Supporting Information

(12 pages, 3 tables, and 5 figures)

Interactions of perfluorooctanesulfonate (PFOS) and 6:2 chlorinated polyfluorinated ether sulfonate (6:2 CI-PFESA) with human serum albumin (HSA): A comparative study

Nan Sheng^a, Jinghua Wang^a, Yong Guo^b, Jianshe Wang^{a*} and Jiayin Dai^a

^aKey Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, P.R. China.

^bKey Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P.R. China.

Competing financial interests: The authors declare no conflicts of interest.

Table of contents

- Pg S3-S4. Supplementary methods.
- **Pg S5.** Table S1. Concentrations of HSA, PFOS, and 6:2 Cl-PFESA used for MTT assay.
- **Pg S6.** Table S2. Predicted and measured secondary structure contents of Peptide I and Peptide II in HSA.
- **Pg S7.** Table S3. Top optimal sites and tightly binding sites obtained by molecular docking and trypsin proteolysis assay, respectively. Sites acquired by two methods were displayed with orange numbers.
- Pg S8. Fig. S1. JAR cell viability after 48 h of treatment with A) PFOS, B) 6:2 Cl-PFESA, and C) HSA by MTT assay. ■ refers to experimental data, and S-shaped solid line (—) is fitted concentration-response curve (CRC).
- Pg S9. Fig. S2. Changes in secondary structure of HSA protein after addition of different concentrations of PFOS and 6:2 CI-PFESA.
- Pg S10. Fig. S3. The mass spectra of two peptides by MALDI-TOF.

Pg S11. Fig. S4. The maximal fluorescence emission plot (measured at 470 nm) for 1,8-ANS in the presence of peptides as a function of 1,8-ANS concentration and relative fluorescence intensity of 1,8-ANS as a function of added PFOS or 6:2 Cl-PFESA concentrations.

Pg S12. Fig. S5. Schematic of purified Peptide I and Peptide II in HSA.

Supplementary methods

Cell viability analysis after treatment with various concentrations of HSA, PFOS, or 6:2 Cl-PFESA

We studied the potential influence of HSA, PFOS, and 6:2 CI-PFESA in culture medium on JAR cell viability. In brief, JAR cells were first plated in 96-well plates (5 \times 10³ cells/ well) and cultured for 24 h. After washing three times with PBS, serum-free DMEM/F12 medium with different concentrations of HSA protein, PFOS, and 6:2 CI-PFESA (Table S1) was added to the wells. Cells were then cultured for 48 h before cell viability measurement by MTT assay.

Fluorescence displacement assays

Fluorescence displacement experiments were performed using a Horiba fluorescence spectrometer (Fluoromax-4 spectrofluorometer). Briefly, purified peptides, 1,8-ANS, PFOS and 6:2 CI-PFESA were dissolved and diluted with Tris-HCl buffer (pH 8.0) before experiment. Different concentration of 1,8-ANS was added into 1 μ M peptide solution to make the final 1,8-ANS concentrations ranging from 0-30 μ M (Table S1). After equilibrating at room temperature for 2 minutes, the fluorescence spectrum was scanned (scanning wavelength: 410-550 nm, excitation wavelength: 392 nm, slit width: 5 nm, 5 nm). Three repeated scans were performed, and the average value was used to calculate the Kd of 1,8-ANS to two peptides. To obtain the replacement curves of PFOS/6:2 CI-PFESA to 1,8-ANS, different concentrations of PFOS or 6:2 CI-PFESA was added into the 1,8-ANS-Peptide incubation system. Volume of the final system was 100 μ L, and the final concentration of 1,8-ANS and PFOS/6:2 CI-PFESA was

shown in Table S1. After equilibrating at room temperature for 5 minutes, fluorescence spectrum was scanned and repeated for three times, fluorescence intensity values at 470 nm were used to fit the replacement curve.

Experiment	Chemical	Concentration (µM)	DMSO % (v/v)
Stock solution	PFOS	50 mM	100
	6:2 Cl-PFESA	50 mM	100
MTT	HSA	0, 0.15, 0.3, 0.6, 1.25, 2.5, 5, 7.5, 12.5, 25, 37.5, 50, 75, 100, 150	0
	PFOS	0, 6.25, 12.5, 25, 50, 100, 150, 200, 300, 400, 500, 600, 800, 1000, 1500	< 3%
	6:2 Cl-PFESA	0, 6.25, 12.5, 25, 50, 100, 150, 200, 300, 400, 500, 600, 800, 1000, 1500	< 3%
Ultrafiltration	HSA	5	0
centrifugation	PFOS	1, 1.5, 2, 2.5, 5, 10, 20, 30, 40, 45, 50	< 0.1%
	6:2 Cl-PFESA	1, 1.5, 2, 2.5, 5, 10, 20, 30, 40, 45, 50	< 0.1%
Fluorescence	Peptide I/II	1	0
displacement	1,8-ANS	0, 0.1, 0.25, 0.5, 0.75, 1, 1.5, 2, 3, 4, 5, 10, 15, 20, 30	0
	PFOS	0, 0.1, 0.5, 1.5, 2.5, 5, 10, 20, 40, 80, 200, 500	< 1%
	6:2 Cl-PFESA	0, 0.1, 0.5, 1.5, 2.5, 5, 10, 20, 40, 80, 200, 500	< 1%

Table S1. Concentrations of HSA, purified peptides, 1,8-ANS, PFOS, and 6:2 Cl-PFESA used in different experiments.

II.

	α-helix (%)	β-sheet (%)	Random coil (%)
Peptide I-predicted	65.1	0	34.9
Peptide I	74.3	6.8	18.9
Peptide II-predicted	69.9	0	30.1
Peptide II	71.5	5.7	22.8

Table S3. Top optimal sites and tightly binding sites obtained by molecular docking and trypsin proteolysis assay, respectively. Sites acquired by both methods were displayed with orange numbers.

	The top 3 optimal sites observed by	Tightly binding sites obtained by	
	molecular docking	proteolysis and sequence alignment	
PFOS	site $6 > site 3 > site 2$	Site 3, 4, 6 and 7	
6:2 CI-PFESA	site $2 > site 6 > site 3$	site 1, 2, 7 and part of site 6	

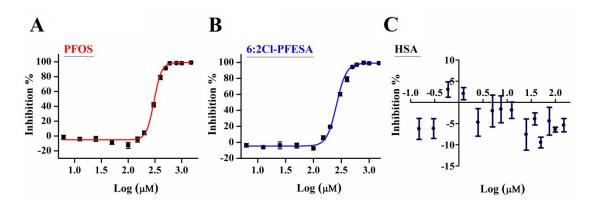


Fig. S1

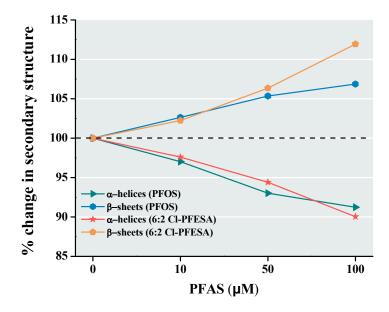


Fig. S2

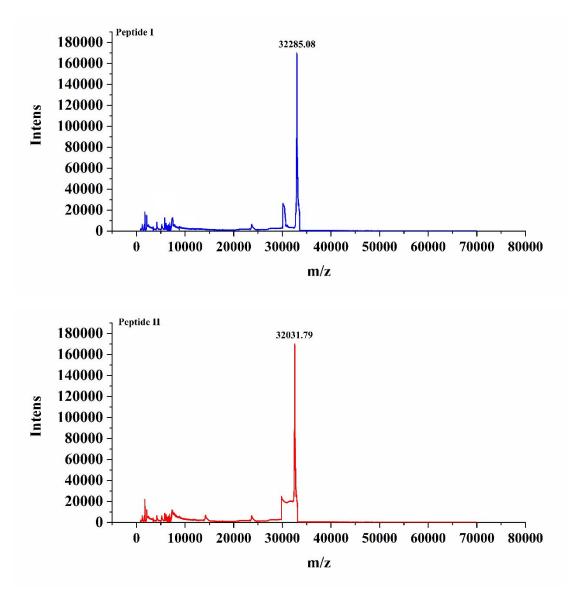


Fig. S3

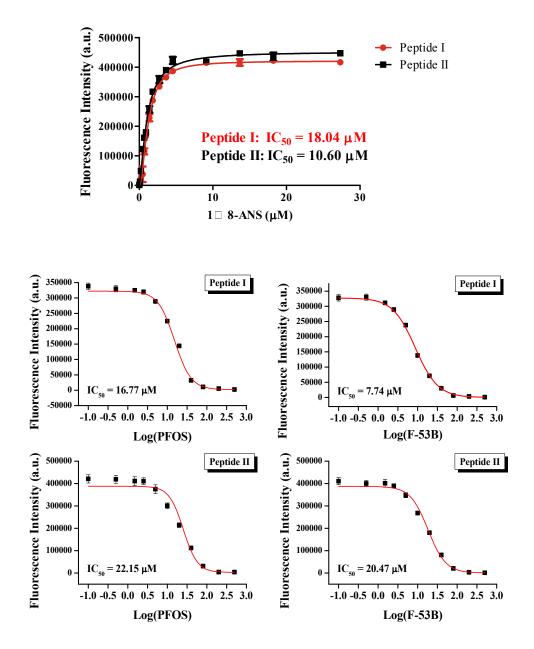


Fig. S4

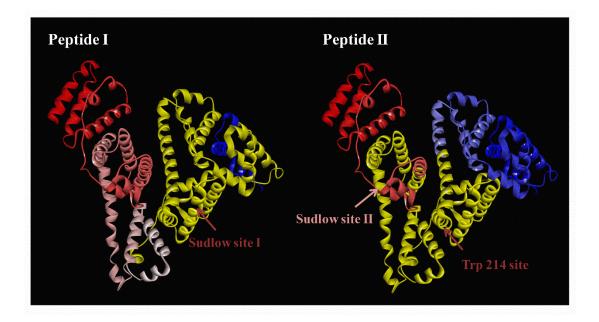


Fig. S5