtained an independent assess-
ment by its organization’s cost estimating group that agreed with the findings of this report. Sec-
ond, this initial ROI study was followed by a second SAVI ROI study. In the second study, a 
Monte Carlo algorithm was used to drive the COCOMO II cost estimation, resulting in a reduced 
variation of results. In addition, the commercial tool SEER was used to build a SEER-SEM and 
SEER-H model of a Boeing 777-200 to explicitly estimate the cost of the non-software portion of 
the system and compare it to both publicly available data and estimates of the original SAVI ROI 
study presented here. The SEER analysis confirmed that the cost multiplier of 1.55 was accepta-
ble for 2010. Unfortunately, the software count increases while the physical parts count remains 
stable, resulting in a software increase from 66% in 2010 to 88% of the total system-development 
cost by 2024. 



 

CMU/SEI-2018-TR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY  viii 
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution. 

Abstract 

The System Architecture Virtual Integration (SAVI) initiative is a multiyear, multimillion dollar 
program that is developing the capability to virtually integrate systems before designs are imple-
mented and tested on hardware. The purpose of SAVI is to develop a means of countering the 
costs of exponentially increasing complexity in modern aerospace software systems. The program 
is sponsored by the Aerospace Vehicle Systems Institute, a research center of the Texas Engineer-
ing Experiment Station, which is a member of the Texas A&M University System. This report 
presents an analysis of the economic effects of the SAVI approach on the development of soft-
ware-reliant systems for aircraft compared to existing development paradigms. The report de-
scribes the detailed inputs and results of a return-on-investment (ROI) analysis to determine the 
net present value of the investment in the SAVI approach. The ROI is based on rework cost-
avoidance attributed to earlier discovery of requirements errors through analysis of virtually inte-
grated models of the embedded software system expressed in the SAE International Architecture 
Analysis and Design Language (AADL) standard architecture modeling language. The ROI anal-
ysis uses conservative estimates of costs and benefits, especially for those parameters that have a 
proven, strong correlation to overall system-development cost. The results of the analysis, in part, 
show that the nominal cost reduction for a system that contains 27 million source lines of code 
would be $2.391 billion (out of an estimated $9.176 billion), a 26.1% cost savings. The original 
study, reported here, had a follow-on study to validate and further refine the estimated cost sav-
ings. 

 

 



 

CMU/SEI-2018-TR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY  1  
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution. 

1 Introduction 

Analysis of software-development projects shows that detecting, locating, and removing defects 
are the most expensive and time-consuming parts of the work. Finding and fixing defects often 
cause projects to run over budget and schedule as developers perform significant amounts of re-
work in later phases of product development [RTI 2002, Dabney 2003]. For information technol-
ogy (IT) applications, the defect-removal efficiency before delivery is generally about 80% to 
85%; the cost of correcting these defects averages about 35% of the total system-development 
cost [Jones 2007]. Correspondingly, the time needed to rework defects averages approximately 
35% of the total project-development schedule. 

Experts have observed that the rework fraction of total development work increases with the size 
of the project and can be as high as 60% to 80% for very large projects [Basili 1994, 2001; Jones 
1996; Cross 2002]. Aerospace software systems, in particular, have grown at a rapid pace. Airbus 
and Boeing data presented in this report show that growth in millions of source lines of code 
(MSLOC) for aircraft software will double every four years, and current-generation software ex-
ceeds 25 MSLOC. Safety-critical system design is intrinsically more complex than general-pur-
pose system design because of the quality attribute requirements, high connectivity among sub-
systems, and sensor dependencies that affect all system-development phases but are most critical 
to design, integration, and verification and validation activities.  

The main problem is clear: most defects are introduced in the early pre-coding phases of develop-
ment, such as requirements and design, but the majority of defects are detected and removed in 
post-coding phases, such as integration and testing. The nominal cost of removing a defect intro-
duced in pre-coding phases and detected in post-coding phases is generally one order of magni-
tude higher than the cost of removing it prior to code development. For safety-critical systems, the 
difference can be as much as two orders of magnitude higher. In this report, we present such data 
from multiple sources. 

Software systems are growing in size, not only in the number of subsystems but also the degree of 
interactions between them. This condition likely will further raise the defect-removal cost, as each 
defect affects a larger number of subsystems. This condition will require innovative solutions in 
the following areas: 

• Understanding the dynamics of defect introduction and removalthe phases in which de-
fects are introduced, the phases in which they are detected, and the cost of removing defects 
relative to the phase lag between introduction and detectionis paramount to accurately es-
timating the rework cost in terms of total software cost. 

• The dominance of rework cost resulting from requirements and architectural design defects 
clearly suggests a strong need for improved techniques to prevent and detect such defects. 

The System Architecture Virtual Integration (SAVI) initiative is a multiyear, multimillion dollar 
program focused on developing the capability to virtually integrate systems before designs are 
committed to hardware, as a means of managing the exponentially increasing complexity of mod-
ern aerospace systems. Its objective is to discover system-level errors—typically requirements 
and design errors—through virtual integration that occurs earlier in the development lifecycle. 



 

CMU/SEI-2018-TR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY  2  
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution. 

The program is led by the Aerospace Vehicle Systems Institute (AVSI), a research center of the 
Texas Engineering Experiment Station, which is a member of the Texas A&M University Sys-
tem. Membership in AVSI includes Airbus, BAE Systems, Boeing, the Department of Defense, 
the Federal Aviation Administration, General Electric, Goodrich Aerospace, Hamilton 
Sundstrand, Honeywell International, Lockheed Martin, NASA, and Rockwell Collins. 

Using a quantitative architecture-modeling approach, SAVI aims to significantly increase early 
detection and removal of defects as well as to prevent defects from entering into the design in the 
first place. One project that SAVI members have undertaken is a proof-of-concept demonstration 
of SAVI technology to discover defects early in development through analysis of multiple func-
tional and non-functional properties on a realistic multi-tier model of an aircraft avionics system 
[Feiler 2009, Feiler 2010, Redman 2010]. The technology consists of analytical technologies for 
virtual integration of embedded software systems such as the SAE International Architecture 
Analysis and Design Language (AADL) standard and tool suite. Another SAVI project is a return-
on-investment (ROI) analysis, which is the subject of this report. This report presents our analysis 
of the economic effects on the development of software-reliant systems for aircraft when deploy-
ing SAVI relative to existing development paradigms. A challenge for this ROI study was that it 
had to be based on publicly available data rather than on competition-sensitive data of the mem-
bers. 

To evaluate the economic effects of the SAVI engineering practice, we compared the relative cost 
advantage of two development paradigms, one following the development practices in place today 
(“as is”) and another deploying SAVI technology (“to be”). If all else remains the same, the dif-
ference between the two approaches is the efficiency in managing complexity and correcting de-
fects. From our ROI (or rate-of-return) analysis, we computed the net present value (NPV, also 
called net present worth).  

ROI is a measure of the monetary value generated by an investment or of the monetary loss 
caused by an investment. It measures the cash flow or income stream from the investment to the 
investor and denotes the ratio of money gained or lost (realized or unrealized) on an investment 
relative to the amount of money invested. In our case, SAVI members expected to invest $86M 
over multiple years into the maturation and transition of SAVI technology into practice, and the 
ROI is an indication of rate of return due to cost reduction.  

NPV is commonly used for appraising long-term projects by deriving the time value of money 
and considering cash flows over time. Outgoing cash flows include start-up costs, initial invest-
ments, and operational costs; incoming cash flow implies positive cash flow from the investment, 
which, in the case of SAVI, is based largely on cost avoidance. Computing NPV indicates how 
much value an investment or project adds to the organization. A positive NPV implies that the in-
vestment would add value to the organization; a negative NPV implies that the investment would 
subtract value. In our case, NPV represents cost savings minus expenses in U.S. dollars for a pro-
ject running from 2010-2018 using SAVI technology.  

In Section 2, we present the ROI analysis in terms of a rework cost-avoidance formula. The sec-
tions that follow that analysis elaborate on the contributing elements of the ROI formula:  
• In Section 3, we discuss the exponential growth of avionics software systems in terms of 

SLOC by analyzing the historical data to correlate major cost drivers to system size.  



 

CMU/SEI-2018-TR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY  3  
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution. 

• In Section 4, we elaborate on how we obtained software and system-development cost esti-
mates under the “as-is” process using COnstructive COst MOdel (COCOMO) II with the 
SLOC estimates as input.  

• In Section 5, we present our method for estimating rework cost-avoidance due to early dis-
covery of requirements-related defects as a percentage of total system-development cost.  

• In Section 6, we present the ROI and NPV estimates based on the rework cost-avoidance for-
mula.  

• In Section 7, we discuss the limitations of using COCOMO II.   
• Finally, in Section 8, we interpret the results of the ROI analysis and reflect on the assump-

tions we used as well as potential improvements. 



 

CMU/SEI-2018-TR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY  4  
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution. 

2 ROI Based on Rework Cost-Avoidance 

We based our analysis to determine ROI and NPV for a typical SAVI deployment on the invest-
ment (an estimated $86M) by SAVI member companies in the multi-year SAVI initiative to ma-
ture and transition the new technology and development paradigm to member company product 
groups. We also considered the cost of implementing SAVI in a project to be the same as the cost 
for current methods, once a team has been trained in the SAVI practicea cost covered in the in-
vestment figure.1  

The ROI analysis is based on avoiding rework cost by detecting defects that are currently detected 
post-unit test with a high-rework cost earlier in the development process through use of SAVI. 
The SAVI approach aims to reduce requirements and design defects through up-front modeling 
and validation, preventing these defects from flowing down to later phases where they would 
cause significant rework efforts and thus cost more to fix. 

Our estimates of the possible savings from rework avoidance include several observations about 
factors that increase costs:  
• Rework cost is primarily driven by failures in integration [Lutz 1993].2 
• More than 70% of all defects can be traced back to defects introduced in pre-code develop-

ment phases (requirements and design) with nominal rework cost of two orders of magnitude 
greater than the cost of removing defects before coding [Dabney 2003]. 

• Rework constitutes a significant portion of the total system-development cost with require-
ments-related rework making up 79% of the total rework cost [Dabney 2003]. Thus, increas-
ing defect detection and removal efficiency lowers the rework cost.  

We then computed the rework cost avoided as follows: 

rework cost-avoidance = estimated total “as-is” system-development cost * % rework cost * % 
requirements-error rework cost * % requirements-error removal efficiency 

________________________________________________________________________________ 

1  Implementation costs in a “to-be” SAVI project consist of creating, evolving, and analyzing practice models of 
the system. Those activities replace current document-based methods for specifying system requirements, re-
quests for bids, and design documentation. In the context of this study, we assume the cost for applying SAVI to 
be the same as the cost for current methods. 

2  In this study, 387 software defects discovered during the integration and test phase of the Voyager and Galileo 
spacecraft were analyzed (the same software was used to control both spacecraft). Lutz found that 98% of the 
faults were attributed to “functional faults” (operating faults and conditional faults resulting from incorrect condi-
tion or limit values), behavioral faults (i.e., a system is not conforming to requirements), and “interface faults” 
(related to interaction with other systems’ components). Only 2% of the faults were coding faults internal to a 
module. The functional and interface faults were direct consequences either of errors in understanding and im-
plementing requirements or of inadequate communication among development teams. Safety-related errors 
accounted for 48% of the errors discovered in Voyager and 56% discovered in Galileo; 36% of the errors in 
Voyager and 19% of the errors in Galileo were related to interface faults. Inter-team communication errors (as 
opposed to intra-team) were the leading cause of interface faults (93% for Voyager and 73% for Galileo). One 
primary cause of safety-related interface faults was misunderstood hardware-interface specifications (67% for 
Voyager and 48% for Galileo). Errors in recognizing and understanding the requirements were a significant 
cause of functional faults (62% for Voyager and 79% for Galileo). 



 

CMU/SEI-2018-TR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY  5  
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution. 

We estimated the total system-development cost using the “as-is” process as follows: 
• We estimated the size in SLOC and complexity of software-reliant avionics systems by ex-

trapolating data from previously built aircraft. Developers in AVSI checked these estimates 
for validity. 

• We used COCOMO II [Boehm 2000, COCOMO II], which is an industry-accepted cost-esti-
mating tool, to estimate software-development costs based on the software system size in 
SLOC and other parameters that reflect system and project complexity.  

• We considered reuse percentages ranging from 30% to 70% in the COCOMO II-based esti-
mation. 

• We then derived system-development costs in proportion to the software-development cost 
by using a multiplication factor of 1.55. This figure was acceptable to the SAVI member 
companies. 

The rework cost percentage represents the total rework cost as a percentage of the total system-
development cost. The rework cost percentage for requirements errors represents the percentage 
of rework cost attributable to requirements errors in terms of total rework cost. The removal-effi-
ciency percentage for requirements errors represents the percentage of requirements errors that are 
discovered and removed during the requirements phase due to SAVI early detection instead of in 
a later phase.  
• We investigated the effects of changing the percentage of rework cost. Assuming all else re-

mains the same, we considered rework to be a conservative 30% of total cost and a nominal 
50% of total cost for 2010, in agreement with SAVI members.  

• We computed the rework cost for requirements errors as a percentage of the total rework 
cost. We used an estimated number of defects that would typically be introduced and discov-
ered in different development phases for a system of a defined size and complexity. Empiri-
cal data derived from case studies [RTI 2002, Dabney 2003] and recent experiences of the 
companies participating in the SAVI initiative corroborated our estimates. 

• We determined the effectiveness of defect-removal efficiency in SAVI-based development 
compared to current system-development practices, based on the ratios of defects being in-
troduced in the different phases of the system-development lifecycle and the likelihood of 
detecting a defect in a certain phase. On the basis of Miller’s fault taxonomy [Miller 1995] 
and fault distributions derived from current system-development practices (i.e., as is) [Hayes 
2003], we applied conservative assumptions about the effectiveness of SAVI deployment in 
reducing certain classes of faults. Specifically, for each fault class, experts from SAVI-
member companies assigned a 0, 50, or 100% probability value for the impact of the SAVI 
approach on fault-removal efficiency and improved early fault detection.3 This evaluation 
resulted in a defect-removal efficiency of 66% for requirement defects. We also added a 
skeptical scenario in which we reduced the defect-removal efficiency by a factor of 0.5 to 
33%. 

________________________________________________________________________________ 

3  These estimates were made based on the proof-of-concept demonstration experience and member company 
experiences with analytical model-based technologies. 



 

CMU/SEI-2018-TR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY  6  
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution. 

We used the resulting “to-be” rework cost-avoidance figures to compute arithmetic and logarith-
mic ROI, present value (PV), and NPV values following Dabney’s approach [Dabney 2003]. 

Fairley and Willshire classified rework into three categories [Fairley 2005]: 

1. Evolutionary rework, which is caused by external factors, including changing requirements, 
design constraints, and environmental factors. This rework is unavoidable given the unfore-
seeable nature of external factors. 

2. Retrospective rework, which is conducted to improve structure, functionality, behavior, or 
quality attributes of previous versions to accommodate the needs of the current version. 

3. Corrective rework, which is aimed at fixing defects discovered in current and previous ver-
sions. 

In our rework cost-avoidance and ROI calculations, we only take into account corrective rework 
before initial delivery. SAVI practices will have cost-savings effects beyond directly reducing the 
rework cost. An example of these effects is avoiding the programmatic costs of delays in system 
delivery and reduction in continuing sustainment costs. Furthermore, retrospective and evolution-
ary work may experience cost reduction due to SAVI. The ROI, PV, and NPV calculations do not 
reflect such additional cost savings. 



 

CMU/SEI-2018-TR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY  7  
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution. 

3 Exponential Growth in Avionics Software Systems 

Software was first used in commercial aircraft in 1968 when Litton LTN-52 Inertial Navigation 
Systems entered service on the Boeing 707 [Potocki de Montalk 1991]. Software has since grown 
to become more important for various services in an aircraft; correspondingly, software has in-
creased in size and complexity. 

3.1 Growth Curve for Avionics Software 

Table 1 and the corresponding plot in Figure 1 illustrate the growth of software content between 
1974 and 1993, based on Airbus data [Potocki de Montalk 1991]. The Words and SLOC columns 
denote the size of the software in 32-bit words and in SLOC, respectively. The conversion from 
Words to SLOC uses a factor of 0.2, which is based on the assumption that one word equals four 
bytes and that one SLOC is approximately 20 bytes (i.e., 4/20 = 0.2) [Hatton 2005]. Since the his-
toric growth appears to be exponential, we derived the log of SLOC, or ln(SLOC), and extrapo-
lated the data for more recent years, as shown in Figure 1. The projected values for SLOC growth 
over the interval 2000–2010 align well with internal and proprietary data that member organiza-
tions of AVSI have gathered from recent development of avionics software. 

Table 1:  SLOC Growth of Avionics Software 

 

Model Year Words SLOC ln(SLOC) SLOC LineFit ln(LineFit) 

A300B 1974 23,000 4,600 8.434 46,302 10.74 

A300FF 1981 200,000 40,000 10.597 186,911 12.14 

A310 1985 2,000,000 400,000 12.899 414,901 12.94 

A320 1988 4,000,000 800,000 13.592 754,528 13.53 

A330/340 1993 10,000,000 2,000,000 14.509 2,044,375 14.53 

 2000    8,252,771 15.93 

 2006    27,293,677 17.12 

 2010    60,585,711 17.92 

 2014    134,486,402 18.72 

 2018    298,529,010 19.51 



 

CMU/SEI-2018-TR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY  8  
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution. 

 

Figure 1:  SLOC Growth of Avionics Software 

To calculate the SLOC LineFit points that are plotted in Figure 1, we computed the interception 
point at which a line intersects the y-axis by using existing x-values and y-values. The interception 
point is based on a best-fit regression line plotted through the known x-values and known y-val-
ues. It uses the slope of the linear regression line through data points for known values of SLOCs 
using ln(SLOC) (denoted y in formula) and known years (denoted x in formula). The slope is the 
vertical distance divided by the horizontal distance between any two points on the line, which is 
the rate of change along the regression line. 

Formally, we have 𝑎𝑎 =  𝑦𝑦 − 𝑏𝑏𝑥𝑥, 𝑏𝑏 =  ∑(𝑥𝑥−𝑥𝑥)(𝑦𝑦−𝑦𝑦)
∑(𝑥𝑥−𝑥𝑥)2

, where x and y represent the averages of 

known data. The ln(LineFit) provides the exponential growth, which we used to project the num-
ber of SLOCs, based on trends in existing aerospace software. The SLOC LineFit is computed as 
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖𝑖𝑖 = 𝑒𝑒(+(𝑏𝑏∗𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌)+𝑎𝑎). When we compared the values of SLOC and SLOC LineFit, we 
saw that small code sizes grew faster, but the projections held well for 1985–1993. Therefore, 
when computing the slope (b), we used the interval 1985–1993, for which we had public data. 

3.2 Limits of Affordability 

Unconstrained growth will rapidly lead to unsustainable costs. Thus, a limiting factor related to 
affordability will produce an inflection point, or S-shape, in the growth curve. SAVI members 
consider the cost of $10 billion as such an inflection point, shown in Figure 1 as equivalent to 27 
MSLOC. The purpose of the proof-of-concept activity for the SAVI virtual-integration approach 
is to show that a change in practice will result in considerable cost reductions, thus allowing much 
larger software systems to be developed and certified at sustainable cost. 



 

CMU/SEI-2018-TR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY  9  
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution. 

4 “As-Is” System-Development Cost Estimates Using 
COCOMO II 

We estimated the system-development cost under the “as-is” process by first using COCOMO II 
to estimate the software-development cost and then extrapolating the total system-development 
cost based on a realistic multiplication factor that the SAVI members agreed with. This factor of 
1.55corresponding to software representing 66% of total system-development costwas con-
sidered nominal for the 2010 time frame. This figure was further confirmed in a follow-on SAVI 
ROI study by explicitly estimating the system cost through the use of SEER [Ward 2011, SAVI 
2015a, SAVI 2015b]. 

COCOMO II has been designed with the following capabilities [Boehm 2000, p. 3]: 

1. Provide accurate cost and schedule estimates for both current and likely future software pro-
jects. 

2. Enable organizations to easily recalibrate, tailor, or extend COCOMO II to better fit their 
unique situations. 

3. Provide easy-to-understand definitions of the model’s inputs, outputs, and assumptions. 
4. Provide a constructive, normative, and evolving model. 

COCOMO II represents the evolution of COCOMO 81 [Boehm 1981], which it replaces. The 
COCOMO family of tools has enjoyed wide adoption in the software industry and has been suc-
cessfully tailored to specific domains within that industry.  

COCOMO II uses a measure of SLOC that represents the size of the system to be developed. The 
measure of SLOC in COCOMO II follows the guidelines developed by the Software Metrics Def-
inition Group [Park 1992]. 

4.1 Setup of COCOMO II 

We set the following parameters in COCOMO II: 
• The size of the code base is in MSLOC of C code (three cases): 27, 30, and 60. 

• The code base is divided into three subsystems based on criticality: 30% safety critical, 30% 
highly critical, and 40% less criticala typical mix in aircraft industry. 

• The percentage of software reuse is varied from 30% to 70%. 

• The nominal labor rate is $28,200 per month for 2014 (based on 2006 data of $22.80 = 
$150/hr. * 152 hr./mo. * 1.02694*(2014 – 2006) and has been adjusted for inflation at 
2.694% annually.4 

• We used the post-architecture model because it is the most detailed model offered in 
COCOMO II. 

________________________________________________________________________________ 

4  Computed Consumer Price Index average from 1991 to 2008 [U.S. Department of Labor 2011] 



 

CMU/SEI-2018-TR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY  10  
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution. 

COCOMO II features parameters to characterize the software-development project to ensure that 
an estimate is accurate and true to the preconditions of the project. Each of the parameters reflects 
a particular attribute of the project and is rated on a six-point scale. Each rating is assigned an ef-
fort multiplier. The product of all effort multipliers results in an effort adjustment factor (EAF). 
The EAF is applied to the system size to estimate project effort taking into account the project-
specific attribute ratings. We tailored the COCOMO II model to an aircraft-industry-specific pro-
ject scenario by assigning appropriate ratings for these project attributes.  

Following COCOMO II guidance, we set attribute ratings conservatively toward the nominal 
level. Thus, if a level fell between high and very high, we set it at high. The following attributes 
were assigned ratings with the effort factor shown in parentheses, and the rating assignments are 
summarized in Table 2. The attributes are as follows: 
• Aerospace development is conducted by internationally distributed teams that engage in mul-

tisite development (SITE). 

• Aerospace software is safety critical; as a result, it requires a high degree of reliability 
(RELY). 

• Aerospace software is embedded, operates under stringent processor and memory-resource 
constraints, and requires efficient utilization of processing hardware (TIME) and memory 
(STOR). 

• Aerospace software requires more documentation than conventional software (DOCU). 

• Aerospace software is more complex than conventional software (CPLX). 

The multisite-development (SITE) attribute indicates the degree of site collocation (from fully 
collocated to international distribution) and communication support (from surface mail and some 
phone access to full interactive multimedia). We chose the level  
• very low (1.22): international 

The required-software-reliability (RELY) attribute denotes the extent to which the software must 
perform its intended function over a period of time. We chose three criticality levels to reflect less 
critical, highly critical, and safety-critical subsystems: 
• nominal (1.00): moderate, easily recoverable losses 

• high (1.10): high financial loss 

• very high (1.26): risk to human life 

The execution-time-constraint (TIME) attribute indicates the expected use of processing capacity. 
We chose the level 
• high (1.11): 70% use of available execution time 

The main-storage-constraint (STOR) attribute represents the degree of main storage constraint im-
posed on a software system or subsystem. We chose the degree 
• high (1.05): 70% use of available storage 

Regarding the attribute that matches documentation needs to lifecycle needs (DOCU), developing 
for reusability imposes constraints on a project's RELY and DOCU ratings. The RELY rating 



 

CMU/SEI-2018-TR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY  11  
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution. 

should be at most one level below the required-reusability (RUSE) cost-driver rating.5 The DOCU 
rating should be at least nominal for nominal and high RUSE ratings and at least high for very 
high and extra-high RUSE ratings. We chose the level 
• high (1.11): excessive for lifecycle needs 

The product-complexity (CPLX) rating is the subjective weighted average of the complexity rat-
ing with respect to control operations, computational operations, device-dependent operations, 
data-management operations, and user-interface management operations. Aerospace software 
ranks extra high for control operations and device-dependent operations due to the hard-real-time-
control way resources and devices are managed. For computational operations, database opera-
tions, and user interfaces (less critical and highly critical subsystems), we considered the com-
plexity to be at least high. Few software systems exhibit the complexity of aerospace software; 
therefore, we chose the ranking of very high for safety-critical subsystems. We chose levels 
• high (1.17) 

• very high (1.34) 

Because large aerospace software consists of many subsystems with different requirements and 
criticalities, we decomposed the system into a number of modules in COCOMO II and set differ-
ent switch levels for each subsystem, resulting in EAF changes. 

Table 2 summarizes the switch settings in COCOMO II that focus on system-specific aspects. 

Table 2: Summary of Switch Settings in COCOMO II for the SAVI Cost Model 

 Safety Critical Highly Critical Less Critical 

Fraction of Code Base 30% 30% 40% 

CPLX Very high High High 

RELY Very high High Nominal 

STOR High 

TIME High 

DOCU High 

SITE Very low 

EAF 2.66 2.03 1.85 

COCOMO II has an additional set of parameters that characterizes qualities more specific to or-
ganizations, as they are related to staff expertise, organization maturity, development environ-
ment, and the like. These parameters, which we set to the nominal value, are 
• database size (DATA) 

• platform volatility (PVOL), referring to hardware and operating systems 

• use of software tools (TOOL) 

________________________________________________________________________________ 

5  RUSE captures the effort needed to make software components intended for reuse. 



 

CMU/SEI-2018-TR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY  12  
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution. 

We also used personnel attributes to capture the level of skills that personnel possess. These in-
clude 
• analyst capabilities (ACAP) 

• applications experience (APEX) 

• programmer capabilities (PCAP) 

• platform experience (PLEX) 

• programming-language experience (LTEX) 

• personnel continuity (PCON) 

4.2 Cost Computations 

We considered 30%, 40%, 50%, 60%, and 70% of reuse for the three code bases that contain 27, 
30, and 60 MSLOC. The reuse percentage was applied to all subsystems, as shown in Table 3. 
The Code Base column shows the total SLOC divided into the three criticality categories, with 
safety-critical software accounting for 30%, highly critical software for 30%, and less-critical 
software for 40%―a typical mix in the aircraft industry. The next set of columns shows the 
amount of reused code for each criticality category based on a reuse percentage ranging from 30% 
to 70%. 

Table 3: Size of Subsystems with Respect to Criticality and Size of Reused Code Base in MSLOC 

MSLOC Criticality Code 
Base 

  Reuse 

30% 40% 50% 60% 70% 

27 

Safety critical (30%) 8.1 2.43 3.24 4.05 4.86 5.67 

Highly critical (30%) 8.1 2.43 3.24 4.05 4.86 5.67 

Less critical (40%) 10.8 3.24 4.32 5.4 6.48 7.56 

30 

Safety critical 9 2.7 3.6 4.5 5.4 6.3 

Highly critical 9 2.7 3.6 4.5 5.4 6.3 

Less critical 12 3.6 4.8 6 7.2 8.4 

 60 

Safety critical 18 5.4 7.2 9 10.8 12.6 

Highly critical 18 5.4 7.2 9 10.8 12.6 

Less critical 34 7.2 9.6 12 14.4 16.8 

COCOMO II has additional switches that affect how the cost estimation reflects the amount of 
code reuse. We considered software understanding (SU) to be higher than a nominal value (equal 
to 20), which implies that the system has good structure (high cohesion, low coupling), good ap-
plication clarity (good correlation between program and application code), and a high degree of 
self-descriptiveness (good code commentary, good and useful documentation overall). The degree 
of unfamiliarity of the software (UNFM) is 0.2, indicating that the software is mostly familiar and 
is lower than the nominal value of 0.4. We set the remaining parameters to nominal values. As a 
result, the computed adjustment factor is 20. 



 

CMU/SEI-2018-TR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY  13  
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution. 

Table 4 presents the estimated costs of the software development produced by COCOMO II. All 
costs are in millions of US$.6 COCOMO II produces nominal cost values as well as lower bound 
(LB of -20%) and upper bound (UB of +25%) values (designated in the table with a superscript 
a). 

Table 4: Estimated Software-Development Cost in Millions of US$, Given MSLOC and Amount of Re-
use Using the “As-Is” Process 

MSLOC Reuse Nominala Lower Bounda Upper Bounda 

27 

70% $5,920  $4,736  $7,401  

60% $6,938  $5,551  $8,674  

50% $7,971  $6,377  $9,964  

40% $9,044  $7,235  $11,304  

30% $10,070  $8,057  $12,589  

30 

70% $6,648  $5,319  $8,310  

60% $7,792  $6,233  $9,739  

50% $8,951  $7,160  $11,188  

40% $10,123  $8,098  $12,654  

30% $11,307  $9,047  $14,135  

60 

70% $14,247  $11,397  $17,809  

60% $16,698  $13,358  $20,872  

50% $19,182  $15,345  $23,977  

40% $21,694  $17,356  $27,118  

30% $24,235  $19,388  $30,294  

On the basis of historical data from previous projects in the industry, we applied 1.55 as a multi-
plier to the software-development cost to derive the total system-development cost. In a follow-on 
ROI study [SAVI 2015b], the commercial tool SEER was used to build a SEER-SEM and SEER-
H model of a Boeing 777-200 to explicitly estimate the cost of the non-software portion of the 
system and compare it to both publicly available data and the estimates of the original SAVI ROI 
study presented in this report. The follow-on study confirms that the cost multiplier of 1.55 was 
acceptable for the 2010 time frame. Unfortunately, the software count increases while the physical 
parts count remains stable, resulting in software increasing from 66% in 2010 to 88% by 2024 of 
the total system-development cost. By 2024, then, the cost multiplier will be 1.12. 

If we plot the cost across different reuse percentages, we can see that the software-development 
cost grows linearly with a decrease in reuse percentage. Figure 2 illustrates this cost for the three 
system sizes’ nominal and lower bound values. 

________________________________________________________________________________ 

6  COCOMO computes the cost at full granularity, and we use the exact values for all calculations. However, for 
readability purposes, we present the cost estimates rounded off to millions of US$. 



 

CMU/SEI-2018-TR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY  14  
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution. 

 

Figure 2: Total System-Development Cost as a Function of Reuse 

Table 5 shows the total system-development cost. We used these numbers throughout the remain-
der of the ROI analysis. Again, we present the nominal, lower bound, and upper bound estimates. 

Table 5: Estimated Total System-Development Cost, Including Hardware, in Millions of US$ 

 

$0

$5,000

$10,000

$15,000

$20,000

$25,000

$30,000

$35,000

$40,000

70% 60% 50% 40% 30%

Co
st

 (M
U

SD
)

COCOMO II Estimated Development Cost

60 MSLOC - Nom

60 MSLOC - LB

30 MSLOC - Nom

30 MSLOC - LB

27 MSLOC - Nom

27 MSLOC - LB

MSLOC Reuse Nominal Lower Bound Upper Bound 

27 

70% $9,176  $7,341  $11,471  

60% $10,755 $8,604 $13,444 

50% $12,356  $9,884  $15,444  

40% $14,018 $11,213 $17,522 

30% $15,609  $12,489  $19,513  

30 

70% $10,304  $8,244  $12,880  

60% $12,077 $9,661 $15,096 

50% $13,873  $11,099  $17,341  

40% $15,691 $12,552 $19,613 

30% $17,527  $14,023  $21,909  

60 

70% $22,083  $17,666  $27,604  

60% $25,882 $20,704 $32,352 

50% $29,732  $23,784  $37,164  

40% $33,626 $26,901 $42,033 

30% $37,564  $30,051  $46,955  



 

CMU/SEI-2018-TR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY  15  
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution. 

5 Rework Cost-Avoidance Estimates 

We based the rework cost-avoidance estimates on three figures: 

1. the rework cost as a percentage of total system-development cost 
2. the percentage of the rework cost that is attributable to given types of errors (in our case, we 

focused on requirements errors.) 
3. the percentage of the rework cost that reflects the defect-removal efficiency of a virtual-inte-

gration practice based on SAVI 

The rework fraction of total software-development work can be as high as 60% to 80% for very 
large projects [Basili 1994, 2001; Jones 1996; Cross 2002]. To determine the rework cost as a per-
centage of total system-development cost, we used 50% as an approximation for software-devel-
opment cost, drawn from software being 66% of system-development cost and rework being 
around 70% of software-development cost. We also chose 30% as a more conservative number. 

5.1 Phase-Based Rework Cost Percentages 

To estimate the percentage of rework cost that is attributable to requirements errors, we used the 
percentage of defects introduced and removed in various phases as well as phase-based rework 
cost factors. 

Researchers have carried out a number of studies to determine where defects are introduced in the 
development lifecycle, when these defects are discovered, and the resulting rework cost. We lim-
ited ourselves here to work previously performed by the National Institute of Standards and Tech-
nology (NIST), Galin, Boehm, and Dabney [Boehm 1981, RTI 2002, Dabney 2003, Galin 2004]. 
The NIST data primarily focuses on IT applications, while the other studies draw on data from 
safety-critical systems. Findings for the percentages of defects introduced and discovered were 
quite consistent across these studies, with the exception that higher leakage rates into operation 
are acceptable in IT systems.  

Table 6 shows the percentages of defect introduction and discovery that we used for this ROI 
study. The Row Total column shows the percentages of defects introduced in each development 
phase. Each row shows the distribution of each percentage across phases, and all of the entries in 
a row add up to the row total. For example, 35.25% of all defects are requirements-related defects, 
while 16.5% of all defects are requirements errors that are detected during testing. 

The percentages reflect the lower defect-leakage rates of 2.5% into operation for safety-critical 
systems. Since the rework cost estimates derived from the COCOMO II model include only the 
cost of rework through integration, we needed to take only those percentages into account. We 
normalized the defect percentages so that they add up to 100%. 



 

CMU/SEI-2018-TR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY  16  
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution. 

Table 6: Phase-Based Percentages of Introduced and Detected Defects  
 

The same studies by NIST, Galin, Boehm, and Dabney provide rework cost factors [Boehm 1981, 
RTI 2002, Dabney 2003, Galin 2004]. For the purpose of our study, we used Dabney’s data from 
a study analyzing ROI and defects for the NASA IV&V facility. This domain and its applications 
have characteristics that are closer to the avionics domain than those of the other sources dis-
cussed. This data was further corroborated by recent experiences of the SAVI participant compa-
nies. 

Table 7 lists the rework cost factors for these studies with [Boehm 1981] and [Galin 2004], shown 
in the same column due to their similarity. The studies used different phase breakdowns, which 
we indicate with asterisks in the table. The table shows that, according to Dabney’s data, it costs 
130 times more to detect and remove a requirements fault at integration than in the requirements 
phase. According to Dabney, for a fault introduced in coding and removed at the time of integra-
tion, the corresponding escalation in cost is 13 times more. SAVI focuses on reducing faults at-
tributed to requirements; for our purposes, we applied the multipliers in Column 3 of Table 7. 

Table 7: Defect-Removal Cost, Given the Phase of Origin 

Phase 

Relative Defect-Removal Cost of Each Phase of Origin 

Requirements Design Coding Unit Test Integration 

[R
TI

 2
00

2]
 

[B
oe

hm
 1

98
1,

 
G

al
in

 2
00

4]
 

[D
ab

ne
y 

20
03

] 

[R
TI

 2
00

2]
 

[B
oe

hm
 1

98
1,

 
G

al
in

 2
00

4]
 

[D
ab

ne
y 

20
03

] 

[R
TI

 2
00

2]
 

[B
oe

hm
 1

98
1,

 
G

al
in

 2
00

4]
 

[D
ab

ne
y 

20
03

] 

[R
TI

 2
00

2]
 

[B
oe

hm
 1

98
1,

 
G

al
in

 2
00

4]
 

[D
ab

ne
y 

20
03

] 

[R
TI

 2
00

2]
 

[B
oe

hm
 1

98
1,

 
G

al
in

 2
00

4]
 

[D
ab

ne
y 

20
03

] 
Requirements 1 1 1             

Design 1 2.5 5 1 1 1          

Unit Coding 5 6.5 10 5 2.5 2 1 * 1  1     

Unit Test 10 * 50 10 * 10 10 * 5  * 1    

Integration 10 16 130 10 6.4 26 10 * 13 1 2.5 3 * 1 1 

System/ 
Acceptance 
Test 

15 40 * 15 16 * 20 *  10 6.2 * * 2.5 * 

Operation 30 110 368 30 44 64 30 * 37 20 17 7 * 6.9 3 

We multiplied the defect percentages from Table 6 by the Dabney rework cost factors shown in 
Table 7. The resulting numbers represent nominal rework costs and are shown in Table 8. We 

Phase Requirements Design Code Test Integration Row Total 

Requirements 1.00% 1.25% 5.50% 16.50% 11.00% 35.25% 

Design  1.25% 5.50% 17.00% 11.00% 34.75% 

Code   5.50% 7.50% 7.00% 20.00% 

Test    5.00% 2.50% 7.50% 

Integration     2.50% 2.50% 

Sum 1.00% 2.50% 16.50% 46.00% 34.00% 100.00% 



 

CMU/SEI-2018-TR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY  17  
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution. 

then used 29.345, the total of all nominal rework cost units, to determine the rework cost for 
phase-specific defects as percentages of the total rework cost. Table 8 lists those percentages in 
the last column. The normalization of the leakage percentages in Table 6 has no effect on the re-
sulting percentages. For this ROI study, we focused on the rework cost of requirements defects 
and used 79% for the requirements-related rework cost percentage in the rework cost-avoidance 
formula that we introduced in Section 2. 

Table 8: Nominal Phase-Based Rework Costs and Percentages 
 

5.2 Defect Removal Efficiency 

Understanding the characteristics of defects is helpful in determining the efficiency of defect re-
moval. We adopted Hayes’s fault taxonomy [Miller 1995], listed in Table 9, as a basis for estimat-
ing the defect-removal efficiency of the SAVI approach compared to current practices. 

We analyzed the types of faults (defects) in Hayes’s taxonomy and evaluated how much SAVI 
will be able to improve a development team’s ability to detect and remove a fault early and thus 
prevent it from flowing downstream. Table 9 shows the anticipated effects of this process. The 
second column denotes the fraction of faults for each fault class out of the total set of faults based 
on Hayes’s taxonomy [Hayes 2003]. Hayes’s data does not suggest distributions of subfaults. In 
the absence of empirical data and for the purpose of our analysis, we assume that subfaults are 
uniformly distributed within their major fault class. For example, we can trace 32.9% of faults to 
Major Fault Class 1.2, which consists of three subfault classes, where each subclass contains one-
third of the faults of the major fault class or 11% (see Column 5) of all faults in that fault class. 

Industry members of the SAVI project discussed and estimated the reduction of faults by detec-
tion earlier in the development lifecycle7 using both SAVI and insights gained from the proof-of-
concept demonstration project, which has shown the feasibility of detecting different types of de-
fects earlier in the lifecycle. For each subfault class, the potential effects include the following 
with the chosen multiplier shown in column 4 of Table 10: 

• SAVI will successfully detect all faults (multiplier = 1). 

• SAVI will successfully detect some faults (multiplier = 0.5). 

• SAVI will have no impact (multiplier = 0.0). 

________________________________________________________________________________ 

7  The number of faults being introduced will probably not change. However, the primary goal is to detect and re-
move faults early in the development lifecycle. 

Phase Reqts. Design Code Test Integration Row Total Percentage 

Requirements 0.010 0.063 0.550 8.250 14.300 23.173 78.97% 

Design  0.013 0.110 1.700 2.860 4.683 15.96% 

Code   0.055 0.375 0.910 1.340 4.57% 

Test    0.050 0.075 0.125 0.43% 

Integration     0.025 0.025 0.09% 

Total  0.010 0.075 0.715 10.375 18.170 29.345 100.00% 



 

CMU/SEI-2018-TR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY  18  
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution. 

Using SAVI practices would result in removing a total of 66% of the requirements defects earlier 
in the lifecycle. In addition to the derived estimates, we included a skeptical scenario in which we 
reduced all estimates by 50%. In this scenario, SAVI practices would help remove a total of 33% 
of requirements defects in their phase of origin. 

Table 9: Hayes’s Fault Taxonomy [Hayes 2003, p. 52] 
 

Major Fault Subfaults Description of Subfaults 

1.1 Incompleteness 1.1.1 Incomplete 
Decomposition  

Failure to adequately decompose a more abstract specifica-
tion 

1.1.2 Incomplete 
Requirements 
Description 

Failure to fully describe all requirements of a function 

1.2 Omitted/Missing 
 

1.2.1 Omitted 
Requirements  

Failure to specify one or more of the next lower levels of ab-
straction of a higher level specified 

1.2.2 Missing External 
Constants  

Specification of a missing value or variable in a requirement 

1.2.3 Missing 
Description of Initial 
System State 

Failure to specify the initial system state, when that state is 
not equal to 0 

1.3 Incorrect 
 

1.3.1 Incorrect External 
Constants  

Specification of an incorrect value or variable in a require-
ment 

1.3.2 Incorrect Input or 
Output Descriptions  

Failure to fully describe system input or output 

1.3.3 Incorrect 
Description of Initial 
System State  

Failure to specify the initial system state when that state is 
not equal to 0 

1.3.4 Incorrect 
Assignment of 
Resources 

[Over- or understating] the computing resources assigned to 
a specification 

1.4 Ambiguous 
 

1.4.1 Improper 
Translation  

Failure to carry detailed requirements through [the] decom-
position process, resulting in ambiguity in the specification 

1.4.2 Lack of Clarity Requirement [that] is difficult to understand or has a lack of 
clarity, and is therefore ambiguous 

1.5 Infeasible   Requirement [that] is unfeasible or impossible to achieve, 
given other system factors, e.g., process speed, memory 
available 

1.6 Inconsistent 1.6.1 External Conflicts  Requirements that are pair-wise incompatible 

1.6.2 Internal Conflicts Requirements of cooperating systems, or parent/embedded 
systems, which taken pair-wise are incompatible  

1.7 Over-
Specification 

 Requirements or specification limits that are excessive for 
the operational need, causing additional system cost 

1.8 Not Traceable  Requirement that cannot be traced to previous or subse-
quent phases 

1.9 [Reserved for 
Future] 

 Requirement that is specified but difficult to achieve (The re-
quirements statement or functional description cannot be 
true in the reasonable lifetime of the product.) 

1.10 Non-Verifiable 
 
 

 Requirements statement or functional description [that] can-
not be verified by any reasonable testing methods; process 
exists to test satisfaction of each requirement (Every re-
quirement is specified behaviorally.) 



 

CMU/SEI-2018-TR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY  19  
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution. 

Major Fault Subfaults Description of Subfaults 

1.11 Misplaced  Information that is in a different section in [the] requirements 
document 

1.12 Intentional 
Deviation 

 Requirement that is specified at [a] higher level but inten-
tionally deviated at lower level from specifications 

1.13 Redundant or  
Duplicate 

 Requirement [that] was already specified elsewhere in the 
specification 

 
Table 10: Expected Removal Efficiency of Faults and Defects When Deploying SAVI 

Major Fault Fraction Effect with SAVI Multi-
plier 

SAVI 
Esti-
mate 

Skepti-
cal 

1.1 Incompleteness 0.209 
1.1.1 No impact  0 0 0 

1.1.2 No impact 0 0 0 

1.2 Omitted or Missing 0.329 

1.2.1 SAVI likely to prevent all  1 0.11 0.055 

1.2.2 SAVI likely to prevent all 1 0.11 0.055 

1.2.3 SAVI likely to prevent all 1 0.11 0.055 

1.3 Incorrect 0.239 
1.3.1 SAVI likely to prevent some 0.5 0.06 0.03 

1.3.2 SAVI likely to prevent all 1 0.12 0.06 

1.4 Ambiguous 0.061 
1.4.1 SAVI likely to prevent all 1 0.03 0.015 

1.4.2 SAVI likely to prevent all 1 0.03 0.015 

1.5 Infeasible 0.014          SAVI likely to prevent all 1 0.01 0.005 

1.6 Inconsistent 0.047 
1.6.1 SAVI likely to prevent all 1 0.02 0.01 

1.6.2 SAVI likely to prevent all 1 0.02 0.01 

1.7 Over-Specification 0.063          No impact 0 0 0 

1.8 Not Traceable 0.014          SAVI likely to prevent all 1 0.01 0.005 

1.9 [Reserved for Future] -----          No impact 0 0 0 

1.10 Non-Verifiable 0.005          SAVI likely to prevent all 1 0.01 0.005 

1.11 Misplaced 0.007          SAVI likely to prevent some 0.5 0.01 0.005 

1.12 Intentional Deviation 0.007          SAVI likely to prevent all 1 0.01 0.005 

1.13 Redundant or Duplicate 0.005          No impact 0 0 0 

Total 1.000 NA NA 0.66 0.33 

5.3 Estimate of Cost Savings Due to Rework Avoidance 

In this section, we present the estimated cost savings attributed to rework avoidance through early 
discovery of requirements defects. The estimates are based on the formula presented in Section 2 
(see page 4). We calculated these estimates by applying the factors presented in this section to the 
total system-development costs presented in Table 5. We are effectively calculating the cost dif-
ference between using the traditional development methods reflected in COCOMO II and the ef-



 

CMU/SEI-2018-TR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY  20  
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution. 

fects of using SAVI, which aims to reduce requirements and design defects through upfront mod-
eling and validation and attempts to prevent these defects from flowing down to later phases 
where they may require significant rework efforts and increase cost. 

For convenience, we include calculations for reuse ranging from 30% to 70%, based on 30% and 50% 
of rework and 33% and 66% removal efficiency, with both lower bound (LB), nominal (NOM), 
and upper bound (UB) estimates (see Error! Reference source not found.). The resulting 
numbers represent millions of US$. We have plotted the rework cost-avoidance estimates in 
terms of changing reuse percentages based on nominal total system-development cost esti-
mates, 70% reuse, and 33% removal efficiency in  

 

Figure 3. As expected, the plot shows linear growth in cost savings due to the linear growth in to-
tal system-development cost, as shown in Figure 2 (page 14). 

Table 11: Avoided Cost as a Function of Rework and Software Reuse 

 $-

 $1,000

 $2,000

 $3,000

 $4,000

 $5,000

70% 60% 50% 40% 30%

Co
st

 A
vo

id
an

ce
 (M

U
S$

)

60MSLOC - 50%

60MSLOC - 30%

30MSLOC - 50%

30MSLOC - 30%

27MSLOC - 50%

27MSLOC - 30%



 

CMU/SEI-2018-TR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY  21  
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution. 

MSLOC %  
Reuse 

%  
Rework 

Removal Efficiency in Millions of US$ 

33% 66% 

Nom LB UB Nom LB UB 

27 

30% 
30% $1,220 $976 $1,526 $2,441 $1,953 $3,051 

50% $2,034 $1,627 $2,543 $4,068 $3,255 $5,085 

40% 
30% $1,096 $877 $1,370 $2,192 $1,753 $2,740 

50% $1,827 $1,461 $2,283 $3,653 $2,922 $4,566 

50% 
30% $966 $773 $1,207 $1,932 $1,546 $2,415 

50% $1,610 $1,288 $2,012 $3,220 $2,576 $4,025 

60% 
30% $841 $673 $1,051 $1,682 $1,345 $2,102 

50% $1,401 $1,121 $1,752 $2,803 $2,242 $3,504 

70% 
30% $717 $574 $897 $1,435 $1,148 $1,794 

50% $1,196 $956 $1,495 $2,391 $1,913 $2,989 

30 

30% 
30% $1,370 $1,096 $1,713 $2,740 $2,193 $3,426 

50% $2,284 $1,827 $2,855 $4,567 $3,654 $5,710 

40% 
30% $1,227 $981 $1,533 $2,453 $1,963 $3,067 

50% $2,045 $1,636 $2,556 $4,089 $3,271 $5,111 

50% 
30% $1,085 $868 $1,356 $2,169 $1,735 $2,712 

50% $1,808 $1,446 $2,260 $3,615 $2,892 $4,519 

60% 
30% $944 $755 $1,180 $1,888 $1,511 $2,360 

50% $1,574 $1,259 $1,967 $3,147 $2,518 $3,934 

70% 
30% $806 $645 $1,007 $1,611 $1,289 $2,014 

50% $1,343 $1,074 $1,678 $2,685 $2,148 $3,357 

 

 

 

Table 11, Continued 



 

CMU/SEI-2018-TR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY  22  
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution. 

MSLOC %  
Reuse 

%  
Rework 

Removal Efficiency in Millions of US$ 

33% 66% 

Nom LB UB Nom LB UB 

60 

30% 
30% $2,937 $2,349 $3,671 $5,874 $4,699 $7,342 

50% $4,895 $3,916 $6,118 $9,789 $7,831 $12,237 

40% 
30% $2,629 $2,103 $3,286 $5,258 $4,206 $6,572 

50% $4,381 $3,505 $5,477 $8,763 $7,010 $10,954 

50% 
30% $2,324 $1,859 $2,906 $4,649 $3,719 $5,811 

50% $3,874 $3,099 $4,843 $7,748 $6,198 $9,685 

60% 
30% $2,023  $1,619  $2,529  $4,047  $3,237  $5,059  

50% $3,372  $2,698  $4,216  $6,745  $5,396  $8,431  

70% 
30% $1,726  $1,381  $2,158  $3,453  $2,762  $4,316  

50% $2,877  $2,302  $3,597  $5,755  $4,604  $7,194  
 

 

 

 

 

Figure 3: Rework Cost-Avoidance as a Function of Reuse for Three Project Sizes with 30% and 50% 
Rework 

 $-

 $1,000

 $2,000

 $3,000

 $4,000

 $5,000

70% 60% 50% 40% 30%

Co
st

 A
vo

id
an

ce
 (M

U
S$

)

60MSLOC - 50%

60MSLOC - 30%

30MSLOC - 50%

30MSLOC - 30%

27MSLOC - 50%

27MSLOC - 30%



 

CMU/SEI-2018-TR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY  23  
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution. 

6 ROI Estimates 

The investment under consideration is the cost of maturing and transitioning SAVI into existing 
practice by SAVI-member companies during the multi-year SAVI initiative. This investment has 
been estimated to be $86M. 

The arithmetic and logarithmic return on investment (ROI) is calculated as 𝑅𝑅𝑅𝑅𝑅𝑅𝑎𝑎 = 𝑉𝑉𝑓𝑓−𝑉𝑉𝑖𝑖
𝑉𝑉𝑖𝑖

 and 

𝑅𝑅𝑅𝑅𝑅𝑅𝑙𝑙 = ln (𝑉𝑉𝑓𝑓
𝑉𝑉𝑖𝑖

), where Vf and Vi represent the value and the investment, respectively. We com-

puted the ROIa and ROII, where Vi equals $86 million, using the nominal values of cost avoidance 
for the various scenarios in Error! Reference source not found.. 

Net present value (NPV), which is also known as net present worth, is useful when appraising a 
long-term project. It is computed as 𝑁𝑁𝑁𝑁𝑁𝑁 = 𝑅𝑅𝑡𝑡

(1+𝑖𝑖)𝑡𝑡
, where t denotes the time of the cash flow, i is 

the rate of return that could be earned on an investment in the financial markets with similar risk, 
and Rt is the net cash flow (i.e., the amount of cash, inflow minus outflow) at time t. Inflow is 
computed as the cost avoided at time t (i.e., we compute how the total cost avoided is distributed 
over time). 

Based on a project starting in 2010 (t = 0) and finishing in 2018 (t = 8), in which software starts to 
be developed in 2014, we aligned the development phases and computed the percentage of rework 
cost avoided in each phase as follows: 
• Requirements, 2014, 0.04% (computed as 0.010/23.173) 

• Design, 2015, 0.27% 

• Implementation, 2016, 2.37% 

• Test, 2017, 35.60% 

• Integration, 2018, 61.71% 

The values for NPV and present value (PV) are shown in Table 12 for a defect-removal efficiency 
of 33% and in Table 13 for a defect-removal efficiency of 66%. The tables present the data for all 
three system sizes, five reuse percentages, and two rework percentages used in previous calcula-
tions. The columns show the arithmetic ROI, the logarithmic ROI, NPV, and PV for the years 
2010 through 2018. 



 

CMU/SEI-2018-TR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY  24  
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution. 

Table 12: Computed NPV and PV for 33% Defect-Removal Efficiency 
 

M
SL

O
C

 

%
 R

eu
se

 

%
 R

ew
or

k Millions of US$ for a Defect-Removal Efficiency of 33% 

R
O

I a 

R
O

I l 

N
PV

 PV 

2010 2011 2012 2013 2014 2015 2016 2017 2018 

27 

30 
30 13.2 2.65 $507 –$86 $0 $0 $0 $0 $2 $16 $223 $351 

50 22.6 3.16 $902 –$86 $0 $0 $0 $1 $3 $27 $372 $586 

40 
30 11.7 2.54 $447 –$86 $0 $0 $0 $0 $2 $15 $200 $315 

50 20.2 3.06 $802 –$86 $0 $0 $0 $1 $3 $24 $334 $526 

50 
30 10.2 2.42 $383 –$86 $0 $0 $0 $0 $2 $13 $176 $278 

50 17.7 2.93 $696 –$86 $0 $0 $0 $0 $3 $22 $294 $463 

60 
30 8.8 2.28 $323 –$86 $0 $0 $0 $0 $1 $11 $154 $242 

50 15.3 2.79 $595 –$86 $0 $0 $0 $0 $2 $19 $256 $403 

70 
30 7.3 2.12 $263 –$86 $0 $0 $0 $0 $1 $10 $131 $207 

50 12.9 2.63 $495 –$86 $0 $0 $0 $0 $2 $16 $218 $344 

30 

30 
30 14.9 2.77 $580 –$86 $0 $0 $0 $0 $2 $18 $250 $394 

50 25.6 3.28 $1,024 –$86 $0 $0 $0 $1 $4 $31 $417 $657 

40 
30 13.3 2.66 $510 –$86 $0 $0 $0 $0 $2 $16 $224 $353 

50 22.8 3.17 $908 –$86 $0 $0 $0 $1 $3 $27 $374 $589 

50 
30 11.6 2.53 $441 –$86 $0 $0 $0 $0 $2 $15 $198 $312 

50 20.0 3.05 $792 –$86 $0 $0 $0 $1 $3 $24 $330 $520 

60 
30 10.0 2.40 $373 –$86 $0 $0 $0 $0 $2 $13 $173 $272 

50 17.3 2.91 $679 –$86 $0 $0 $0 $0 $3 $21 $288 $453 

70 
30 8.4 2.24 $305 –$86 $0 $0 $0 $0 $1 $11 $147 $232 

50 14.6 2.75 $566 –$86 $0 $0 $0 $0 $2 $18 $245 $387 

60 

30 
30 33.1 3.53 $1,341 –$86 $0 $0 $0 $1 $5 $39 $537 $845 

50 55.9 4.04 $2,293 –$86 $0 $0 $0 $1 $8 $66 $894 $1,409 

40 
30 29.6 3.42 $1,192 –$86 $0 $0 $0 $1 $4 $35 $480 $757 

50 49.9 3.93 $2,043 –$86 $0 $0 $0 $1 $7 $59 $800 $1,261 

50 
30 26.0 3.30 $1,044 –$86 $0 $0 $0 $1 $4 $31 $425 $669 

50 44.0 3.81 $1,797 –$86 $0 $0 $0 $1 $6 $52 $708 $1,115 

60 
30 22.5 3.16 $897 –$86 $0 $0 $0 $1 $3 $27 $370 $583 

50 38.2 3.67 $1,553 –$86 $0 $0 $0 $1 $6 $45 $616 $971 

70 
30 19.1 3.00 $753 –$86 $0 $0 $0 $1 $3 $23 $315 $497 

50 32.5 3.51 $1,312 –$86 $0 $0 $0 $1 $5 $39 $526 $828 

 



 

CMU/SEI-2018-TR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY  25  
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution. 

Table 13: Computed NPV and PV for 66% Defect-Removal Efficiency 

M
SL

O
C

 

%
 R

eu
se

 

%
 R

ew
or

k Millions of US$ for Defect-Removal Efficiency of 66% 

R
O

I a 

R
O

I l 

N
PV

 PV 

2010 2011 2012 2013 2014 2015 2016 2017 2018 

27 

30 
30 27.4 3.35 $1,100 –$86 $0 $0 $0 $1 $4 $33 $446 $703 

50 46.3 3.86 $1,891 –$86 $0 $0 $0 $1 $7 $54 $743 $1,171 

40 
30 24.5 3.24 $979 –$86 $0 $0 $0 $1 $4 $29 $400 $631 

50 41.5 3.75 $1,689 –$86 $0 $0 $0 $1 $6 $49 $667 $1,052 

50 
30 21.5 3.11 $853 –$86 $0 $0 $0 $1 $3 $26 $353 $556 

50 36.4 3.62 $1,479 –$86 $0 $0 $0 $1 $5 $43 $588 $927 

60 
30 18.6 2.97 $731 –$86 $0 $0 $0 $0 $3 $23 $307 $484 

50 31.6 3.48 $1,276 –$86 $0 $0 $0 $1 $5 $38 $512 $807 

70 
30 15.7 2.81 $611 –$86 $0 $0 $0 $0 $2 $19 $262 $413 

50 26.8 3.33 $1,076 –$86 $0 $0 $0 $1 $4 $32 $437 $688 

30 

30 
30 30.9 3.46 $1,246 –$86 $0 $0 $0 $1 $5 $37 $501 $789 

50 52.1 3.97 $2,134 –$86 $0 $0 $0 $1 $8 $61 $834 $1,315 

40 
30 27.5 3.35 $1,106 –$86 $0 $0 $0 $1 $4 $33 $448 $706 

50 46.5 3.86 $1,901 –$86 $0 $0 $0 $1 $7 $55 $747 $1,177 

50 
30 24.2 3.23 $968 –$86 $0 $0 $0 $1 $4 $29 $396 $625 

50 41.0 3.74 $1,671 –$86 $0 $0 $0 $1 $6 $48 $661 $1,041 

60 
30 21.0 3.09 $832 –$86 $0 $0 $0 $1 $3 $25 $345 $544 

50 35.6 3.60 $1,443 –$86 $0 $0 $0 $1 $5 $42 $575 $906 

70 
30 17.7 2.93 $697 –$86 $0 $0 $0 $0 $3 $22 $294 $464 

50 30.2 3.44 $1,219 –$86 $0 $0 $0 $1 $4 $36 $491 $773 

60 

30 
30 67.3 4.22 $2,768 –$86 $0 $0 $0 $2 $10 $79 $1,073 $1,691 

50 112.8 4.73 $4,671 –$86 $0 $0 $0 $3 $16 $131 $1,788 $2,818 

40 
30 60.1 4.11 $2,469 –$86 $0 $0 $0 $2 $9 $70 $961 $1,514 

50 100.9 4.62 $4,172 –$86 $0 $0 $0 $3 $15 $117 $1,601 $2,523 

50 
30 53.1 3.99 $2,173 –$86 $0 $0 $0 $1 $8 $62 $849 $1,338 

50 89.1 4.50 $3,679 –$86 $0 $0 $0 $2 $13 $104 $1,416 $2,231 

60 
30 46.1 3.85 $1,881 –$86 $0 $0 $0 $1 $7 $54 $739 $1,165 

50 77.4 4.36 $3,192 –$86 $0 $0 $0 $2 $11 $90 $1,232 $1,942 

70 
30 39.1 3.69 $1,592 –$86 $0 $0 $0 $1 $6 $46 $631 $994 

50 65.9 4.20 $2,711 –$86 $0 $0 $0 $2 $10 $77 $1,051 $1,657 

In Figure 4, we examine the trend for Arithmetic ROI (Figure 4), logarithmic ROI (Figure 5), and 
NPV (Figure 6) as a function of reuse. As expected, the plots show linear progression in all three 
cases. 



 

CMU/SEI-2018-TR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY  26  
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution. 

 

 

Figure 4: Projected Arithmetic ROI as a Function of Reuse for Three Project Sizes with 30% and 50% 
Rework 

 

Figure 5: Projected Logarithmic ROI as a Function of Reuse for Three Project Sizes with 30% and 
50% Rework 

 

Figure 6: Computed NPV as a Function of Reuse for Three Project Sizes with 30% and 50% Rework 

0.00

1.00

2.00

3.00

4.00

5.00

70% 60% 50% 40% 30%

Logarithmic ROI

60MSLOC - 50%

60MSLOC - 30%

30MSLOC - 50%

30MSLOC - 30%

27MSLOC - 50%

27MSLOC - 30%

 $-

 $500

 $1,000

 $1,500

 $2,000

 $2,500

70% 60% 50% 40% 30%

N
PV

 (M
U

S$
)

Net Present Value (NPV)

60MSLOC - 50%

60MSLOC - 30%

30MSLOC - 50%

30MSLOC - 30%

27MSLOC - 50%

0.00
10.00
20.00
30.00
40.00
50.00
60.00

70% 60% 50% 40% 30%

Arithmetic ROI
60MSLOC - 50%

60MSLOC - 30%

30MSLOC - 50%

30MSLOC - 30%

27MSLOC - 50%

27MSLOC - 30%



 

CMU/SEI-2018-TR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY  27  
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution. 

7 Discussion on the Use of COCOMO II 

Achieving cost efficiency and high levels of reuse requires that developers design a system for 
targeted levels of reuse and avoid costly alterations and modifications. COCOMO II supports re-
use in two ways by providing: (1) a proactive design-for-reuse switch and (2) a specification of 
the complexity of achieving reuse when invoking a system into a new system (e.g., percentage of 
code, design, integration modified, software understanding, and automatic-translation capability). 
Both approaches increase the EAF and, thus, the cost. We used the second approach with nominal 
values for reuse. We did not set a specific design-for-reuse switch, since different organizations 
adopt different strategies for this purpose. Reuse directly affects development cost as well as any 
development gain. Computed gains should be adjusted according to any increase or decrease in 
development cost. 

We used the projected cost of one man-month in 2014 of $28,200/month. Unfortunately, 
COCOMO II does not support any compensation for annual inflation, but at least two alternative 
approaches do incorporate this compensation. One alternative is, for a project of n years, to fur-
ther decompose each system into n subsystems to reflect the development cost for each year. This 
decomposition can also be mapped to system-development phases and work-breakdown structures 
in COCOMO II. Another alternative, a low-fidelity approach, is to use the estimated average sal-
ary over the same period, which assumes that work is uniformly distributed over time. Our choice 
to use COCOMO II was motivated by its ability to decompose a system and characterize cost 
drivers at the subsystem level for avionics systems. COCOMO II is also a proven tool, having 
been used widely in industry and calibrated against a number of projects. 

The COCOMO II data used in this report focuses on the system-development costa cost that be-
gins with the design of the system and continues until its first delivery and deployment. Thus, our 
data does not address ongoing lifecycle costs such as maintenance. For long-lived systems (those 
exceeding 10 years of use) and systems experiencing frequent changes, the sustainment cost is 
significant. For example, consider the lifecycle costs for a computer system for which the hard-
ware has become obsolete and the software needs to be revised and recertified on new target hard-
ware. The system may also be subject to changes in federal regulations that require incorporating 
new software functionality. A model-driven approach as outlined by SAVI will undoubtedly af-
fect system-maintenance cost in a positive way, but it is unclear how much of an effect this ap-
proach will have. 

There are alternatives to COCOMO II for system cost estimation. The REVised Intermediate 
COCOMO (REVIC) is a cost-estimation tool developed by R. Kile and the U.S. Air Force Cost 
Analysis Agency that is specific to DoD needs [DoD 1995]. It has been calibrated using com-
pleted DoD projects (development phase only). REVIC takes the same inputs as COCOMO II. On 
average, the values predicted by the effort and schedule equations in REVIC are higher than those 
predicted in COCOMO II. We did not use REVIC as a foundation for this study for the following 
reasons: 
• COCOMO II is a newer model than REVIC, which was developed and released in the early 

1990s. 



 

CMU/SEI-2018-TR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY  28  
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution. 

• REVIC consistently provides higher estimates than COCOMO II; if the goal is to use con-
servative estimates and avoid inflated gains, COCOMO II is better suited because REVIC 
produces higher projected gains. 

• REVIC is calibrated for DoD projects, and our focus in the SAVI initiative is commercial 
avionics.8 

A second alternative, the Constructive Systems Engineering Cost Model (COSYSMO), based on 
COCOMO II, can help planners reason about the economic aspects and consequences of systems 
engineering on projects [COSYSMO 2011]. For the purpose of our application, COCOMO II was 
deemed sufficient. 

Cost estimation using function-point analysis, created by Albrecht [Albrecht 1979], is another via-
ble technique with significant applications in industry [Garmus 2001, Jones 2007]. Albrecht’s ob-
jective was to create a metric for software productivity and quality 
• in any known programming language 

• in any combination of languages 

• across all classes of software 

Function-point analysis is intended for use in discussions with clients, contracts, large-scale statis-
tical analysis, and value analysis. SLOC metrics are intrinsically language dependent. For exam-
ple, considering software productivity should take context into account: Does the software use a 
low-level language or a high-level language, and can a given high-level language be further clas-
sified into a procedural, logic-based, or object-oriented language? A function point consists of the 
weighted totals of five external aspects of software applications: types of inputs to the application, 
outputs that leave the application, inquiries that users can make, logical files that an application 
maintains, and interfaces to other applications. 

Given the data available to us, we can apply function-point analysis in our context. The analysis 
would be driven by function points as the primary metric of the complexity and size of a system-
development effort. There are guidelines and data from projects to aid in estimating the number of 
function points. Furthermore, we can use conversion factors to convert between SLOC and the 
number of function points. We conducted a subset of our calculations here using Capers Jones’s 
data, including some based on defects per function point from industrial projects [Jones 2007]. 
From those calculations, we observed that the computed cost reduction and ROI numbers are 
slightly higher than those derived from COCOMO II. In the interest of space, we do not include 
those calculations in this document. 

Our COCOMO II analysis is agnostic to the organizational structure and business drivers of the 
main contractor, suppliers, and subcontractors. It reports the numbers for the entire project but 
does not elaborate on the benefits to the various suppliers and subcontractors. While it is easy to 
see that the SAVI approach benefits contractors at all levels, it would be worthwhile to conduct a 
refined ROI analysis from the perspective of the entire acquisition and development lifecycle, 

________________________________________________________________________________ 

8  Commercial avionics systems have safety-critical requirements. In that respect, they present the same chal-
lenges as many weapon systems acquired by the DoD. 



 

CMU/SEI-2018-TR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY  29  
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution. 

broken down by stakeholders and contractors. We should also exercise the effects of more effi-
cient defect removal on virtual integration. Such an analysis should reflect current and new acqui-
sition practices. 



 

CMU/SEI-2018-TR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY  30  
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution. 

8 Conclusion 

Software in avionics continues to grow in complexity and size, evidenced by the number of sub-
systems, their dependencies, and increased functionality. Current state-of-practice methods, pro-
cesses, and techniques do not scale well, causing projects to overrun schedules and budgets, pri-
marily due to the scale and complexity of systems. The cost of developing large-scale software of 
the projected sizethat will also satisfy high safety-criticality requirements as well as be reusa-
bleis indeed truly large, especially when considering that the total system development cost of a 
large airframer (aerospace manufacturer) is in the range of $10 to $20 billion 

 Thus, software is projected to become the dominant cost of developing a new product. 

The ROI analysis discussed in this report clearly indicates that an organization could realize sig-
nificant financial gains by using the SAVI approach.  

Our analysis produced the following outcomes and observations: 
• Approximately 70% of defects are requirements and design defects, but less than 10% are 

detected in these early phases. The rework cost of correcting defects introduced in require-
ments and design but detected late in the development lifecycle is one to two orders of mag-
nitude higher than the cost of correcting them before coding. Requirements-related rework 
cost amounts to 79% and design-related rework costs 16% of the total-rework cost. In this 
study, we only considered avoidance of requirements-related defects.  

• In the most conservative scenario, for a 27-MSLOC system, the smallest cost avoidance is 
$717 million (out of an estimated $9.176 billion cost of development, a 7.8% cost savings). 
This is with 70% reuse, rework cost as 30% of total system-development cost, and a defect-
removal efficiency of 33%. The arithmetic and logarithmic (continuously compounded) 
ROIs are 7.3 and 2.12, with an NPV of $263 million. 

• The nominal cost reduction for a 27-MSLOC system is $2.391 billion (out of an estimated 
$9.176 billion, a 26.1% cost savings), occurring at 70% reuse, rework cost as 50% of total 
system-development cost, and 66% removal efficiency. The arithmetic and logarithmic ROIs 
are 26.8 and 3.33, with an NPV of $1.076 billion. 

• The cost reduction is linear to the rework cost and removal efficiency. With other factors 
held constant in a scenario, each unit’s increase in removal efficiency for requirements errors 
resulted in a cost reduction. For example, for the 27-MSLOC system with the highest degree 
of reuse, each 1% increase in removal efficiency resulted in a cost reduction of $22 million. 

• Cost reduction for a given system size is also linear to the amount of reuse.  

• Comparing the cost reduction for systems of different size, we observed that the cost reduc-
tion for 60 MSLOC was more than twice that for 30 MSLOC. This is to be expected given 
the more-than-linear increase in interaction complexity in a larger system. 

The predicted returns were considered higher than anticipated. This led to several follow-on activ-
ities. First, one of the SAVI-system-integrator members obtained an independent assessment by 
its organization’s cost estimating group, which agreed with the findings of this report. Second, 



 

CMU/SEI-2018-TR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY  31  
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution. 

this initial ROI study was followed by a second SAVI ROI study [Ward 2011, SAVI 2015a, SAVI 
2015b].  

In the second study, a Monte Carlo algorithm was used to drive the COCOMO II cost estimation, 
resulting in a reduced variation of results. In addition, the commercial tool SEER was used to 
build a SEER-SEM and SEER-H model of a Boeing 777-200 to explicitly estimate the cost of the 
non-software portion of the system and compare it to both publically available data and the esti-
mates of the original SAVI ROI study presented here. The second study confirms that the cost 
multiplier of 1.55 was acceptable for 2010. Unfortunately, the software count increases while the 
physical parts count remains stable, resulting in a software increase from 66% in 2010 to 88% of 
the total system-development cost by 2024. 

The second study also considered tailoring the ROI analysis to reflect a subcontractor. This in-
cludes adjusting the scaling factor used to estimate the total cost relative to the software cost, the 
degree of software reuse, the overall investment in the SAVI technology, and personnel cost fac-
tors.  



 

CMU/SEI-2018-TR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY  32  
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution. 

References  

URLs are valid as of the publication date of this document. 

[Albrecht 1979] 
Albrecht, A. J. Measuring Application Development Productivity. Pages 83–92. Proceedings of 
the Joint IBM/SHARE/GUIDE Application Development Symposium. Monterey, California. Octo-
ber 1979. 

[Basili 1994] 
Basili, V. & Green, S. Software Process Evolution at SEL. IEEE Software. Volume 11. Number 4. 
July/August 1994. Pages 58–66. 

[Basili 2001] 
Basili, V. et al. Building an Experience Base for Software Engineering: A Report on the First 
eWorkshop. CeBASE. 2001. http://www.cs.umd.edu/~basili/presentations/profes01.pdf 

[Boehm 1981] 
Boehm, B. W. Software Engineering Economics. Prentice Hall. 1981.  

[Boehm 2000] 
Boehm, B. W. et al. Software Cost Estimation with COCOMO II. Prentice Hall. 2000. 

[COCOMO II] 
COCOMO II. Center for Systems and Software Engineering Website. March 14, 2018 [accessed] 
http://sunset.usc.edu/csse/research/COCOMOII/cocomo_main.html 

[COSYSMO 2011] 
Constructive Systems Engineering Cost Model (COSYSMO). Massachusetts Institute of Technol-
ogy COSYSMO Website. 2011. March 14, 2018 [accessed] http://cosysmo.mit.edu 

[Cross 2002] 
Cross, S. E. Message from the Director. In The Software Engineering Institute 2002 Annual Re-
port. Software Engineering Institute, Carnegie Mellon University. 2002. https://re-
sources.sei.cmu.edu/library/asset-view.cfm?assetID=30178 

[Dabney 2003] 
Dabney, J. B. Return on Investment of Independent Verification and Validation Study Preliminary 
Phase 2B Report. NASA. 2003. 

[DoD 1995] 
Department of Defense. The Parametric Cost Estimating Handbook. Joint Government/Industry 
Initiative. 1995. 

http://sunset.usc.edu/csse/research/COCOMOII/cocomo_main.html
http://cosysmo.mit.edu/
http://cost.jsc.nasa.gov/PCEHHTML/pceh.htm
http://www.cs.umd.edu/~basili/presentations/profes01.pdf
https://re-sources.sei.cmu.edu/library/asset-view.cfm?assetID=30178
https://re-sources.sei.cmu.edu/library/asset-view.cfm?assetID=30178


 

CMU/SEI-2018-TR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY  33  
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution. 

[Fairley 2005] 
Fairley, R. E. & Willshire, M. J. Iterative Rework: The Good, the Bad, and the Ugly. IEEE Com-
puter. Volume 38. Number 8. September 2005. Pages 34–41. 

[Feiler 2009] 
Feiler, P. H. et al. System Architecture Virtual Integration: An Industrial Case Study. CMU/SEI-
2009-TR-017. Software Engineering Institute, Carnegie Mellon University. 2009. https://re-
sources.sei.cmu.edu/library/asset-view.cfm?assetid=9145 

[Feiler 2010] 
Feiler, P. et al. System Architecture Virtual Integration: A Case Study. Embedded Real Time Soft-
ware and Systems Conference (ERTS2010). Toulouse, France. May 2010. 
http://web1.see.asso.fr/erts2010/Site/0ANDGY78 
/Fichier/PAPIERS%20ERTS%202010%202/ERTS2010_0105_final.pdf 

[Galin 2004] 
Galin, D. Software Quality Assurance: From Theory to Implementation. Pearson/Addison-Wes-
ley. 2004. 

[Garmus 2001] 
Garmus, D. & Herron, D. Function Point Analysis: Measurement Practices for Successful Soft-
ware Projects (Information Technology Series). Addison-Wesley. 2001. 

[Hatton 2005] 
Hatton, L. Estimating Source Lines of Code from Object Code: Windows and Embedded Control 
Systems. University of Kingston. 2005. 

[Hayes 2003] 
Hayes, J. H. Building a Requirement Fault Taxonomy: Experiences from a NASA Verification 
and Validation Research Project. Pages 49–59. 14th International Symposium on Software Relia-
bility Engineering (ISSRE). Denver, Colorado. November 2003. 

[Jones 1996] 
Jones, C. Applied Software Measurement: Assuring Productivity and Quality. McGraw-Hill. 
1996. 

[Jones 2007] 
Jones, C. Estimating Software Costs: Bringing Realism to Estimating. McGraw-Hill. 2007. 

[Lutz 1993] 
Lutz, R. R. Analyzing Software Requirements Errors in Safety-Critical, Embedded Systems. 
Pages 126-133. In Proceedings of the IEEE International Symposium on Requirements Engineer-
ing. San Diego, California. January 4-6, 1993. http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&ar-
number=324825 

[Miller 1995] 
Mirsky, S. M. et al. Guidelines for the Verification and Validation of Expert System Software and 
Conventional Software. NUREG/CR-6316. U.S. Nuclear Regulatory Commission. 1995. 

https://re-sources.sei.cmu.edu/library/asset-view.cfm?assetid=9145
https://re-sources.sei.cmu.edu/library/asset-view.cfm?assetid=9145
http://web1.see.asso.fr/erts2010/Site/0ANDGY78
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&ar-number=324825
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&ar-number=324825


 

CMU/SEI-2018-TR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY  34  
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution. 

[Park 1992] 
Park, R. E. Software Size Measurement: A Framework for Counting Source Statements. 
CMU/SEI-92-TR-020. Software Engineering Institute, Carnegie Mellon University. 1992. 
https://resources.sei.cmu.edu/library/asset-view.cfm?assetID=11689 

[Potocki de Montalk 1991] 
Potocki de Montalk, J. P. Computer Software in Civil Aircraft. Pages 10–16. In Proceedings of 
the Sixth Annual Conference on Computer Assurance: Systems Integrity, Software Safety and Pro-
cess Security (COMPASS'91). Gaithersburg, Maryland. June 1991. 

[Redman 2010] 
Redman, D., et al. Virtual Integration for Improved System Design: The AVSI System Architec-
ture Virtual Integration (SAVI) Program. Analytic Virtual Integration of Cyber-Physical Systems 
Workshop, 31st IEEE Real-Time Systems Symposium (RTSS 2010). San Diego, California. No-
vember 30-December 3, 2010. 

[RTI 2002] 
RTI International. The Economic Impacts of Inadequate Infrastructure for Software Testing. Plan-
ning Report 02-3. NIST. 2002. 

[SAVI 2015a] 
Chilenski, J. J. & Ward, D.T. [editors] ROI Estimation. In SAVI AFE 59 Report Summary Final 
Report. Aerospace Vehicle Systems Institute. Pages 29-31. 2015. http://savi.avsi.aero/wp-con-
tent/uploads/sites/2/2015/08/SAVI-AFE59-9-001_Summary_Final_Report.pdf 

[SAVI 2015b] 
Chilenski, J. J. & Ward, D.T. [editors]. EPoCD Use Case Demonstrations. Aerospace Vehicle 
Systems Institute. Pages 9-28. 2015. http://savi.avsi.aero/wp-content/up-
loads/sites/2/2015/08/SAVI-AFE59S1-8-002_Summary_Final_Report.pdf 

[U.S. Department of Labor] 
Consumer Price Index, All Urban Consumers (CPI-U), U.S. City Average. U.S. Department of 
Labor, Bureau of Labor Statistics. https://www.bls.gov/news.release/cpi.t01.htm 

[Ward 2011] 
Ward, D. & Helton, S. Estimating Return on Investment for SAVI (a Model-Based Virtual Inte-
gration Process). SAE International Journal of Aerospace. Volume 4. Number 2. October 18, 
2011. Pages 934-943. https://saemobilus.sae.org/content/2011-01-2576 

 

 

 

https://www.bls.gov/news.release/cpi.t01.htm
https://resources.sei.cmu.edu/library/asset-view.cfm?assetID=11689
http://savi.avsi.aero/wp-con-tent/uploads/sites/2/2015/08/SAVI-AFE59-9-001_Summary_Final_Report.pdf
http://savi.avsi.aero/wp-con-tent/uploads/sites/2/2015/08/SAVI-AFE59-9-001_Summary_Final_Report.pdf
http://savi.avsi.aero/wp-content/up-loads/sites/2/2015/08/SAVI-AFE59S1-8-002_Summary_Final_Report.pdf
http://savi.avsi.aero/wp-content/up-loads/sites/2/2015/08/SAVI-AFE59S1-8-002_Summary_Final_Report.pdf


 

CMU/SEI-2018-TR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY   
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution. 

REPORT DOCUMENTATION PAGE Form Approved 
OMB No. 0704-0188 

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, search-
ing existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regard-
ing this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters 
Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of 
Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503. 
1. AGENCY USE ONLY 

(Leave Blank) 
2. REPORT DATE 

April 2018 
3. REPORT TYPE AND DATES 

COVERED 
Final 

4. TITLE AND SUBTITLE 
ROI Analysis of the System Architecture Virtual Integration Initiative 

5. FUNDING NUMBERS 
FA8721-05-C-0003 

6. AUTHOR(S) 
Jörgen Hansson, Peter Feiler, Steven Helton 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
Software Engineering Institute 
Carnegie Mellon University 
Pittsburgh, PA 15213 

8. PERFORMING ORGANIZATION  
REPORT NUMBER 
CMU/SEI-2018-TR-002 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 
HQ ESC/XPK 
5 Eglin Street 
Hanscom AFB, MA 01731-2116 

10. SPONSORING/MONITORING 
AGENCY REPORT NUMBER 
n/a 

11. SUPPLEMENTARY NOTES 
 

12A DISTRIBUTION/AVAILABILITY STATEMENT 
Unclassified/Unlimited, DTIC, NTIS 

12B DISTRIBUTION CODE 
 

13. ABSTRACT (MAXIMUM 200 WORDS) 
The System Architecture Virtual Integration (SAVI) initiative is a multiyear, multimillion dollar program that is developing the capability to 
virtually integrate systems before designs are implemented and tested on hardware. The purpose of SAVI is to develop a means of 
countering the costs of exponentially increasing complexity in modern aerospace software systems. The program is sponsored by the 
Aerospace Vehicle Systems Institute, a research center of the Texas Engineering Experiment Station, which is a member of the Texas 
A&M University System. This report presents an analysis of the economic effects of the SAVI approach on the development of software-
reliant systems for aircraft compared to existing development paradigms. The report describes the detailed inputs and results of a return-
on-investment (ROI) analysis to determine the net present value of the investment in the SAVI approach. The ROI is based on rework 
cost-avoidance attributed to earlier discovery of requirements errors through analysis of virtually integrated models of the embedded 
software system expressed in the SAE International Architecture Analysis and Design Language (AADL) standard architecture modeling 
language. The ROI analysis uses conservative estimates of costs and benefits, especially for those parameters that have a proven, 
strong correlation to overall system-development cost. The results of the analysis, in part, show that the nominal cost reduction for a 
system that contains 27 million source lines of code would be $2.391 billion (out of an estimated $9.176 billion), a 26.1% cost savings. 
The original study, reported here, had a follow-on study to validate and further refine the estimated cost savings. 

14. SUBJECT TERMS 
virtual integration, software development, software defects 

15. NUMBER OF PAGES 
45 

16. PRICE CODE 
 

17. SECURITY CLASSIFICATION OF 
REPORT 
Unclassified 

18. SECURITY CLASSIFICATION 
OF THIS PAGE 
Unclassified 

19. SECURITY CLASSIFICATION 
OF ABSTRACT 
Unclassified 

20. LIMITATION OF 
ABSTRACT 
UL 

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std. Z39-18 
298-102 

 


	Acknowledgments
	Executive Summary
	Summary of Methods
	Summary of Findings

	Abstract
	1 Introduction
	2 ROI Based on Rework Cost-Avoidance
	3 Exponential Growth in Avionics Software Systems
	3.1 Growth Curve for Avionics Software
	3.2 Limits of Affordability

	4 “As-Is” System-Development Cost Estimates Using COCOMO II
	4.1 Setup of COCOMO II
	4.2 Cost Computations

	5 Rework Cost-Avoidance Estimates
	5.1 Phase-Based Rework Cost Percentages
	5.2 Defect Removal Efficiency
	5.3 Estimate of Cost Savings Due to Rework Avoidance

	6 ROI Estimates
	7 Discussion on the Use of COCOMO II
	8 Conclusion
	References
	Untitled



