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Derivation of the equations of motion
   
It is easily seen from Figure 1 that the global and local unit vectors associated with the Earth’s rotation can 
be expressed by,

Therefore,

The position vector from the origin of the global frame to the pendulum bob B is given by  from Figure 𝐸𝐵
1, and if we project a horizontal line back to the pz axis in Figure 2 to the point C, then by using Chasles’ 
relation we see from Figures 1 and 2 that the following applies,

where , noting that  is the radius of the Earth to the grounded origin p of the local frame, 𝑟 = 𝑟𝐸 + ‖𝑝𝐶‖ 𝑟𝐸
and that  ( is the height of the pendulum pivot above the ground, otherwise denoted by h. The ‖𝑝𝐶‖ ≡ 𝐴𝐵) 
velocity of the pendulum bob, M, measured with respect to the global frame’s origin, is given by the first 
time derivative of equation (S3), hence,

Expanding the derivative in full leads to,

We note here that the derivatives of the unit vectors in equation (S5) are with respect to the global frame, 
and so we need to invoke the transformation of equation (S2) to obtain the following results for the 
derivatives of the unit vectors of the local frame, doing the remaining arithmetic in  to be consistent (𝑧𝑥𝑦)
with the order of terms taken in equations (S3) to (S5),

𝑒𝑍 = 𝑠𝑖𝑛𝜙.𝑒𝑧 + 𝑐𝑜𝑠𝜙.𝑒𝑦 (S1)
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Note that the zeros in the first terms on the right-hand sides of these equations simply account for the fact 
that the local frame is not physically accelerating.
The height of the pendulum bob above the ground h varies with the swing angle , therefore , but 𝛼 ℎ ≠ 0 ℎ ≪

 and as the radius of the Earth  is considered to be constant at any latitude, then . We also regard 𝑟𝐸 𝑟𝐸 𝑟 ≈ 0
the angular velocity of the Earth  and the latitude  as constants.𝛺 𝜙
By using equations (S6)-(S8), the conditions summarised above, and substituting for the numerical 
components of the unit vectors, we can return to the velocity of the pendulum bob in equation (S5) to get 
the following,

Reinstating the explicit unit vectors for clarity and then expanding equation (S9) leads to,

We can now obtain the square of the bob velocity by summing the squares of the constituent parts of the 
velocity given in equation (S10), as follows,

The kinetic energy of the pendulum can be assembled by assuming that the mass of the pendulum  is 𝑀
concentrated within the bob, and is therefore given by,

One could easily extend this to include the mass of the pendulum wire and this is discussed further in 
section 6 in the main body of the paper.

The potential energy of the pendulum is entirely gravitational, and by taking the bob mass contribution we 
see that reference to Figure 2 leads to,

where  is the length of the pendulum from the pivot to the bob, , and  is the local acceleration 𝑙 𝑣 = 𝑥2 + 𝑦2 𝑔
due to gravity.  Two equations of motion in terms of the generalised coordinates  and  can now easily be 𝑥 𝑦
derived using computer algebra [21] to undertake two successive applications of Lagrange’s equation, as 
follows,

where  and , and the generalised force vector is  for this system where there is 𝑞1 ≡ 𝑥 𝑞2 ≡ 𝑦 𝑄1,2 = {0 0}𝑇
1,2 

no external forcing. Substituting equations (S12) and (S13) into (S14) leads to the following nonlinear 
ordinary differential equations of motion for the pendulum after some algebraic simplification,
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A nonlinear aerodynamic dissipation term is also included in each equation, where the coefficient is defined 
as,

noting that  is the density of the air surrounding the pendulum,  is the drag coefficient of a cylindrical 𝜌 𝐶𝑑
body (in the case the bob) chosen for turbulent air flow, and  is the radius of the cylindrical bob. The 𝑅𝑏𝑜𝑏
two second order nonlinear ordinary differential equations couple strongly with the angular velocity of the 
Earth, as can be seen in equations (S15) and (S16), through the Coriolis and centrifugal terms. 

As the Earth, and therefore the laboratory, rotates at  about the polar axis, then the component of this 𝛺
angular rate within the laboratory at latitude  and about local axis pz (Figure 2) will be . As the 𝜙 𝛺 𝑠𝑖𝑛𝜙
pendulum swings through angle , which is equal to , any transferred angular velocity from the 𝛼 𝑎𝑟𝑐𝑠𝑖𝑛(𝑣

𝑙)
spin of the Earth to the pendulum about its long axis will be  . The torque associated 𝛺 .𝑠𝑖𝑛𝜙 .𝑐𝑜𝑠 (𝑎𝑟𝑐𝑠𝑖𝑛(𝑣

𝑙))
with this component of angular velocity about the long pendulum axis will therefore be 𝐶𝐵

 where  is the torsional coefficient of friction within the pivot, , as  𝛺 .𝑠𝑖𝑛𝜙 .𝑐𝑜𝑠 (𝑎𝑟𝑐𝑠𝑖𝑛(𝑣
𝑙)) 𝐶𝐵 𝑣 = 𝑥2 + 𝑦2

stated previously, and  as defined in equation (2.3) in the main narrative of the paper. The kinetic 𝑙 = 𝑙(𝑡)
energy associated with pure torsional motion of the bob is given by , where  is the mass moment of 
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coordinate associated with torsional motion of the cylindrical bob about the long axis. The additional 
potential energy will be due to the torsional strain in the wire, and so for reasonably small  the restoring 𝜃

torque will be defined by . In this case  is the shear modulus of the pendulum wire (shear modulus is 
𝑆𝐺𝐽

𝑙 𝜃 𝑆𝐺

usually denoted by G but that notation is avoided here to remove any confusion with Newton’s universal 
constant of gravitation) and J is the polar moment of area for the wire. For a circular section wire this will 

be  where  is the wire diameter. If we also include a damping term proportional to the torsional 𝐽 =
𝜋𝑑4

𝑤𝑖𝑟𝑒

32 𝑑𝑤𝑖𝑟𝑒

angular velocity of the wire and bob of the form  then we can construct an additional equation of motion 𝐶𝑇𝜃
which captures the principal mechanism for pure torsion in the pendulum, as follows,

Numerical values can be calculated or obtained directly for  , , and , and  is treated numerically for 𝐼𝑇 𝑆𝐺 𝑑𝑤𝑖𝑟𝑒 𝑙
the parametric excitation as in Figure 3. Appropriate values for the additional system constants and 
parameters are as follows, CT =  Nms, SG = 161 * 109 Pa (tungsten), dwire = 0.00254 m, CB = 0.003 Nms, 0.0001

 = 0.001 rad,  = 0 rad/s, all other quantities using the same data as for Figure 3. We can now 𝜃(0) 𝜃(0)
examine the response in pure torsion predicted by this additional equation of motion. The results for  with 𝜃
time are found to be generally insensitive to the initial conditions mainly due to the relatively high torsional 
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stiffness of the 2.54 mm diameter tungsten wire chosen for this first numerical example (noting that we 
discuss wire material and diameter further in section 4 in the paper). Results are obtained for the damping 
friction value provided by the manufacturer of the spherical rotating joint,  Nms. It is this 𝐶𝐵 = 0.003
quantity that controls the torque available to drive the pendulum into a torsional response as a 
consequence of the rotation of the laboratory. The other damping quantity is assumed, from experience, 
and is given here by Nms. 𝐶𝑇 = 0.0001 


